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Abstract: - Structural safety evaluation is a task of paramount importance at every stage of a building process. 

In this paper, the result of stochastic analysis of concrete strength in an ongoing construction is discussed. 

Convolution theory was employed in the reliability estimation. The parameters used in the stochastic analysis 

were obtained from the schmidt hammer test carried out on the Laboratory Block at College of Continuing 

Education, University of Port Harcourt, Rivers State, Nigeria. The strength parameters were assumed to be 

random and stochastic. The obtained geometric index was found to be 2.97 which is less than the target safety 

index of 4.5 for slabs, 4.9 for beams in bending or flexure, 3.6 for beams in shear and 3.9 for columns under 

dead and live load combination. Also, the failure probability corresponding to the estimated geometric  index 

(1.49E-3) when compared with the tolerable risk levels (10
-3

) for structures in society showed that the structure 

is not safe and can lead to a very serious accident which may  result in loss of lives and damage of properties on 

collapse. 
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I. INTRODUCTION 
Building failures in Nigeria has led to loss of lives and damage of properties. As a result reliability 

appraisal of structures becomes a necessity at every stage of a building process as a guide against structural 

failure and eventual collapse of structures [1-3]. Structural deterioration is a common reason for structural 

appraisal [4]. Condition assessment of a building is a necessity at every stage of a building construction rather 

than sitting down and watch the building collapse [5]-[6].  According to Afolayan [5-6], once the nature of the 

risk has been recognized the next step is the determination and implementation of measures to reduce the risk or 

reduce the effect of the loss or both at an economical cost. Eventually, the need for loss financing will be 

reduced in most instances and losses will be avoided or reduce to the bearest minimum. 

Application of safety factors in the conventional design cannot guarantee structural safety as the applied loads 

are probabilistic in nature. 

The best way to assess the safety of an existing or deteriorating structure is by probability of failure [8]. 

In structural design, structural loading and intensities cannot be predicted with certainty and probabilistic 

concept has become an important tool for any realistic, quantitative and rational analysis and any conceivable 

condition is necessarily associated with a numerical measure of the probability of its occurrence. It is by this 

measure alone that the structural significance of a specified condition can be assessed. Since it is not possible to 

achieve absolute reliability in the uncertain world, a probabilistic approach to the evaluation of structural safety 

becomes a sensible solution [9]. According to Afolayan [10], it has been the directional effort of the engagement 

of probabilistic thinking to systematically assess the effect of uncertainty on structural performance. The 

probabilistic concept may not provide answers to all issues of unknown but has played a very important role in 

the integrity appraisal of many engineering structures. 

This paper highlights the use of probabilistic concept to assess the structural integrity of an ongoing 

construction. The probabilistic model is simple and straightforward and can be manually achieved. 
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II. FORMULATION OF STOCHASTIC MODEL 

Let X  andY  be the applied stress random variable and allowable stress random with statistical properties 

described by first and second moment, ),( xx   and ),( yy   respectively. 

The limit state function is given by: 

   YXZ          (1) 

According to equation (1), 

Violation of limit state occurs when: 

   ,0z          (2) 

Again, using equation (1), the probability of  failure is given by: 
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The capacity demand are assumed to statistically independent.  
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Figure1: Capacity –demand relationship [13] 

Using equation (1), the joint density function of capacity and demand is transformed as: 

  ..)()( dzdxzxfxf          (4) 

Using equation (1) and applying convolution theorem, the probability density function  

of Z  given by: 

  
b

a
dzdxzxfxfzg )()()(        (5) 

where banda  represent the structural stress limits. 

From Figure 1, YandX  are assumed to be normally distributed. Therefore, the probability density functions 

are given by equations (6) and (7) respectively [13].  
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Substituting for )()( zxfandxf   using equation (6) and (7) gives: 
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Let the expression in the bracket be denoted by  . 

Therefore, 
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Multiplication of top and bottom of equation (9) by 
22

yx    gives: 
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Simplification of bracketed terms in equation (10) gives equation (11). 
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Multiplying the top and bottom of the last term of equation (11) by 
22

yx   gives: 
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According to Haugen [13], separation of the two middle terms of the last fraction of equation (12) from the 

other two terms followed by addition and subtraction of expression 
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transforms equation (12) to: 
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Also, multiplying the last term of equation (13) by  
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Using equation (14), equation (8) now becomes: 
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Let  
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Equation (15) now becomes:  
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From equation (14), let 
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Differentiating t with respect to x in equation (18) yields: 
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Substituting for dxandt  in equation (16), we have: 
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From Figure 1, Z is a normally distributed random variable. The mean and standard 

 deviation are therefore: 
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The probability that the structure fulfils the intended purpose is structural reliability  

defined by: 
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Using equation (28), the transformation which relates yx  ,  and standard normalized variable z  is given by: 

22

yx

xy
z








          (29) 

Applied stress = 0 
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Using equation (29) now reduces to: 
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Let xandcu  represent the concrete cube strength and strength of concrete in an ongoing construction 

respectively. 

According to BS8110 [11], the mean design strength is given by: 

cux  67.0            (32) 

To cater for error in the formulated reliability mode, errors due to test procedures and errors due to in-

batch variabilities of concrete strength reinforcement strength and dimensional variability, the resultant 

coefficient of variation of concrete strength is given as: 
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Where: 

 xx  , mean value and standard deviation of structural capacity respectively. 

yCOV is a function of the mix design 

According to Ranganathan [2], 10.0 batchintesting COVCOV . 

Structural failure occurs when .allX  Therefore, the probability of failure  )( fiP  for a particular structural 

member is given as: 

)( allifi XPP            (34) 

Where: 

allP ,  represents probability operator and allowable concrete stress in axial compression respectively. 

According to BS8110 [11] 

 cuall  33.0           (35) 

Assuming X to be normally distributed, the probability of failure is the structure is given by: 
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Using equations (32) and (35), equation (36) can be written as: 
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According to Ranganathan [2], the probability of structural failure can be  

approximated as: 
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|||| u = minimum distance between the origin and the failure surface in the normalized coordinate 

iiu  represents an appropriate probabilistic transformation. 

 

III. RESULTS AND DISCUSSION 
Table 1: Results of Schmidt hammer test on concrete [1]. 

S/No Location Rebound 

Hammer 

readings 

Average 

Rebound 

Concrete Strength from 

Rebound  Test (y) 

1 Middle panel 23,23 23 18 

2 Edge panel 23,23 23 18 

3 Beam 2 20,20 20 14 

4 Slab 2 24,24 24 20 

5 Slab 1 18, 19 19 8 

6 Beam 1 12,12 12 5 

7 Staircase 23.3, 19 21.2 15 

8 Middle column 35,27 31 29 

9 Corner column 27,27 27 2.5 

10 Column footing 12.5,6 9 4 
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Table 2: Stochastic model [2]. 
Variable Mix Specified 

strength 
Mean )( y  

)/( 2mmN  

Std deviation  

)/( 2mmNy  

COV 

 y  

(%) 

Probability 

distribution 

Quality 

control 

Cube strength Grade 15 15 17.56 2.69 15.33 Normal Design 

mix 

From Table 2,  .1533.0/69.2,/56.17 22  ycucu
COVandmmNmmN    

Using equation (33), 

18.0)10.01533.0( 2
122

tanRe tsulCOV  

From equation (32), 
2/76.1156.1767.067.0 mmNcux    

  2

tanRe /24.256.1718.067.067.0 mmNCOV cutsulx    

From equation (35), 
2/10.51534.034.0 mmNcuall    

From equation (37), the probability of failure of concrete is structure is: 

 97.2
24.2

76.1110.5








 
 fP  

31049.1  x  

 

IV. DISCUSSION OF RESULTS AND CONCLUSION 
The results of stochastic appraisal of an ongoing construction using convolution theory has been 

presented. From Table 1, it can seen that the average strength of concrete in the as constructed structure is about 

15N/mm
2
. The as-constructed safety appraisal gave a geometric index value of 2.97 which is below the target 

value of 4.9 for beams in bending or flexure, 3.6 for beams in shear, 4.5 for slabs, and 3.9 for columns subjected 

to both dead and live load combination. 

In conclusion, the structure cannot perform satisfactorily in service and can cause serious accident and 

serious damage to properties on collapse. The structure is therefore, recommended for careful demolition to give 

rise to a new structure and more stringent supervision should be carried out Also, reliability prediction using 

convolution theory  gave the same result (geometric index = 2.97)  as those of the previous models showing the 

effectiveness of the convolution theory in the reliability prediction of an ongoing construction.  
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