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ABSTRACT:Pattern recognition and classification tasks use machine learning that require a suitable 

representation of the pattern. Non-negative matrix factorization (NMF) has to be a useful decomposition and 

representation of multivariate data pattern. Two different multiplicative algorithms for NMF are analyzed. In 

this paper, we extend the original NMF to 2-Dimensional kernel non-negative matrix factorization (2DKNMF) 

to improve its performance. 2DKNMF algorithm is derived based on nonlinear kernel function to map patterns 

to feature space and stepwise method is applied on each individual pattern in feature space to avoid complex 

computations. The advantages of 2DKNMF algorithm are based on extract more useful feature hidden in the 

original pattern and it can process data with negative values by using some specific distribution kernel 

functions. Experimental results on several face databases show that 2DFNMF has better image reconstruction 

quality than NMF. Also the running time of 2DFNMF is less, and the recognition accuracy higher than that of 

NMF. 
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I. INTRODUCTION 
Learning Parts of pattern is interested in machine learning, computer vision and pattern recognition [3]. 

Many parts-based image representation approaches can be ascribed to a general subspace method, which has 

been successfully used in many high dimensional data analysis applications. Given a class of image patterns, 

there are many approaches to construct the subspace. One such method is principal component analysis (PCA) 

[4].  Recently a new subspace method called non-negative matrix factorization (NMF) [1,5] is proposed to learn 

the parts of objects and images. Linear and unsupervised dimensionality reduction via matrix factorization with 

non-negativity constraints NMF is studied when applied for feature extraction, followed by pattern recognition 

classification [2].  

 

Lee and Seung [1] proposed a simple iterative algorithm for NMF and proved its convergence. NMF 

provides simple learning rule guaranteeing monotonically convergence to a local maximum without the need for 

setting any adjustable parameters.  Disadvantage of NMF, the 2D image matrices must be previously 

transformed into 1D image vectors that may cause the loss of some structure information hiding in original 2D 

images.  2-Dimensional non-negative matrix factorization (2DNMF) for representing 2D images with a set of 

2D bases.  The key difference between 2DNMF and NMF is that the former adopt a novel representation for 

original images.Kernel  NMF [6] can extract more useful features hide in the original data using some kernel-

induced nonlinear mapping; it deal with relational data where only the relationships between objects are known; 

it  process data with negative values by using some specific kernel functions (e.g. Gaussian). 

Pattern Recognition/classification tasks use machine learning that require a suitable representation of 

the pattern. Typically, a useful representation can make the latent structure in the data pattern more explicit, and 

often reduces the dimensionality of the data pattern so that Non-negative matrix factorization (NMF) method 

can be applied. NMF method represents and stores pattern into one dimension, imposes the non-negativity 

constraints in its bases and coefficients, and it cannot disclose nonlinear structures hidden in the data pattern. 

We propose the two-dimensional kernel NMF (2DKNMF), which can overcome the above limitations 

of NMF. First, 2DKNMF has better pattern reconstruction quality in two dimension than representation in one 
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dimension by traditional NMF method. Second, through using kernel-induced nonlinear mapping, KNMF could 

extract more useful features hidden in the original data and can process data with negative values. Thus, 

2DKNMF is more general than NMF. The performance 2DKNMF method is issued in the following aspect:  the 

computational costs, enhancing the image reconstruction quality and improving the recognition accuracy with or 

without occlusions and noises. Evaluate the effect of the number of bases used in NMF, 2DNMF and 2DKNMF  

for pattern recognition without occlusion and noise. 

 

II. NON-NEGATIVE MATRIX FACTORIZATION (NMF) ALGORITHM  
Non-negative matrix factorization is a linear non-negative approximation of multivariate data 

representation. Given a set of m patterns  {𝐴1  , 𝐴2 , … . , 𝐴𝑚}   each 𝐴𝑖  has two dimension 𝑝 × 𝑞  and is first 

transformed into a one dimension vector.  Non-negative matrix 𝑉(𝑛 × 𝑚) contains all patterns as columns, each 

column of which contains n= 𝑝 × 𝑞  non-negative values. The matrix 𝑉(𝑛 × 𝑚)  is then approximately 

factorizedinto two matrices W and H, such that 𝑉 ≈ 𝑊 ∙ 𝐻, that is each column vi of V can be written  as linear 

combination of this set, i.e. 𝑣𝑖 ≈ 𝑊 ∙ ℎ𝑖 .  Where matrix  𝑊(𝑛 × 𝑟)  contains basis vectors 𝑤𝑖  and matrix 

H(r× 𝑚)  contains the coefficient vector ℎ𝑖  corresponding to vector 𝑣𝑖 . Usually r is chosen to be smaller than 

𝑛𝑜𝑟𝑚 such that  𝑟(𝑛 + 𝑚) < 𝑚𝑛.  To find non-negative matrix factors W and H, we first need to define cost 

function that can be constructed using some measure of distance between two non-negative matrices V and WH. 

The conventional approach to find W and H is by minimizing the difference between V and WH [13] by using 

the Euclidean distance: 

min𝑊,𝐻 𝑍 𝑊,𝐻 =
1

2
 𝑉 −  𝑊𝐻  2 =

1

2
  (𝑉𝑖𝑗 −  𝑊𝐻 𝑖𝑗 )2𝑚

𝑗=1
𝑛
𝑖=1  , w.r.t   W ≥ 0, H  ≥ 0. (1) 

Another cost function is divergence measure, the divergence 𝐷(A 𝐵) is measured in 

Eq(2).Like the Euclidean distance this is lower bounded by zero, and vanishes one and only if A=B. But it 

cannot be called a “distance”, because it is not symmetric in A and B, soit refers to as the “divergence” of A 

from B.  It reduces to the Kullback-Leibler divergence [1 ].In order to obtain W and H, it should be solve the 

optimization problem Minimize D (V||WH)   w. r. t. W, H  ≥ 0.  

𝐷(𝐴 𝐵) =     𝐴𝑖𝑗 log
𝐴𝑖𝑗

𝐵𝑖𝑗
− 𝐴𝑖𝑗 +   𝐵𝑖𝑗   𝑖𝑗   (2) 

min𝑊,𝐻     𝑉𝑖𝑗 log
𝑉𝑖𝑗

(𝑊𝐻)𝑖𝑗
− 𝑉𝑖𝑗 +   (𝑊𝐻)𝑖𝑗   

𝑚
𝑗=1

𝑛
𝑖=1  , Subject to   W ≥ 0, H  ≥ 0.                      (3) 

The multiplicative update rule is given in [1] as follows: 

𝑊𝑖𝑗  =   𝑊𝑖𝑗  
𝑉𝑖𝑘

(𝑊𝐻)𝑖𝑘

𝑚
𝑘=1 𝐻𝑗𝑘         (4) 

𝑊𝑖𝑗  =  
𝑊𝑖𝑗

 𝑊𝑘𝑗
𝑛
𝑘=1

      (5) 

𝐻𝑘𝑗  =   𝐻𝑘𝑗  𝑊𝑖𝑘

𝑉𝑖𝑗

(𝑊𝐻)𝑖𝑗

𝑛
𝑖=1       (6) 

Algorithm (1) is an iterative procedure for computing the bases W and coefficients H as the following. 

Algorithm (1):Original NMF algorithm 

Input: Data matrix V(n×m), each column of which denotes pattern     

vector, and r rank w. r. t.  𝑟(𝑛 + 𝑚) < 𝑚𝑛.   

Output: Construct Matrix W(n×r )and matrix H(r×m)  s. t. 𝑉 ≈ 𝑊 ∙ 𝐻 

 

1. Set initial random values for Wand H. 

2. Set iteration  t←1 

3. Whilenot convergent based Equation (1)or(2). 

4.       Update the bases Wusing Equations (4 and 5). 

5.       Update the coefficients Husing Equation (6). 

6. t ← t +1. 

7.  End While 

 

 

III. KERNEL NON-NEGATIVE MATRIX FACTORIZATION (KNMF)  
The kernel NMF can extract more useful features hidden in the original data, it can solve the problem 

of the data where only relationships between patterns are known, and being able to process the datawith 

negative values by using some specific kernel functions. Before deriving kernel based NMF methods, two 

important definitions of kernel and kernel matrix are reviewed[6]. 
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A kernel is a nonlinear function inner product that maps origin data from the input space to the feature 

space. More specifically, a kernel is defined as follows: 

𝑘 𝑥, 𝑦 =  ∅ 𝑥 , ∅(𝑦)   = (∅ 𝑥 )𝑡 ∙ ∅(𝑦)(7) 

Where ∅is a mappingfrom input x to a feature space F, ∅ ∶ 𝑥 → ∅(𝑥)∈F. Here,  ∙,∙ denotes the inner 

product.The kernel matrix can measure the pair wise relationship between them and gives the similarity 

measures.  Given a matrix V(𝑛 × 𝑚) = {𝑣1 , 𝑣2,…, 𝑣𝑚  } and  a kernel function  Κ. The elements 𝑲𝒊𝒋 of kernel 

matrix of V is computed based on Eq.(7) so that 𝑲𝑖𝑗 = 𝑘 𝑣𝑖 , 𝑣𝑗  =  ∅ 𝑣 , ∅(𝑣)  = (∅(𝑽))𝑇 ∙ ∅(𝑽)   and 

𝑲 ≜   𝑲𝒊𝒋  
𝒎

𝒊,𝒋=𝟏
. Zhang et al.[7]extended the original NMF to kernel NMF (KNMF) in 2006.The nonlinear 

kernel mapping from the original input space to a high dimensional feature space and enables the data to 

representtheir correlation in the high dimensional space. Assume that the input observations 

are represented as matrix X(n×m)  = [x1, x2, …,xm ].Let ∅bean implicit nonlinear mapping from the original 

input space to ahigh dimensional feature space,∅(X) = [∅(x1), ∅( x2), …,∅(xm) ]. So ∅(V) is decomposed into 

twononnegative factors ∅(W)  and H , such that: 

 ∅ 𝑉  
𝑇
∅ 𝑉 =  ∅ 𝑉  

𝑇
𝑊∅ ∙ 𝐻        (9) 

Since   K(V,V)= ∅ 𝑉  
𝑇
∅ 𝑉   and  K(V,W)= ∅ 𝑉  

𝑇
𝑊∅     then Eq.(9) become    K(V,V) = K(V,W) H.                                                                                                     

Upon equations (7, 8) and let  𝑌 =   ∅ 𝑉  
𝑇
𝑊∅   , Eq. (9) can be rewrite as   𝐾 = 𝑌 ∙ 𝐻, where𝑾∅ is the 

learned bases of ∅(𝑽) in feature space F and H is its combining coefficients, each column of which 

denotes now the dimension-reduced representation for the corresponding object.  

 
a.The Polynomial Kernel 

Polynomial function can extract more useful feature hidden in the original pattern and it can process 

data with negative values. Polynomial function reduces the statistics and the redundancy of the representation of 

patterns. Buciu et al.[8] applied the polynomial functions that  frequently used kernel functions in feature space. 

The polynomial function of input data x of d- dimension is defined in Eq. (10).  

𝑲𝑖𝑗 = 𝑘 𝑥𝑖 , 𝑥𝑗  =  (𝑥𝑖 ∙ 𝑥𝑗 )𝑑    (10) 

Let input data X V ℝ𝑛×𝑚 are transformed to the higher dimensional space ℱ ⊆ ℝℓ×𝑚   , ℓ ≫ 𝑛 . The 

transformed input data 𝐹 = [ ∅ 𝑥1  , ∅ 𝑥2  , … , ∅ 𝑥𝑚  ]where ∅ 𝑋𝑖 =  ∅ 𝑋 1  , ∅ 𝑋 2  , … , ∅ 𝑋 ℓ 
𝑇 ∈ ℱ  and ℓ 

is dimensional of input vector.The cost function is shown as in Eq.(11). 

min𝑊,𝐻 𝑍 𝑊,𝐻 =
1

2
 ∅ 𝑉 − ∅ 𝑊 𝐻 2 𝑠. 𝑡.𝑊 ≥ 0  , 𝐻 ≥ 0      (11) 

Where ∅(W)  =  [∅(w1), ∅( 𝑤2), … , ∅(𝑤𝑟) ]  and vectors 𝑤𝑖 arecalled the pre-images of the basis. 

Multiplicative update rules of the KNMF are obtained by a gradient descent optimizationprocedure, the kernel’s 

gradient is given byEq.(12). 
𝜕𝑍

𝜕𝐻
 =  ∅ 𝑉 − ∅ 𝑊 𝐻 ∅ 𝑊 𝑇 =  ∅ 𝑉 ∅ 𝑊 𝑇) − (∅ 𝑊 ∅ 𝑊 𝑇𝐻 = 𝐾𝑤𝑣 −𝐻𝐾𝑤𝑤  (12) 

∴ ∆𝐻 ≜
𝐾𝑤𝑣

𝐾𝑤𝑤
           (13) 

𝐻 𝑡 + 1 = 𝐻 𝑡 
𝐾𝑤𝑣

𝐾𝑤𝑤 𝐻(𝑡)
         (14) 

𝜕𝑍

𝜕𝑊
 =  ∅ 𝑉 − ∅ 𝑊 𝐻  (𝑉𝐾𝑉𝑤

′ − 𝐾𝑤𝑤
′ 𝐻)       (15) 

𝑊 𝑡 + 1 = 𝑊 𝑡 
𝑉𝐾𝑣𝑤

′

𝑊 𝑡 Ω𝐾𝑤𝑤
′          (16) 

𝑊 𝑡 + 1  =  
𝑊 𝑡+1 

 𝑊𝑘𝑗
𝑛
𝑘=1

          (17) 

Where,𝐾𝑤𝑣 =  𝜙 𝑤𝑖 , 𝜙 𝑣𝑗   , 𝐾𝑣𝑤 =  𝜙 𝑣𝑗  , 𝜙 𝑤𝑖   , 𝐾𝑤𝑤 =  𝜙 𝑤𝑖 , 𝜙 𝑤𝑗   and thekernel matrix𝑲 =

 𝜙 𝑣𝑖 , 𝜙 𝑣𝑗   = (𝑣𝑖 ∙ 𝑣𝑗)
𝑑
, the derivative of K is  𝑲′ = 𝑑(𝑣𝑖 ∙ 𝑣𝑗 )𝑑−1 = 𝑑 ∙ 𝑲𝑑−1 for polynomial kernel. is a 

diagonal matrix of Hwhose elements are   𝐻𝑖𝑗
𝑚
𝑗=1  , i=1,…,r. Equation(14)  normalizes  the basis matrix such as 

𝑤 ∈  0, 1 . 
 

b.The Gaussian kernel 

The Gaussian kernel function is define by𝑲𝑖𝑗 = 𝑘 𝑥𝑖 , 𝑥𝑗  = 𝑒𝑥𝑝  − 𝑥𝑖 − 𝑥𝑗  
2

/(2𝜎2)    that empower 

to measure the similarity of xi and xj with the gradient∇𝐾𝑖𝑗 = −
1

2𝜎2 𝐾𝑖𝑗 (𝑥𝑖 − 𝑥𝑗 ). The update rules of matrices 

HandW can be easily derived as in polynomial kernel [6]. 
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IV. TOW DIMENSION KERNEL NMF (2DKNMF) METHOD 
In origin NMF, a two dimensional pattern A(p×q) is first transformed into a one dimensional vector 

and then all the  patterns are represented into a matrix V(n×m), each column of which contains n=pq  

nonnegative  values of one of the m patterns [11]. The procedure of 2DKNMF method consists of four 

successive steps as followed. 

First Step: Wealign the m training patterns into a matrix V(p×qm) = [A1 , A2 , … . , Am ], where each Akdenotes 

one of the m patterns. The procedure 2DKNMF finds nonnegative matrix W(n×r)and non-negative matrix 

H(r×qm). We performa kernel nonlinear functionK on all columns patterns to construct∅(Ak) . 

Second Step:Apply KNMF algorithm based on a stepwise method individual pattern ∅(Ak) with decomposition 

dimension r such that ∅(V) ≈ ∅(W) ∙ H.  

Third Step:   Apply KNMF algorithm again on all transposed pattern∅(V)Twith dimension s to decomposeinto 

matrix  R(qm×s)row bases and coefficients matrix C(s×qm) ,  s. t.∅(V)T ≈ ∅(R)T ∙ C.  

Fourth Step: Construct feature space   𝐷𝑘  𝑘=1
𝑚 by project each pattern  𝐴𝑘onto bases matrices W and R 

such that:  𝐷𝑘 =  ∅(𝑊) 𝑇𝐴𝑘∅(𝑅𝑘). So, each feature matrix  𝐷𝑘  will be of size (r ×s). Figure 4.1 shows 

the reconstruction of origin image from its feature extraction matrix D. The quality of the reconstructed image is 

measured using the peak signal-to-noise ratio (PSNR). 

 

 
                                                  A                                     B                                     C                     

Figure (4.1): (a) Originimage(92 ×112) ,(b) feature extraction by 2DNMF  D(70 ×70) and (c)  image 

reconstructed from feature extraction of pattern image  with PSNR=-43.0418. 

 

A. MULTIPLICATIVE RULE BASED ON STEPWISE METHOD 
In order to avoid complex computations Stepwise method divides Hinto md×qsub-matrices as H= 

[ 𝐻1  , 𝐻2  , … . , 𝐻𝑚 ], where 𝐻𝑘 denotes the coefficients of the patterns ∅(𝐴𝑘) . Since each column of 

∅(𝑉)corresponds to a column of original patterns, we also call as ∅(𝑊)column bases. Thus the k-th pattern 

patterns∅ 𝐴𝑘 canbe written as a weighted sum of the column bases Has follows: 

∅ 𝐴𝑘 ≈ ∅(𝑊)𝐻𝑘   , k=1, 2,… ,m        (18) 

𝐻𝑘 𝑡 + 1 = 𝐻𝑘 𝑡 
𝐾𝑤𝑣

𝐾𝑤𝑤 𝐻𝑘(𝑡)
         (19) 

𝑊𝑘 𝑡 + 1  = 𝑊𝑘 𝑡 
∅(𝐴𝑘)𝐾𝑣𝑤

′

𝑊𝑘  𝑡 Ω𝑘𝐾𝑤𝑤
′         (20) 

𝑊 𝑡 + 1  =  
𝑊 𝑡+1 

 𝑊𝑘𝑗
𝑛
𝑘=1

          (21) 

Where k is a diagonal matrix whose diagonal element is Ω𝑖𝑖 =   𝐻𝑘𝑖𝑖  , the kernel matrices 𝐾𝑤𝑣 = ∅ 𝑊 𝑇 ×
∅ 𝑉  ,  𝐾𝑣𝑤 = 𝐾𝑤𝑣

𝑇   , 𝐾𝑤𝑤 =  ∅ 𝑊 𝑇 ∙ ∅ 𝑊   and the notation  𝐾𝑣𝑤
′   denote the derivative of kernel matrix  𝐾𝑣𝑤  

with respected  to the kernel function  type. 
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Figure 4.2: Illustration of stepwise method of 2DKNMF 

 

B. FACE RECOGNITION USING 2DKNMF METHOD 
The2DKNMF method is used to construct feature space   𝐷𝑘  𝑘=1

𝑚  of dataset  𝐴𝑘  𝑘=1
𝑚 by project each 

pattern  𝐴𝑘  into two bases matrices. The feature space of training images are then used as prototypes. Construct 

C-centroids of the clustering based on feature space. A test face image A to be classified is represented by its 

projection onto the feature space as 𝐷 =  ∅(𝑊) 𝑇𝐴∅(𝑅𝑘)  and then calculate the distance based on  norm  

distance between   tested image  and each prototype as follows:  𝑑𝑖𝑠𝑡(𝐷, 𝐷𝑘) =  𝐷 − 𝐷 𝑘 . The tested image is 

classified to the class to which the closest prototype belongs. 

 

Algorithm (2):2DKNMF Algorithm 

Training Procedure: 

Input:p×qmatrices  𝐴𝑘  𝑘=1
𝑚 , and rank r w. r. t. 𝑑(𝑛 + 𝑚) < 𝑚𝑛. 

Output:Construct p×r column bases W and m r×qsub-matrices as   𝐻𝑘  𝑘=1
𝑚  

s.t. 𝑉 ≈ 𝑊 ∙ 𝐻 

 

1. Align the m training images into a p×qmmatrix V=[𝐴1  , 𝐴2 , … . , 𝐴𝑚 ], 

2. Initiate all matrices column bases W andcoefficients matrices H= [𝐻1  , 𝐻2  , … . , 𝐻𝑚 ]with 

rank r. 

3. Perform polynomial kernel function as ∅ 𝑉 = ∅ {𝐴1 , 𝐴2 , … . , 𝐴𝑚 }to 

constructmatrices  ∅(𝐴𝑘)  𝑘=1
𝑚 . 

4. Set Iteration  t ←1 

5. While not  convergent 

6. For k = 1 to m 

7. Perform Stepwise method for each matrix of   ∅(𝐴𝑘)  𝑘=1
𝑚  

8. Update𝐻k   using 𝐻𝑘 𝑡 + 1 = 𝐻𝑘 𝑡 
𝐾𝑤𝑣

𝐾𝑤𝑤 𝐻𝑘(𝑡)
 

9. Update𝑊k  using 𝑊𝑘 𝑡 + 1 = 𝑊𝑘 𝑡 
∅(𝐴𝑘)𝐾𝑣𝑤

′

𝑊𝑘 𝑡 Ω𝑘𝐾𝑤𝑤
′  

10. End For 

11. Accumulate matrix H from   𝐻𝑘   𝑘=1
𝑚  . 

12. Compute 𝐸𝑡 =   𝑊 × 𝐻  𝑡  
13. Compute the𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑉 𝐸𝑡

   
14. t ← t +1. 

15.  End While 

 

Testing Procedure:  For Pattern Recognition 
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Assume matrix H contains C-class features  which  the columns of H are divided into C- blocks, 

namely H=   𝐻𝑘   𝑘=1
𝐶  

Step (1) :Compute the pseudo inverse  of matrix𝐾𝑤𝑤 and the mean vectorℎ 𝑘of 𝐻𝑘where k = 1, 2, . 

. . ,C. 

Step 2 : For the testing pattern Y : 

 Compute kernel matrix𝐾𝑤𝑦 =  𝜙(𝑊)𝑇𝜙(𝑌) . 

 Extract features of testing patternY  byh = 𝐾𝑤𝑤 ∙ 𝐾𝑤𝑦 . 

 Compute norm distances betweenh and eachℎ 𝑘   by  𝑑𝑘 =  ℎ − ℎ 𝑘 ∀𝑘 =

1,2, … , 𝐶. 
Step 3:  Assign test pattern Y to K-class such that  Minimum   𝑑𝑘  𝑘=1

𝐶  

 

V. EXPERIMENTS AND RESULTS 
In this section, we compare three methods traditional NMF, kernel NMF and 2DKNMF. ORL database 

[10] contains a set of faces taken between April 1992 and April 1994 at the Olivetti Research Laboratory in 

Cambridge, UK.  There are 10 different images of 40 distinct subjects. For some of the subjects, the images 

were taken at different times, varying lighting slightly, facial expressions (open/closed eyes, smiling/non-

smiling) and facial details (glasses/no-glasses).  All the images are taken against a dark homogeneous 

background and the subjects are in up-right, frontal position (with tolerance for some side movement). The size 

of each image is 92×112, 8-bit grey levels. 

Feature Extraction by traditional NMF method the final Residual is 2.5941e+03 

 

 
Figure (5.1): (a) Originimage(92 ×112) ,(b) feature extraction by NMF  D(70 ×70) and (c)  image 

reconstructed from feature extraction of pattern image  with PSNR=-43.0418. 
 

Feature Extraction by 2DKNMF method based on Gaussian kernel function (rbf ,=1).  The Final Residual 

is0.4535941e+02. 

 
Figure (5.2): (a) Originimage(92 ×112) ,(b) feature extraction by 2DNMF  D(70 ×70) and (c)  image 

reconstructed from feature extraction of pattern image  with PSNR=-23.68. 
2DFNMF Method:   Extract Feature space    𝐷𝑘  𝑘=1

𝑚  of 25training dataset  images has  been  done by the following steps. 

 

Step(1) : ∅ 𝑉 = 𝑊 × 𝐻 

Step(2):  ∅ 𝑉 𝑇 = 𝑅 × 𝐶 
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Step(3):  𝐷𝑘 = 𝑊𝑘
𝑇 × 𝑉𝑘

𝑇 × 𝑅 

 

The results of training processing have been finished after 300iterations  The final residual is 3.4641e+00. 

This is shown in figs.(5.3, 5.4). 

 
Figure (5.3): (a) Originimage (92 ×112) and (b) Feature extraction D(70 ×70)by2DFNMF method . 

 

Extract Feature space    𝐷𝑘  𝑘=1
𝑚  of 25  training dataset  images is shown in fig.(5.4). Where each image is 

transformed into matrix D with decompose r=70. 

 
Figure (5.4): Feature extraction D(70 ×70) is computed by 2DFNMF  method. 

 

Fig.5.6 shows the comparisons of performances of NMF, 2DNMF and 2DKNMF under number of 

different bases dimension using PSNR.Experimental results on two face databases convince our claim that 

2DKNMF improves 2DNMF. 
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Figure (5.6): Comparisons of performances of NMF, 2DNMF and 2DKNMF under number of different bases 

dimension using PSNR. 

 

VI. CONCLUSION 
In this paper, we have proposed an extend NMF method, 2-D kernel non-negative matrix 

factorization(2DKNMF), for face representation and recognition. This work is aimed to improve 

theperformance of traditional NMF in the followingaspect: reducing the computational costs, enhancing the 

image reconstruction qualityand improving the recognition accuracy with or without occlusions and noises. 

Weachieved our goal through using a novel image representation method, i.e. using 2Dbases instead of 

traditional 1D bases.Experimental results on two face databasesconvince our claim that 2DKNMF improves 

2DNMF on the above three aspects. 
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