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ABSTRACT: This paper applies, homotopy perturbation method (HPM) and Variational Iteration Method 

(VIM) are employed to solve the linear and nonlinear Schrodinger equations. To illustrate the capability and 

reliability of the methods, some examples are provided. The results obtained using homotopy perturbation 

method (HPM) are compared with result Variational Iteration Method (VIM ). 
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I. INTRODUCTION 
The Schrodinger equation plays the role of Newton's laws and conservation of energy in classical 

mechanics.  The Schrödinger equation does not give the trajectory of a particle, but rather the wave function of 

the quantum system, which carries information about the wave nature of the particle, which allows us to only 

discuss the probability of finding the particle in different regions of space at a given moment in time. The 

Schrodinger equation has two ‘forms’, one in which time explicitly appears, and so describes how the wave 

function of a particle will evolve in time. In general, the wave function behaves like a wave, and so the equation 

is often referred to as the time dependent Schrodinger wave equation. The other is the equation in which the 

time dependence has been ‘removed’ and hence is known as the time independent Schrodinger equation and is 

found to describe, amongst other things, what the allowed energies are of the particle. These are not two 

separate, independent equations the time independent equation can be derived readily from the time dependent 

equation. 

In recent years, many researches have paid attention to find the solution of Schrodinger equation by 

using various methods. Among these are the a Spectral Method [1], Split step method [2], Adomian 

decomposition Method [11], the Wentzel–Kramers–Brillouin (WkB) Method[15], Nikiforod-Uvarov (NU) 

Method [21], Variational Iteration  method have been studied by a numbers of authors [3, 4, 5, 6, 10, 12],and  

homotopy perturbation method(HPM) [7, 8, 11, 13, 14, 16, 17, 18], various ways have been proposed recently to 

deal with these Schrodinger equation. 

 

i. The linear Schrodinger equation of the form 
2
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where ( )f x  is continuous  and  square integrable,  

The linear Schrodinger equation with initial value problem for a free particle with mass m   is given by 

standard form 
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Where   and k are constants. It is to be noted that Schrodinger equation (2) discusses the time 

evolution of a free particle. Moreover, the function ( , )x t  is complex and equation (2) is a first order 

http://hyperphysics.phy-astr.gsu.edu/hbase/newt.html
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differential equation in .t   The Schrodinger equation (2) is usually handled by using the spectral transform 

among other methods.   

 

ii. The nonlinear Schrodinger equation of the form 
2
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With ( , 0 )x   is differentiable function, ( )g x is the initial value and   is a constant.The nonlinear 

Schrodinger equation (NLS) with initial value problem defined by its standard form 
2
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Where  a constants and function ( , )x t  is complex. 

The nonlinear Schrodinger equation is an example of a universal nonlinear model that describes many 

physical nonlinear systems. The equation can be applied to hydrodynamics, nonlinear optics, nonlinear 

acoustics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. 

 

II. HOMOTOPY PERTURBATION METHOD 
To illustrate the basic idea of homotopy perturbation method (HBM), we consider thefollowing non-linear 

differential equation: 

( ) (r) 0 ,   rA f         (5) 

 

With the following boundary conditions: 

, 0 ,   rB
n

 
    

 

      (6) 

Where A is a general differential operator, B is a boundary operator, (r)f is a known analytical 

function and   is the boundary of the domain  . The operator A  can be decomposed into a linear and a non-

linear, designated as L and N respectively. The equation (5) can be written as the following form. 

 

( ) ( ) ( ) 0L N f r                (7) 

Using homotopy perturbation technique, we construct a homotopy  ( , ) : 0 ,1r p    R which satisfies  

     0
( , ) 1 ( ) ( ) ( ) ( ) 0H p p L L p A f r             (8) 

Where (0 ,1)p  is an embedding parameter,  
0

  is an initial approximation solution of (5), which satisfies 

the boundary, form equation (8) we obtain 

0
( , 0 ) ( ) ( ) 0H L L                       (9)  

( ,1) ( ) ( ) 0H A f r                (10) 

Changing the process of p  from zero to unity, a change ( , )r p from 
0

( )r to ( )r . 

In topology, this is called homotopy. According to the HPM, we can first use the embedding parameter 

p as a small parameter, and assume that the solutions of equation (8)  can be written as a power series in p as 

the following  
2 3

0 1 2 3
p p p                 (11) 

Setting 1p   results in the approximate of equation (11), can be obtained  

0 1 2 3
1

lim
p

    


                   (12) 
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III. VARIATINAL ITERATION METHOD 
The variational iteration method (VIM) established by Ji-Huan He [1] is thoroughly used by 

mathematicians to handle a wide variety of scientific and engineering applications: linear and nonlinear, and  

homogeneous and inhomogeneous as well. It was shown that this method is effective and reliable for analytic 

and numerical purposes. The method gives rapidly convergent successive approximations of the exact solution if 

such a solution exists. The VIM does not require specific treatments for nonlinear problems as in Adomian 

method, perturbationtechniques, etc. In what follows, we present the main steps of the method. Consider the 

differential equation 

 

( ( , )) ( ( , )) g (x , t)L x t N x t    (13) 

Where L and N  are linear and nonlinear operator and 
g (x , t)

 is sourceinhomogeneous term. The 

variational iteration method, we can construct a correction function for question (13) in the form  

 1
( , ) ( , ) ( ) ( , ) ( , ) g ( , ) ,  n 0

n n
x t x t L x N x x d     


        

  (14) 

Where   is a general Lagrangian multiplier, which can be identified optimally via the variation 

theory, the second term on the right is called the correction and 


 is a restricted variation which means  =0. 

We first determine the Lagrange multiplier  that will be identified optimally via integration b parts. 

The successive approximations  
1
( , )

n
x t


  of the solution of ( , )x t will be readily obtained upon using the 

obtained Lagrange multiplier and by using any selective 
0

( , )x t  function.  Consequently, the solution 

( , ) lim ( , )
n

n

x t x t
 

  
          (15) 

 

IV. APPLICATIONS 
In this section, we apply the homotopy perturbation method(HBM) and variational iteration method (VIM) to 

some linear and nonlinear partial differential equations. 

 

Example.1 

Use the Homotopy perturbation method to solve the linear Schrodinger equation: 
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Using HPM, we construct a homotopy in the following form 
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We select 
0

( , t )
ik x

x e  as in initial approximation that satisfies the two conditions.  Substituting equation 

(11) into equation (16) end equating the terms with identical powers of  p , we drive  
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Therefore, the solution of equation (16) when 1p  we will be as follows: 

 
2 2 2 2 3

 ( ) ( ) ( )
( , t) 1

1! 2 ! 3 !

i k x k tik xk it k it k it
x e e 

 
       

 

    (22) 

Variational Iteration Method: 

By using variational iteration method for equation (16), we obtained 
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This yields stationary conditions  

                             1+= 0  , 0    

This in turn gives = -1. 

Substituting this value of the Lagrange multiplier into the functional gives the iteration formula. 
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This gives the exact solution by      
( )

0
( , )

ik x k t
x t e


 

                    (25) 



American Journal of Engineering Research (AJER) 2017 
 

 
w w w . a j e r . o r g  

 
Page 111 

Example 2. 

Use the Homotopy perturbation method to solve the linear Schrodinger equation: 
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Using HPM, we construct a homotopy in the following form 

2

0

2
( , ) (1 ) 0H p p p i

t t t x

  


    
       

                        

(27) 

We select 
0

( , t) s in hx x   as in initial approximation that satisfies the two conditions.  Substituting 
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Variational Iteration Method: 

By using variational iteration method for equation (16), we obtained 
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This yields stationary conditions  

                             1+= 0  , 0    

This in turn gives = -1. 
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Substituting this value of the Lagrange multiplier into the functional gives the iteration formula. 
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Example 3 
Use the Homotopy perturbation method to solve the linear Schrodinger equation: 
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Using HPM, we construct a homotopy in the following form 
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Variational Iteration Method: 

By using variational iteration method for equation (26), we obtained  
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Where 
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This in turn gives = -i 

Substituting this value of the Lagrange multiplier into the functional gives the iteration formula. 
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V. CONCLUSION 
In this paper, we compared homotopy perturbation and variational iteration method as applied 

to solve the linear and nonlinear Schrodinger equation. It shown that thesemethod are very efficient 

and powerful to get the exact solution.Variational iteration method gives several successive 

approximations through using the iteration of the correction functional, and requires the evaluation of 

the Lagrangian multiplier.These methods are gives more realistic series solutions that converge very rapidly 

in physical problems. The Schrodinger equation under the initial conditions, give similar results when 

we use the homotopy perturbation method and variational iteration method. 
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