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Abstract: Theoretical study of some fluid properties and viscoelasticity was carried out by determining the 

solution of the resulting governing equations. Graphical analyses of the solutions showed that, increase heat 

sink term and Frank-Kamenestkii parameter result in a decrease in the temperature profile of the fluid while an 

increase in radiation result in a decrease in the temperature of the fluid. Similar results are also observed for 

dilatant fluids but increase in magnitude. Increase in heat sink term and radiation also reduces the Nusselt 

number but Frank-Kamnestkii parameter increase causes an increase in the Nusselt number. Increase in 

relaxation constant and friction/viscosity, reduces the distance of the fluid flow while increase in the natural 

frequency increases the distance of the fluid flow. 
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I. INTRODUCTION 
Fluids are substances that deforms continuously when subjected to shear stress no matter how small 

[1]. It consists of liquids and gases. Fluids in physics and engineering are classified into two broad categories. 

The first is the Newtonian fluid; they are fluids that obey the Newton’s law of viscosity. They are characterized 

by having moderate value of viscosity and flow easily.  Examples are polar liquids and gases. The second class 

of fluids does not obey the Newton’s law of viscosity and possessed high viscosity as well as flow sluggish. 

They are referred to as non Newtonian fluids and examples are paints, polymer fluids,  blood and many more. 

One important property of fluids is its viscosity. According to [1], viscosity is that fluid property by virtue of 

which fluids offer resistance to shear stress. Mathematically, it is also the ratio of the shearing stress to the 

velocity gradient in a fluid. Viscosity arises on molecular scales due to intermolecular cohesion and transfer of 

molecular momentum. The former is important in liquids for which molecules are relatively densely packed 

while the later is important in gases in which the molecules are far apart. The observations are useful in 

explaining the fact that viscosity of a liquid decreases as temperature increases while that of a gas increases with 

increasing temperature. The analysis of fluids cannot be exhausted owing to its importance to man and the 

environment. Several scholars [2-8] have investigated fluids flow, properties and uses. Viscoelastic fluids are 

generally non Newtonian and substances that flow like fluids and deform like solids are generally described as 

viscoelastic [9]. There are shear-thining fluid that falls into this category, mainly gels and pastes. They are 

characterized as having viscosity decreases under stress. The importance or uses of viscoelastic materials cannot 

be over emphasized. They are extensively used in isolating vibration, damping noise and absorbing shock. 

Others are in industries, particularly in polymer processing and in molten plastics and slurries. They give off the 

energy absorbed as heat. A typical example is the sorbothane. Studies reported such as [10-15], examined the 

effect of various parameters on viscoslastic fluids. Our aim is to consider the effect of heat source/sink term and 

radiation as well as damping and viscosity on the two flow configurations. 

 

II. MATHEMATICAL FORMULATION OF THE PHYSICAL PROBLEM 
The formulation of the problem under investigation is based on the relation that the velocity gradient is a 

function of temperature and the flow behaviour index is not constant. With these assumptions, the energy 

equation takes the form 
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where T(x,t) is temperature of the fluid, k is thermal conductivity, n  is flow behaviour index (power law 

exponent) ,   is consistency index, 
0

T   is characteristic temperature, 
x

q  is radiative term,   is heat source/ 

sink term    and u is fluid velocity.  
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where   is the Stefan-Boltzman’s constant. For optically thin medium with relatively low density in the spirit 

of Cogley et al [16], equation (2) reduces to  
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It has been established by Hughes and Brighton [17] that  
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where p is fluid pressure. 

 

For Pseudoplastic material  1n , we assume  0.5 and approximate 

5.0














x

u
by ignoring powers of 

5.0














x

u
greater than unity using Taylor’s series expansion about 0,  we get  

 

 

























x

px

x

u


                                                                                     (5) 

 

The equation of state for an ideal fluid is given by  

 

RTp                                                                                                        (6) 

where  density of fluid and R is  universal fluid constant. 

 

Using equations (3), (5) and (6), we can rewrite equation (1) as  
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With the boundary conditions  100)1(,1)0(  TT  [8] 

 

For dimensional homogeneity of equation (3), using Buckingham   method, it is convenient to use the 

dimensionless variables 
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We therefore write equation (7) as  
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where 





R 


1
 and  is Frank-Kamenestkii parameter  

 

III. METHOD OF SOLUTION 
We take steady state and use the Frobenius method of the form 
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If we substitute equation (9) into equation (8) and simplify, we get the solution of the indicial equation as  

 

0C or 1                                                                                                             (10) 

 

and the recurrence relation as  
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The complete solution is therefore  
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For dilatant fluids, n > 1. we therefore take n = 2 and following the same procedure, our solution takes after 

equation (12) with 
4

1
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Nusselt Number 

The dimensionless rate of heat transfer coefficient is the Nusselt Number )( Nu  given as  
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Viscoelastic formulation 

When a shear stress is applied to a material, the material may accelerate, flow like a fluid, deform or get stuck. 

The governing equation that describe the four physical consequences can be modeled as  
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with the boundary conditions x(0) = 0, 1)( x [5] 
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where, m, b, x, t, 
0

k  and f are respectively mass of the material, damping factor, displacement, time elapsed, 

spring constant and static friction/viscosity. 

 

The complete solution of equation (13) is therefore  
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Figure 1: Temperature profile   against boundary layer y  for varying heat sink term    

 

 

Figure 2: Temperature profile   against boundary layer y  for varying radiation  N  
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Figure 3: Temperature profile   against boundary layer y for varying Frank-kamenestkii parameter    

 

 

Figure 4: Nusselt number Nu  against boundary layer y  for varying heat source/ sink term    

 

 

Figure 5: Nusselt number Nu  against boundary layer y  for varying Radiation term  N  
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Figure 6: Nusselt number Nu  against boundary layer y  for varying Frank kamenestkii parameter    

 

 

Figure 7: Displacement X  against time t  for varying relaxation constant    

 

 

Figure 8: Displacement X  against time t  for varying friction/viscosity  2
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Figure 9: Displacement X  against time t  for varying natural frequency  2
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IV. RESULTS AND DISCUSSION 
For numerical validation and physical consideration of the problem, an approximate value of the universal  fluid 

constant is taken as 8.31 and density of non Newtonian fluids is 2500. Other parameters involved are  

5.3,5.2,0.2,5.1,5.0
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Consideration of figure 1, shows that an increase in the heat sink term result in an increase in the 

temperature of the fluid and decreases the viscosity of the fluid. Figure 2 displays an increase in radiation which 

causes an increase in shear stress thereby reducing the temperature of the fluid. In figure 3, an increase in the 

Frank-kamenestkii parameter reduces the temperature of the fluid as a result of increase in viscosity. The heat 

transfer coefficient as explained by the Nusselt number also shows that the heat sink term and radiation as 

shown in figures 4 and 5 decreases the Nusselt number as they are respectively increased while the Frank-

Kamenestkii parameter causes an increase in the Nusselt number as it is increased. For dilatant fluids, the 

observations are the same with pseudoplastic materials except in magnitude of its affected parameters. This is 

expected because its fluid flow index is greater than pseudoplastic fluids hence possessed higher viscosity. As 

the damping term increases, the relaxation term also increases which in turn increases the viscosity of the fluid 

thereby reducing its distance of flow as depicted in figure 7. It is evident that increase in viscosity/friction will 

definitely reduce the flow of fluid and this is clearly demonstrated in figure 8. Increase in the natural frequency 

will heat the fluid which will reduce the viscosity thereby increasing the distance of flow of the fluid as shown 

in figure 9. 

 

V. CONCLUSION 
Generally, fluid viscosity is affected by temperature and flow distance and these facts were elucidated 

in this work. Our observation was also in accord with the work of  [6 and 10]. The solution for dilatant fluids 

was not shown because the results are just an increment in magnitude for the pseudoplastic materials.  
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