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ABSTRACT: This work addresses the design and implementation of a neural network based controller for the 

trajectory tracking of a differential drive mobile robot. A neural network based tracking control algorithm is 

proposed and simulation and experimental results are presented. The algorithm is a control structure that 

makes possible the integration of a back-stepping controller and a neural network (NN) computed-torque 

controller for a nonholonomic mobile robot. Integration of a neural network controller and the kinematic based 

controller gives the advantage of dealing with unmodeled and unstructured uncertainties and disturbances to 

the system. Comprehensive system modeling including robot kinematics, dynamics and actuator modeling has 

been done. The dynamic modeling is done Lagrangian methodologies for nonholonomic systems. Simulation of 

the robot model and different controllers has been done using Matlab and Matlab Simulink. 

Keywords: Back-stepping Controller, Mobile Robot, Neural Network 

 

I. INTRODUCTION 

Basically, robots can be divided into two categories, fixed and mobile robots. Fixed robots are mounted 

on a fixed surface and materials are brought to the workspace near the robot. A fixed robot is normally used in 

mass production, as in car factories, for welding or stamping. Mobile robots have the capability to move around 

in their environment and are not fixed to one physical location; therefore, the mobile robot can be defined as a 

mechanical device that performs automated tasks, whether according to direct human supervision, a pre-defined 

program, or a set of general guidelines, using artificial intelligence (AI) techniques [2]. Mobility is the robot's 

capability to move from one place to another in unstructured environments to a desired target. Mobile robots can 

be categorized into wheeled, tracked or legged robots, and they are more useful than fixed robots. Mobile robots 

are increasingly used in industry, in service robotics, for factories (e.g. in delivering components between 

assembly stations) and in difficult to access or dangerous areas such as space, military environments, nuclear-

waste cleaning and for personal use in the forms of domestic vacuum cleaners and lawn mowers [2, 3, 4].   

Over the last decade, the design and engineering of mobile robot systems acting autonomously in 

complex, dynamic and uncertain environments has remained a challenge. Such systems have to be able to 

perform multiple tasks, and therefore must integrate a variety of knowledge-intensive information processes on 

different levels of abstractions guaranteeing real-time execution, robustness, adaptability and scalability [6].  

The trajectory tracking control for mobile robots is a fundamental problem, which has been 

investigated exhaustively by the scientific community. Several papers deal about the design of control laws for 

mobile robot with its dynamic model, for instance in trajectory tracking (De la Cruz et al., 2006; Dong et al., 

2005; Albagul et al., 2004; Yang et al., 1999; Zhang et al., 1998). One of first investigation results for this 

problem was deal in Kanayama et al. (1990), where author uses the Lyapunov theory to design the tracking 

controller. Nevertheless, this and others controllers do not take in count the restrictions in the control signals 

because it is a hard task to implement[5, 10].  

The work includes the development and construction of neural network based trajectory tracking 

controllers. The controller is a structure that makes possible the integration of a kinematic-based controller and a 

neural network computed torque controller for a nonholonomic differential drive mobile robot. The combined 

kinematic and torque control method is developed using backstepping and the system stability is proved using 

Lyapunov theory. The controller will be applied to the trajectory tracking problem and the results of its 

implementation on a mobile robot platform will be presented. [6,8,9,10,11,12,13] 
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II. FORWARD KINEMATIC MODEL OF MOBILE ROBOT 
The goal of the robot kinematic modeling is to find the robot speed in the inertial frame as a function of 

the wheels speeds and the geometric parameters of the robot (configuration coordinates). In other words we 

want to establish the robot speedq = [x y θ ]T  as a function of the wheel speeds υ 
R

 and  υ 
L

 and the robot 

geometric parameters or we want to find the relationship between control parameters (υ 
R

 and υ 
L

) and the 

behavior of the system in the state space. The robot kinematics generally has two main analyses, one Forward 

kinematics and one Inverse kinematics:[9] 

Forward kinematics: 

𝑞 =  

𝑥 
𝑦 

𝜃 
 = 𝑓 𝜑 𝑅 , 𝜑 𝐿 , 𝑔𝑒𝑚𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠       (1) 

Inverse kinematics: 

 
𝜑 𝑅
𝜑 𝐿

 = 𝑓 𝑥 , 𝑦 , 𝜃           (2) 

Assume a differential drive mobile robot setup which has two wheels with the radius of Ra  placed with a 

distance L from the robot center as shown in Fig. 1:The following notations will be used in this work:A: The 

intersection of the axis of symmetry with the driving wheels axis. C: The center of mass of the platform. a: The 

distance between the center of mass and driving wheels axis in x-direction. L: The distance between each 

driving wheel and the robot axis of symmetry in y-direction. Ra : The radius of each driving wheel. υ 
R

: The 

rotational velocity of the right wheel.  υ 
L
: The rotational velocity of the left wheel. v: The translational velocity 

of the platform in the local frame. ω: The rotational velocity of the platform in the local and global frames. 

The forward kinematic problem can be described as the problem of finding the following function: 

𝑞 =  

𝑥 
𝑦 

𝜃 
 = 𝑓 𝜑 𝑅 , 𝜑 𝐿 , 𝐿, 𝑅𝑎 , 𝜃                        (3) 

The speed of each wheel in the robot frame is Raυ , therefore the translational speed in the robot frame is the 

average velocity: 

𝑣 =  𝑅𝑎
𝜑 𝑅+𝜑 𝐿

2
                          (4) 

 
Figure 1: The differential drive mobile robot model 

 

And the rotational velocity is: 

 𝜔 =
 𝑅𝑎

2𝐿
 𝜑 𝑅 − 𝜑 𝐿                       (5) 

The robot position in the inertial and robot frame can be defined as follows: 

𝑞𝐼 = [𝑥𝐼 𝑦𝐼 𝜃𝐼]
𝑇          (6) 

𝑞𝑅 = [𝑥𝑅 𝑦𝑅 𝜃𝑅]𝑇          (7) 

The mapping between these two frames is through the standard orthogonal rotation transformation: 

𝑞 𝑅 = 𝑅 𝜃 𝑞 𝐼            (8) 

𝑅 𝜃 =  
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
          (9) 

Therefore the robot velocity in the global or inertial frame is: 

𝑞 𝐼 =  

𝑥 
𝑦 

𝜃 
 =  

cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0
0 0 1

 
 𝑅𝑎

2
 

𝜑 𝑅 + 𝜑 𝐿
0

𝜑 𝑅−𝜑 𝐿

𝐿

 =

 
 
 
 
  𝑅𝑎

𝜑 𝑅+𝜑 𝐿

2
cos 𝜃 

 𝑅𝑎
𝜑 𝑅+𝜑 𝐿

2
sin 𝜃 

 𝑅𝑎

2𝐿
 𝜑 𝑅 − 𝜑 𝐿  

 
 
 
 

    (10) 

The above equation is the general forward kinematic equation for a differential drive mobile robot. 
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III. DYNAMIC MODELING OF THE MOBILE ROBOT 
In order to produce motion, forces must be applied to the mobile robot model. These forces are 

modelled by studying of the motion of the dynamic model of the differential wheeled mobile robot shown in 

Fig.1. It deals with mass, forces and speed associated with this motion. The dynamics model can be described 

by the following dynamic equations based on Euler Lagrange formulation [23, 24, 25, 26] 

𝑀 𝑞 𝑞 + 𝑉 𝑞, 𝑞  + 𝐹 𝑞  + 𝐺 𝑞 + 𝜏𝑑 = 𝐵 𝑞 𝜏 − 𝐴𝑇(𝑞)𝜆     (11) 

Where:M q  is the symmetric positive definite inertia matrix, V q, q   is the centripetal and coriolis matrix, F q   
is the surface friction matrix, G q  is the gravitational vector, τd  Denoted bounded unknown disturbances 

including unstructured unmodeled dynamics, B q  is the input transformation matrix, τ is the input vector, 

AT(q) is the matrix associated with the constraints, λ  is the vector of the constraint forces. 

By taking a look at the forward kinematic equation, we write S (q) matrix as the modified forward kinematic 

matrix which has two velocity terms related to the distance between the robot centroid and wheel axis. 

Therefore, we can write the following equation for the system 

𝑞 =  

𝑥 𝑐
𝑦 𝑐
𝜃 
 = 𝑆 𝑞 𝑣𝑎 𝑡 =  

𝑐𝑜𝑠𝜃 −𝑎𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑎𝑐𝑜𝑠𝜃

0 1
  

𝑣
𝜔
                  (12) 

It can easily be proved that the S (q) matrix has the following relation with A(q) matrix: 

𝑆𝑇 𝑞 𝐴𝑇 𝑞 = 0                      (13) 

The above equation is useful when we want to eliminate the constraint term from the main dynamic equation as 

you will see in the next step. Differentiating equation (12), we have: 

𝑀 𝑞  𝑆  𝑞 𝑣𝑎 𝑡 + 𝑆 𝑞 𝑣𝑎  𝑡  + 𝑉𝑚  𝑞, 𝑞  𝑆 𝑞 𝑣𝑎 𝑡 + 𝐹 𝑞  + 𝐺 𝑞 + 𝜏𝑑 = 𝐵 𝑞 𝜏 − 𝐴𝑇 𝑞 𝜆  (14) 

𝑞 = 𝑆  𝑞 𝑣𝑎 𝑡 + 𝑆 𝑞 𝑣𝑎  𝑡          (15) 

The next step to eliminate the constraint matrix AT(q)λ is to multiply equation (14) by ST q  as follows ,as it 

can be seen from the above equation, we have   ST(q) AT q which is zero according to equation (13). Therefore 

the constraint term is eliminated and the new dynamic equation is: 

𝑀  𝑞 𝑣𝑎  𝑡 + 𝑉 𝑚  𝑞, 𝑞  𝑣𝑎 𝑡 + 𝐹  𝑞  + 𝐺  𝑞 + 𝜏 𝑑 = 𝐵  𝑞 𝜏     (16) 

 

IV. KINEMATIC MODEL BASED BACKSTEPPING CONTROLLER 
The kinematic based back-stepping controller for a nonholonomic mobile robot is first proposed in 

1992 by Kanayama [10] and is been used by so many other researchers in this field. A stable tracking control 

rule for a nonholonomic mobile robot which neglects the vehicle dynamics and is based on the steering system 

is described [10].  In this control system two postures for the robot are going to be used: the reference posture 

qr = [xr yr θr]T
 and a current posture qc = [xc yc θc]T

 . The reference posture is the goal posture and 

the current posture is the real posture at the moment. The block diagram of this control structure is shown in 

Fig.2: 

 

 
Figure.2: The kinematic based back-stepping controller 

 

We define an error posture or the tracking error ep  in the basis of the frame linked to the mobile platform or the 

local frame as follows: 

𝑒𝑝 =  

𝑒𝑥

𝑒𝑦

𝑒𝜃

 = 𝑇𝑒 𝑞𝑟 − 𝑞          (17) 

 

𝑒𝑥

𝑒𝑦

𝑒𝜃

 =  
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
  

𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
𝜃𝑟 − 𝜃

        (18) 
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The control problem in this case will be to calculate a control rule for the vehicle, which calculated the target 

velocities  vc = f(ep , vr , K) that makes the system asymptotically stable. The proposed kinematic based control 

rule is as follows: 

𝑣𝑐 =  
𝑣𝑟𝑐𝑜𝑠𝑒𝜃 + 𝐾𝑥𝑒𝑥

𝜔𝑟 + 𝐾𝑦𝑣𝑟𝑒𝑦 + 𝐾𝜃𝑣𝑟𝑠𝑖𝑛𝑒𝜃
          (19) 

𝑣𝑐 = 𝑓 𝑒𝑝 , 𝑣𝑟 , 𝐾  

𝐾 =  𝐾𝑥 , 𝐾𝑦 , 𝐾𝜃  

Where Kx , Ky and Kθ  are positive constants. The PD controller in the block diagram of Fig. 2 is a linear 

controller which is responsible to convert the velocity output of the controller to torque inputs for the robot. The 

stability of the above control rule will be proved using the Lyapunov stability method in the next section. 

 

LYAPUNOV STABILITY ANALYSIS 

The Lyapunov stability analysis of the control rule in equation (19) is described as follows: [6,8,16] 

Lemma 1: 

According to equation (18) we have: 

 

𝑒 𝑥
𝑒 𝑦
𝑒 𝜃

 = 𝑒 𝑝 = 𝑓 𝑡, 𝑒𝑝 =  

𝜔 𝑒𝑝 , 𝑞𝑟 𝑒𝑦 − 𝑣 𝑒𝑝 , 𝑞𝑟 + 𝑣𝑟𝑐𝑜𝑠𝑒𝜃

−𝜔 𝑒𝑝 , 𝑞𝑟 𝑒𝑥 + 𝑣𝑟𝑠𝑖𝑛𝑒𝜃

𝜔𝑟 − 𝜔 𝑒𝑝 , 𝑞𝑟 

      (20) 

Using the robot kinematic equation (10) and the tracking error equation (18) we obtain the lemma.Clearly V ≥ 0 

and V = 0 if ep = 0 , therefore the above V function is a positive definite function.Furthermore, by using lemma 

2 we have the derivative of the proposed Lyapunov function V is a negative definite function which 

demonstrates that the point ep = 0 is uniformly asymptotically stable under the conditions that vr  and ωr  are 

continuous and vr , ωr , Kx , Ky  and Kθ are bounded. The above Lyapunov stability analysis is used in reference [8] 

to prove the stability of the proposed controller.We demonstrated that the system is stable for any combination 

of Kx , Ky andKθ. However, since we need a non-oscillatory, but not too slow response of the robot, we have to 

find an optimal parameters set for this controller.  At this stage, the proper gains for each reference trajectory 

have to found by tuning.  

 

V. THE BACKSTEPPING CONTROLLER DESIGN USING THE NONLINEAR 

FEEDBACK METHOD 
The previous section was about selecting a velocity control v(t) defined in equation (19) for the 

steering system or the  kinematic model of the robot. In this section we desire to convert such a prescribed 

control v(t) into a torque control τ(t) for the actual physical platform[15,17].  As it is mentioned in the modeling 

chapter, the complete equations of motion of the nonholonomic mobile platform are given by equations (12) and 

(16): 

𝑞 =  

𝑥 𝑐
𝑦 𝑐
𝜃 
 = 𝑆 𝑞 𝑣 𝑡 =  

𝑐𝑜𝑠𝜃 −𝑎𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑎𝑐𝑜𝑠𝜃

0 1
  

𝑣
𝜔
       (21) 

𝑀  𝑞 𝑣  𝑡 + 𝑉 𝑚  𝑞, 𝑞  𝑣 𝑡 + 𝐹  𝑞  + 𝐺  𝑞 + 𝜏 𝑑 = 𝐵  𝑞 𝜏     (22) 

The complete dynamics consists of kinematic steering system (21) plus some extra dynamics (22). Standard 

approaches to nonholonomic control such as the kinematic based controller deal only with (21) ignoring the 

actual vehicle dynamics [20,21]. The application of this method to the case of the nonholonomic mobile robot is 

that by applying an appropriate nonlinear feedback we can linearize the nonlinear dynamics and then apply the 

kinematic based controller to the linear system. Let u be an auxiliary input, then by applying the nonlinear 

feedback: 

𝜏 = 𝐵 −1 𝑞  𝑀  𝑞 𝑢 + 𝑉 𝑚  𝑞, 𝑞  𝑣 𝑡 + 𝐹  𝑞                       (23) 

We can convert the dynamic equation (22) to: 

𝑀  𝑞 𝑣  𝑡 + 𝑉 𝑚  𝑞, 𝑞  𝑣 𝑡 + 𝐹  𝑞  + 𝐺  𝑞 + 𝜏 𝑑 = 𝐵  𝑞  𝐵 −1 𝑞  𝑀  𝑞 𝑢 + 𝑉 𝑚  𝑞, 𝑞  𝑣 𝑡 + 𝐹  𝑞     (24) 

𝑣  𝑡 = 𝑢                         (25) 

Therefore the complete equations of motion of the system will be: 

𝑞 = 𝑆 𝑞 𝑣 𝑡                          (26) 

𝑣  𝑡 = 𝑢                         (27) 

In performing the nonlinear feedback (23) it is assumed that all the dynamical quantities such as M    q  , V m q, q   

and F  q   are exactly known and τ d = 0..This is the case of the system (26,27) where the equilibrium point 

cannot be made asymptotically stable by any smooth time-invariant state feedback controller. A back-stepping 

controller is used to stabilize system (26,27). Consider a system given by 
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𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝜉         (28) 

𝜉 = 𝑢           (29) 

With f(0)=0 and f and g are smooth functions. Designing a feedback control to stabilize the system at (x=0, = 0) 

is called a back-stepping controller. Comparing equations (28,29) and (26,27) one can find out that the 

linearized nonholonomic mobile robot equations are in the form of (28,29) and a back-stepping control 

algorithm will make it stable. The proposed control input to stabilize system (26,27) is as follows: 

𝑢 = 𝑣 𝑐 + 𝐾4 𝑣𝑐 − 𝑣          (30) 

K4is a positive definite, diagonal matrix given by: 

𝐾4 = 𝑘4𝐼          (31) 

The stability of the above control algorithm (30) was done using the Lyapunov stability analysis. 

The general back-stepping control structure is shown in the block diagram of Fig.3 : 

Figure 3: the backstepping controller with the nonlinear feedback structure 

 

VI. NEURAL NETWORK STRUCTURE 
Artificial NN are modeled on biological process for information processing, including specifically the 

nervous system and its basic unit, the neuron. Signals are propagated in the form of potential differences 

between the inside and outside of cells. The mathematical model of a neuron is depicted in Fig. 4: 

 

 
Figure 4: Mathematical model of a neuron 

 

The input weightswj , the firing threshold b (also called the bias), the summation of the weighted inputs 

and the nonlinear activation function f are shown in the above figure[10,11,12,13,14]. If the cell inputs are n 

signals at the time instant k, x1 k , x2 k , x3 k , … xn k  and the output is the scalar y (k), the mathematical 

equation of the neuron can be written as follows: 

y k = f( wjxj k + b)n
j=1         (32) 

The basic universal approximation theory says that any smooth function f(x) can be approximated arbitrarily 

closely on a compact set using a two layer NN with appropriate weights. Specifically, let f(x) be a general 

smooth function. Then given a compact set S and a positive numberєN , there exists a two layer NN such that: 

f x = WT σ VTx + є         (33) 

The value є is called the NN function approximation error and it decreases as the number of hidden layer 

neuronsL increase. On the other hand, on the compact set S, as S becomes larger, the required L generally 

increases correspondingly. The neural network acting as a function approximate is shown in Fig. 5:  
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Figure 5: the function approximation structure for neural networks 

 

Even though the above theorem says that there exists an NN that approximates any function f(x), it should be 

noted that it does not show how to determine the required weights. It is in fact not an easy task to determine the 

weights so that an NN does indeed approximate a given function f(x) closely enough [24]. 

 

VII. THE NN INVERSE MODEL TRAJECTORY TRACKING CONTROLLER 
A control structure that integrates the back-stepping controller and a neural network computed torque 

controller for nonholonomic mobile robots is proposed. A combined kinematic/torque control law is developed 

using back-stepping and the stability is proved using Lyapunov approach[8,16,18]. The NN controller proposed 

in this work can deal with unmodeled bounded disturbances and unstructured unmodeled dynamics in the 

vehicle. The trajectory tracking controller structure using neural networks inverse model is shown in Fig. 6 and 

The traditional back-stepping controller structure is shown in Fig.7 again for the comparison purpose: 

 

 

 

 

 

 

 

 

 

 

Figure 6: the neural network inverse    Figure 7: the back-stepping controller model controller 

structure        structure 

 

Comparing Fig. 6 and Fig. 7, one can find out that in the proposed neural network inverse model 

control structure, no knowledge about the dynamics of the robot is assumed and the function of the neural 

network is to learn the vehicle dynamics online and reconstruct the dynamic model of the system  [16,20,22]. 

Given the desired velocity vc(t) which is the output of the kinematic controller equation (19), the trajectory 

tracking error will be: 

𝑒𝑐 = 𝑣𝑐 − 𝑣          (34) 

Differentiating the above equation and using the mobile robot dynamic equation (16): 

𝑒 𝑐 = 𝑣 𝑐 − 𝑣           (35) 

𝑀  𝑞 𝑣  𝑡 + 𝑉 𝑚  𝑞, 𝑞  𝑣 𝑡 + 𝐹  𝑞  + 𝐺  𝑞 + 𝜏 𝑑 = 𝐵  𝑞 𝜏     (36) 

 The function f is the function containing the mobile robot nonlinearities:  

𝑓 𝑣, 𝑣𝑐 , 𝑣 𝑐 = 𝑀  𝑞 𝑣 𝑐 + 𝑉 𝑚  𝑞, 𝑞  𝑣𝑐 𝑡 + 𝐹  𝑞        (37) 

As it can be seen from the above equation, f is a function of  v, vc , v c  which are all measurable. This function 

contains all the mobile robot parameters such as masse, moments of inertia and friction coefficient [21, 22, 24]. 

In the experiment, this function is partially known, therefore a suitable control action for the robot can be 

written as follows: 

𝜏 = 𝑓 + 𝐾4𝑒𝑐           (38) 

Where  K4  is the same diagonal positive definite gains used in the back-stepping controller (30) andf  is an 

estimate of the robot nonlinear function f and is provided by the neural network inverse model. Substituting the 

above control rule in the equation (37) we have: 

𝑀  𝑞 𝑒 𝑐 = −𝑉 𝑚  𝑞, 𝑞  𝑒𝑐 − 𝑓 − 𝐾4𝑒𝑐 + 𝜏 𝑑 + 𝑓 𝑣, 𝑣𝑐 , 𝑣 𝑐      (39) 

We can define the function approximation error as follows: 

𝑓 = 𝑓 − 𝑓           (40) 

Substituting equation (4.76) in (4.75) and simplifying it we have: 
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𝑀  𝑞 𝑒 𝑐 = − 𝑉 𝑚  𝑞, 𝑞  + 𝐾4 𝑒𝑐 + 𝑓 + 𝜏 𝑑        (41) 

At this stage, the control design problem is how to design the gain matrix K4 and the estimate f  so that both the 

error signal ec  and the control signal are bounded. The important issue here is that we should design the 

controller in a way that both the error signal ec(t) and the control signal stay bounded.  

 

VIII. SIMULATION AND RESULTS 
The simulation  results of the neural network inverse model controller can  be divided into the following 

two categories: 1.The normal trajectory tracking results without any external disturbance on the robot 

2.The trajectory tracking in presence of an external disturbance on the robot motor torques, velocities and 

position. The simulation results are allocated for comparison study between the normal trajectory tracking 

between back-stepping controller and neural network inverse model controller. The neural network which is 

used in the NN controller block in the online inverse model neural network uses the weights obtained from 

comprehensive offline training. A trajectory tracking comparison with a linear reference trajectory with any 

external disturbance is shown in Fig. 8: 

 

 
Figure 8: The robot trajectory in x-y plane Back-stepping and NN inverse model controller 

 
The velocity errors of the system which shows the effect of the velocitycontrol part of the system are shown in 

Fig. 9 and  The time response of the two different weights of the neural network is shown in Fig. 10: 

 

 
Figure 9:  The output velocities Error                            Figure  10: The Neural Network weights response  

response comparison between  Back-stepping                                  with time 

and NN inverse model controller 

 

Looking at the above time response, one can find out that the neural network is learning and the gains 

will become steady and constant after the velocity errors of the system become zero. The other trajectory and 

robot initial condition that will give a better view on the controller performance is shown in Fig. 11 and  The 

time response of the two sample neural network weights is shown in Fig. 12 
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Figure 11: The robot trajectory in x-y plane             Figure 12: The Neural Network weights response with time 

Back-stepping and NN inverse model controller 

 

The next step of the performance analysis of this proposed controller is to introduce disturbance to the 

system and compare the performance with the back-stepping controller. The tracking and disturbance rejection 

performance of the NN inverse model controller in comparison with the back-stepping controller is shown in 

Fig. 13: 

 
 

Figure 13: the robot trajectory in X-Y plane with disturbance 

 

The disturbance rejection ability of this controller comes from the fact that the disturbances are 

occurring in the velocity control loop and the neural network is acting on the velocity errors of the system. The 

system states errors are shown in Fig. 14 and  the system velocity error time responses are shown in Fig. 15: 

 

 
 

Figure 14: the system states errors with disturbance              Figure 15: the velocity errors of the system with disturbance 

 

The neural network weights time responses which are shown in Fig. 16 can clear out the neural networks action 

on the system: 
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Figure 16: The Neural Network weights response with time with disturbance 

 

IX. CONCLUSION 
Designing a novel NN-based adaptive back-stepping controller using the neural network direct model 

approximation of the robot which highly improves the traditional back-stepping controller tracking 

performance.The above comparison analysis between the neural network inverse model controller shows that 

this proposed controller has the following advantages over the back-stepping controller:  

1.  This controller can deal with unmodeled bounded disturbances and unstructured unmodeled dynamics in 

the vehicle which are a part of any environment that robot wants to perform the trajectory tracking. 

2. No knowledge of the system dynamics and parameters is needed in order to compensate for the nonlinear 

terms in the system. Especially when a readymade robot platform with unknown parameters and inner 

layers is used for the tracking task. 

 

The other trajectory tracking controller that can be designed to improve the performance of the above 

controllers is the one that can adapt itself and the back-stepping controller gains to each trajectory and robot 

location. The gains of the back-stepping controller in all of the above simulation performances are tuned 

according to each trajectory and robot initial location. In order to eliminate the back-stepping controller gain 

tuning step which is a very time consuming and inefficient approach, an adaptive gain tuning controller using 

the neural network direct model in designed and implemented in the next section of this section. 
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