Comparison Of Some Numerical Methods For The Solution Of First And Second Orders Linear Integro Differential Equations.

Taiwo, O. A., ${ }^{+}$Jimoh, A. K . and Bello, A . K.
Department Of Mathematics,University Of Ilorin, Ilorin, Nigeria.
+ Department Of Statistics And Mathematical Sciences, Kwara State University, Malete, Nigeria.

Abstract

This paper deals with the comparison of some numerical methods for the solutions of first and second orders linear integro differential equations. Two numerical methods employed are Standard and Perturbed Collocation using, in each case, power series and canonical polynomials as our basis functions. The results obtained for some examples considered show that the perturbed Collocation method by Canonical Polynomials proved superior over the Perturbed Collocation method by power series and the Standard Collocation method by power series and canonical polynomials respectively. Three examples are considered to illustrate the methods.

Keywords: - Integro-Differential Equations, Standard and Perturbed Collocation, Power series Canonical Polynomials

I. INTRODUCTION

Integro differential equation is an important aspect of modern mathematics and occurs frequently in many applied fields of study which include Chemistry, Physics, Engineering , Mechanics, Astronomy, Economics, Electro - Statics and Potential.

In recent years, there has been growing interest in the mathematical formulation of several risk phenomena and models. It is found that most of the models if not all, have always assumed integral or integro differential equations. As reported in literature, integro differential equations are very difficult to solve analytically (See [1]) and so numerical methods are required.
Several research works have been carried out in this area in recent years. Among the popular methods used by most numerical analyst are wavelet on bounded interval [2] , semiorthogonal Spline Wavelets [3], Orthogonal Wavelets [4], Wavelet-Galerkin Method [5] and Multi-Wavelet Direct Method [6] . Other methods include Quadrature Difference Method [7], Adomain Decomposition Method [8], Homototpy Analysis Method [9], Compact Finite Difference Method [10], Generalised Minimal Residual [11] and Variational Iteration Method [12].
Without loss of generality, we consider the general second order linear integro-differential equation defined as:

$$
\begin{equation*}
P_{o} y(x)+P_{1} y^{\prime}(x)+P_{2} y^{\prime \prime}(x)+\int_{a}^{b} k(x, t) y(t) d t=f(x) \tag{1}
\end{equation*}
$$

With the boundary conditions

$$
\begin{equation*}
y(a)+y^{\prime}(a)=A \tag{2}
\end{equation*}
$$

And,

$$
\begin{equation*}
y(b)+y^{\prime}(b)=A \tag{3}
\end{equation*}
$$

Where P_{0}, P_{1}, P_{2} are constants, $k(x, t)$ and $f(x)$ are given smooth functions and $y(x)$ is to be determined.
Remark: In case of first- order Integro -Differential Equation considered, P_{2} in equation (1) is set to zero with initial condition given as

$$
\begin{equation*}
y(a)=A \tag{3a}
\end{equation*}
$$

II. METHODOLOGY AND TECHNIQUES

In this section, we discussed the numerical methods mentioned above based on power series and canonical polynomials as the basis function for the solution of equations (1)-(3)

III. STANDARD COLLOCATION METHOD BY POWER SERIES (SCMPS)

We used this method to solve equations (1)-(3) by assuming power series approximation of the form:
$y_{N}(x)=\sum_{r=0}^{N} a_{r} x^{r}$
Where, $a_{r}(r \geq 0)$ are the unknown constants to be determined. Thus, equation (4) is substituted into equations (1), (2) and (3), we obtained

$$
\begin{equation*}
P_{o} y_{N}(x)+P_{1} y_{N}^{\prime}(x)+P_{2} y_{N}{ }^{\prime \prime}(x)+\int_{a}^{b} k(x, t) y_{N}(t) d t=f(x) \tag{5}
\end{equation*}
$$

together with the boundary conditions

$$
\begin{equation*}
y_{N}(a)+y_{N}^{\prime}(a)=A \tag{6}
\end{equation*}
$$

and,

$$
\begin{equation*}
y_{N}(b)+y_{N}^{\prime}(b)=A \tag{7}
\end{equation*}
$$

Equation (5) is re-written as
$P_{0} \sum_{r=0}^{N} a_{r} x^{r}+P_{1} \sum_{r=0}^{N} r a_{r} x^{r-1}+P_{2} \sum_{r=0}^{N} r(r-1) a_{r} x^{r-2}+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} t^{r} d t=f(x)$
Hence, further simplification of equation (8), we obtained
$\sum_{r=0}^{N}\left[P_{0} a_{r}+P_{1}(r+1) a_{r+1}+P_{2}(r+1)(r+2) a_{r+2}\right] x^{r}+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} t^{r} d t=f(x)$
The integral part of equation (9) is evaluated and the left -over is then collocated at the point
$x=x_{k} \quad$, we obtained
$\sum_{r=0}^{N}\left[P_{0} a_{r}+P_{1}(r+1) a_{r+1}+P_{2}(r+1)(r+2) a_{r+2}\right] x_{k}{ }^{r}+\int_{a}^{b} k\left(x_{k}, t\right) \sum_{r=0}^{N} a_{r} t^{r} d t=f\left(x_{k}\right)$
Where,
$x_{k}=a+\frac{(b-a) k}{N}, k=1,2,3, \ldots, N-1$

Thus, equation (10) gives rise to ($\mathrm{N}-1$) algebraic linear equation in ($\mathrm{N}+1$) unknown constants. Two extra equations are obtained using equations (6) and (7). Altogether, we have ($\mathrm{N}+1$) algebraic linear equations in $(\mathrm{N}+1)$ unknown constants. These $(\mathrm{N}+1)$ algebraic linear equations are then solved by Gaussian elimination method to obtain the $(\mathrm{N}+1)$ unknown constants which are then substituted back into equation (4) to obtain the approximate solution.

IV. PERTURBED COLLOCATION METHOD BY POWER SERIES (PCMPS)

We used the method to solve equations (1)-(3) by substituting equation (4) into a slightly perturbed equation (1) to get
$P_{o} y_{N}(x)+P_{1} y^{\prime}{ }_{N}(x)+P_{2} y^{\prime \prime}{ }_{N}(x)+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} t^{r} d t=f(x)+\tau_{1} T_{N}(x)+\tau_{2} T_{N-1}(x)$
Where, τ_{1} and τ_{2} are two free tau parameters to be determined along with the constants $a_{r}(r \geq 0)$ and $T_{N}(x)$ is the Chebyshev polynomial of degree N in $[\mathrm{a}, \mathrm{b}]$ defined by
$T_{N+1}(x)=2\left(\frac{2 x-a-b}{b-a}\right) T_{N}(x)-T_{N-1}(x), \quad N \geq 0$
Hence, further simplification of equation (12), we obtained
$\sum_{r=0}^{N}\left[P_{0} a_{r}+P_{1}(r+1) a_{r+1}+P_{2}(r+1)(r+2) a_{r+2}\right] x^{r}+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} t^{r} d t=f(x)+\tau_{1} T_{N}(x)+\tau_{2} T_{N-1}(x)$

The integral part of equation (14) is evaluated and the left-over is then collocated at the point $x=x_{k}$, we obtained

$$
\begin{equation*}
\sum_{r=0}^{N}\left[P_{0} a_{r}+P_{1}(r+1) a_{r+1}+P_{2}(r+1)(r+2) a_{r+2}\right] x_{k}^{r}+\int_{a}^{b} k\left(x_{k}, t\right) \sum_{r=0}^{N} a_{r} t^{r} d t=f\left(x_{k}\right)+\tau_{1} T_{N}\left(x_{k}\right)+\tau_{2} T_{N-1}\left(x_{k}\right) \tag{15}
\end{equation*}
$$

where,

$$
\begin{equation*}
x_{k}=a+\frac{(b-a) k}{N}, k=1,2,3, \ldots N-1 \tag{16}
\end{equation*}
$$

Thus, equation (15) gives rise to ($\mathrm{N}+1$) algebraic linear equations in $(\mathrm{N}+3$) unknown constants. Two extra equations are obtained using equations (6) and (7). Altogether, we have ($\mathrm{N}+3$) algebraic linear equations in $(\mathrm{N}+3)$ unknown constants. These $(\mathrm{N}+3)$ algebraic linear equations are then solved by Gaussian elimination method to obtain the ($\mathrm{N}+1$) unknown constants $a_{r}(\mathrm{r} \geq 0)$ together with the parameters τ_{1} and τ_{2} which are then substituted back into equation (4) to obtain the approximate solution.

V. STANDARD COLLOCATION METHOD BY CANONICAL POLYNOMIALS

(SCMCP)

We used the method to solve equations (1)-(3) by assuming canonical polynomial approximation of the form

$$
\begin{equation*}
y_{N}(x)=\sum_{r=0}^{N} a_{r} \Phi_{r}(x) \tag{17}
\end{equation*}
$$

Where, x represents the independent variables in the problem, $a_{r}(r \geq 0)$ are the unknown constants to be determined and $\Phi_{r}(x)(r \geq 0)$ are canonical polynomials which should be constructed.
Thus, equation (17) is substituted into equations (1)-(3), we obtained

$$
\begin{equation*}
P_{0} \sum_{r=0}^{N} a_{r} \Phi_{r}(x)+P_{1} \sum_{r=0}^{N} a_{r} \Phi_{r}^{\prime}(x)+P_{2} \sum_{r=0}^{N} a_{r} \Phi_{r}^{\prime \prime}(x)+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} \Phi_{r}(t) d t=f(x) \tag{18}
\end{equation*}
$$

Together with the conditions
$\sum_{r=0}^{N} a_{r} \Phi_{r}(a)+\sum_{r=0}^{N} a_{r} \Phi_{r}^{\prime}(a)=A$
and
$\sum_{r=0}^{N} a_{r} \Phi_{r}(b)+\sum_{r=0}^{N} a_{r} \Phi_{r}^{\prime}(b)=B$

Equation (18) is re-written as

$$
\begin{align*}
& P_{0} a_{0} \Phi_{0}(x)+P_{0} a_{1} \Phi_{1}(x)+\cdots+P_{0} a_{N} \Phi_{N}(x)+P_{1} a_{0} \Phi_{0}^{\prime}(x)+P_{1} a_{1} \Phi_{1}^{\prime}(x)+\cdots+P_{1} a_{N} \Phi_{N}^{\prime}(x)+P_{2} a_{0} \Phi_{0}^{\prime \prime}(x) \\
& +P_{2} a_{1} \Phi_{1}^{\prime \prime}(x)+\cdots+P_{2} a_{N} \Phi_{N}^{\prime \prime}(x)+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} \Phi_{r}(t) d t=f(x) \tag{21}
\end{align*}
$$

Hence, further simplification of equation (21), we obtained

$$
\begin{align*}
& {\left[P_{0} \Phi_{0}(x)+P_{1} \Phi_{0}^{\prime}(x)+P_{2} \Phi_{0}^{\prime \prime}(x)\right] a_{0}+\left[P_{0} \Phi_{1}(x)+P_{1} \Phi_{1}^{\prime}(x)+P_{2} \Phi_{1}^{\prime \prime}(x)\right] a_{1}+\cdots+\left[P_{0} \Phi_{N}(x)+\right.} \\
& \left.P_{1} \Phi_{N}^{\prime}(x)+P_{2} \Phi_{N}^{\prime \prime}(x)\right] a_{N}+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} \Phi_{r}(t) d t=f(x) \tag{22}
\end{align*}
$$

The integral part of equation (22) is evaluated and the left-over is then collocated at the point $x=x_{k}$, we obtained
$\left[P_{0} \Phi_{0}\left(x_{k}\right)+P_{1} \Phi_{0}^{\prime}\left(x_{k}\right)+P_{2} \Phi_{0}^{\prime \prime}\left(x_{k}\right)\right] a_{0}+\left[P_{0} \Phi_{1}\left(x_{k}\right)+P_{1} \Phi_{1}^{\prime}\left(x_{k}\right)+P_{2} \Phi_{1}^{\prime \prime}\left(x_{k}\right)\right] a_{1}+\cdots+\left[P_{0} \Phi_{N}\left(x_{k}\right)+P_{1} \Phi_{N}^{\prime}\left(x_{k}\right)\right.$
$\left.+P_{2} \Phi_{N}^{\prime \prime}\left(x_{k}\right)\right] a_{N}+\int^{b} k\left(x_{k}, t\right) \sum_{r=0}^{N} a_{r} \Phi_{r}(t) d t=f\left(x_{k}\right)$
where
$x_{k}=a+\frac{(b-a) k}{N}, k=1,2 ., 3 ., \ldots, N-1$
Thus, equation (23) gives rise to ($\mathrm{N}-1$) algebraic linear equations in ($\mathrm{N}+1$) unknown constants. Two extra equations are obtained using equations (19) and (20). Altogether, we have ($\mathrm{N}+1$) algebraic linear equations in $(\mathrm{N}+1)$ unknown constants. These $(\mathrm{N}+1)$ algebraic linear equations are then solved by Gaussian elimination method to obtain the $(\mathrm{N}+1)$ unknown constants which are then substituted back into equation (17) to obtain the approximate solution.

VI. PERTURBED COLLOCATION METHOD BY CANONICAL POLYNOMIALS

 (PCMCP)We used the method to solve equations (1)-(3) by substituting equation (17) into a slightly perturbed equation (1) to get
$P_{o} y_{N}(x)+P_{1} y^{\prime}{ }_{N}(x)+P_{2} y_{N}{ }^{\prime \prime}(x)+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} \Phi_{r}(t) d t=f(x)+\tau_{1} T_{N}(x)+\tau_{2} T_{N-1}(x)$
Where, τ_{1} and τ_{2} are two free tau parameters to be determined along with the constants $a_{r}(r \geq 0)$ and $\Phi_{r}(x)$ is the canonical polynomial of degree N .
Hence, further simplification of equation (25), we obtained
$\left[P_{0} \Phi_{0}(x)+P_{1} \Phi_{0}^{\prime}(x)+P_{2} \Phi_{0}^{\prime \prime}(x)\right] a_{0}+\left[P_{0} \Phi_{1}(x)+P_{1} \Phi_{1}^{\prime}(x)+P_{2} \Phi_{1}^{\prime \prime}(x)\right] a_{1}+\cdots+\left[P_{0} \Phi_{N}(x)+P_{1} \Phi_{N}^{\prime}(x)+P_{2} \Phi_{N}^{\prime \prime}(x)\right] a_{N}$
$+\int_{a}^{b} k(x, t) \sum_{r=0}^{N} a_{r} \Phi_{r}(t) d t=f(x)+\tau_{1} T_{N}(x)+\tau_{2} T_{N-1}(x)$
The integral part of equation (26) is evaluated and the left-over is then collocated at the point $\mathrm{x}=\mathrm{x}_{\mathrm{k}}$, we obtained
$\left[P_{0} \Phi_{0}\left(x_{k}\right)+P_{1} \Phi_{0}^{\prime}\left(x_{k}\right)+P_{2} \Phi_{0}^{\prime \prime}\left(x_{k}\right)\right] a_{0}+\left[P_{0} \Phi_{1}\left(x_{k}\right)+P_{1} \Phi_{1}^{\prime}\left(x_{k}\right)+P_{2} \Phi_{1}^{\prime \prime}\left(x_{k}\right)\right] a_{1}+\cdots+\left[P_{0} \Phi_{N}\left(x_{k}\right)+P_{1} \Phi_{N}^{\prime}\left(x_{k}\right)\right.$
$\left.+P_{2} \Phi_{N}^{\prime \prime}\left(x_{k}\right)\right] a_{N}+\int_{a}^{b} k\left(x_{k}, t\right) \sum_{r=0}^{N} a_{r} \Phi_{r}(t) d t=f\left(x_{k}\right)+\tau_{1} T_{N}\left(x_{k}\right)+\tau_{2} T_{N-1}\left(x_{k}\right)$
where
$x_{k}=a+\frac{(b-a) k}{N+2}, k=1,2,3, \ldots N+1$
Thus, equation (27) gives rise to $(\mathrm{N}+1)$ algebraic linear equations in $(\mathrm{N}+3)$ unknown constants. Two extra equations are obtained using equations (19) and (20). Altogether, we have ($\mathrm{N}+3$) algebraic linear equations in $(\mathrm{N}+3)$ unknown constants. These $(\mathrm{N}+3)$ algebraic linear equations are then solved by Gaussian elimination method to obtain the $(\mathrm{N}+1)$ unknown constants $\mathrm{a}_{\mathrm{r}}(\mathrm{r} \geq 0)$ together with the parameters τ_{1} and τ_{2} which are then substituted back into equation (17) to obtain the approximate solution.

VII. CONSTRUCTION OF CANONICAL POLYNOMIALS

The canonical polynomials denoted by $\Phi_{\mathrm{r}}(\mathrm{x})$ is generated recursively from equation (1) as follows: Following [13], we define our operator as:

$$
L \equiv P_{2} \frac{d^{2}}{d x^{2}}+P_{1} \frac{d}{d x}+P_{0}
$$

Let

$$
L \Phi_{r}(x)=x^{r}
$$

Thus,

$$
L x^{r}=P_{2} r(r-1) x^{r-2}+P_{1} r x^{r-1}+P_{0} x^{r}
$$

Implies, $L\left\{L \Phi_{r}(x)\right\}=L x^{r} \equiv P_{2} r(r-1) x^{r-2}+P_{1} r x^{r-1}+P_{0} x^{r}$

$$
L\left\{L \Phi_{r}(x)\right\}=P_{2} r(r-1) L \Phi_{r-2}(x)+P_{1} r L \Phi_{r-1}(x)+P_{0} L \Phi_{r}(x)
$$

We assumed that L^{-1} exists, then

$$
x^{r}=P_{2} r(r-1) L \Phi_{r-2}(x)+P_{1} r L \Phi_{r-1}(x)+P_{0} L \Phi_{r}(x)
$$

Implies,
$\Phi_{r}(x)=\frac{1}{P_{0}}\left\{\mathrm{X}^{\mathrm{r}}-P_{2} r(r-1) \Phi_{r-2}(x)-P_{1} r \Phi_{r-1}(x)\right\}, \mathrm{r} \geq 0, \mathrm{P}_{0} \neq 0$
Hence, equation (29) is our constructed recursive canonical polynomials used in this work.
Remarks:
i. First order linear Integro-Differential Equation: For the purpose of our discussion, we set $P_{2}=0$ in equation (1) and this resulted to first order linear Integro-Differential equation considered in this work together with the initial condition $y(a)=A$
ii. Errors: For the purpose of this work, we have defined maximum error used as

Maximum Error $=\max _{a \leq x \leq b}\left|y(x)-y_{N}(x)\right|$
8. Numerical Examples

Examples 1: Consider the first order linear integro-differential equation

$$
\begin{equation*}
y^{\prime}(x)+2 y(x)+5 \int_{0}^{x} y(t) d t=1 \tag{31}
\end{equation*}
$$

with initial condition
$y(0)=0$
The exact solution is given as $y(x)=\frac{1}{2} e^{-x} \sin (2 x)$.
Table 1: Absolute maximum errors for example 1

N	Standard Collocation Method by Power Series (SCMPS)	Standard Collocation Method by Canonical Polynomials(SCMCP)	Perturbed Collocation Method by Power Series (PCMPS)	Perturbed Collocation Method by Canonical Polynomials (PCMCP)
4	$3.30842 \mathrm{E}-4$	$8.01922 \mathrm{E}-2$	$2.80105 \mathrm{E}-5$	$9.84836 \mathrm{E}-4$
6	$1.77942 \mathrm{E}-5$	$3.48756 \mathrm{E}-4$	$5.48351 \mathrm{E}-6$	$1.91790 \mathrm{E}-6$
8	$7.34987 \mathrm{E}-6$	$5.78564 \mathrm{E}-6$	$2.78564 \mathrm{E}-7$	$9.23458 \mathrm{E}-8$

Example 2:

Consider the first order linear integro differential equation
$y^{\prime}(x)=y(x)-\operatorname{Cos}(2 \pi x)-2 \pi \operatorname{Sin}(2 \pi x)-\frac{1}{2} \operatorname{Sin}(4 \pi x)+\int_{0}^{1} \operatorname{Sin}(4 \pi x+2 \pi t) y(t) d t$
together with the initial condition

$$
y(0)=1
$$

The exact solution is given as:
$y(x)=\operatorname{Cos}(2 \pi x)$
Table 2: Absolute maximum errors for example 2.

N	Standard collocation method by Power series(SCMPS)	Standard collocation method by canonical polynomials(SCMCP)	Perturbed collocation method by Power series(PCMPS)	Perturbed collocation method by canonical Polynomials(PCMCP)
4	$7.48300 \mathrm{E}-2$	$1.86680 \mathrm{E}-3$	$8.83939 \mathrm{E}-3$	$9.37068 \mathrm{E}-4$
6	$1.52471 \mathrm{E}-2$	$3.16809 \mathrm{E}-4$	$6.39096 \mathrm{E}-3$	$2.13246 \mathrm{E}-5$
8	$8.76953 \mathrm{E}-3$	$1.67845 \mathrm{E}-5$	$3.67589 \mathrm{E}-4$	$1.03421 \mathrm{E}-6$

Example 3: Consider the second-order linear integro-differential equation
$y^{\prime \prime}(x)=9 y(x)+\frac{e^{-15}-1}{3}+\int_{0}^{5} y(t) d t$
together with the boundary conditions

$$
y(0)=1 \text { and } y(1)=e^{-3}
$$

The exact solution is given as

$$
y(x)=e^{-3 x}
$$

Table 3: Absolute maximum errors for example 3.

N	Standard Collocation Method by Power Series (SCMPS)	Standard Collocation Method by Canonical Polynomials(SCMCP)	Perturbed Collocation Method by Power Series (PCMPS)	Perturbed Collocation method by Canonical Polynomials(PCMCP)
4	$4.86680 \mathrm{E}-2$	$2.02310 \mathrm{E}-2$	$1.86433 \mathrm{E}-3$	$2.13172 \mathrm{E}-4$
6	$1.16878 \mathrm{E}-2$	$5.16037 \mathrm{E}-3$	$2.17081 \mathrm{E}-4$	$2.05136 \mathrm{E}-5$
8	$8.45834 \mathrm{E}-3$	$1.67452 \mathrm{E}-4$	$7.45801 \mathrm{E}-5$	$1.89561 \mathrm{E}-7$

VIII. DISCUSSION OF RESULTS AND CONCLUSION

Integro - Differential equations are usually difficulty to solve analytically. In many cases, it is required to obtain the approximate solutions. In this work, we proposed perturbed Collocation by Canonical polynomials for first and second orders linear In tegro Differential Equations and comparison were made with the Standard Collocation Method by Power Series and Canonical Polynomials as the the basis functions.
The comparison certifies that Perturbed Collocation Method gives good results as these are evident in the tables of results presented.

REFERENCES

[1] Hussein, J., Omar A. and S. Al-Shara, (2008) Numerical solution of linear integro-differential equations. J. Math and Stat. 4(4): 250-254.
[2] Goswani, J. C., A. K. Chan and C. K. Chui(1995) On solving first-kind integral equations using wavelets on a bounded interval. IEEE Transactions on Antennas and Propagation, 43, 614-622.
[3] Lakestani, M., M. Razzaghi and M. Dehghan (2006) Semi-orthogonal spline wavelets approximation for Fredholm integro-differential equations. Mathematical problems in Engineering, vol. 2006, Article ID96184, pp:12.
[4] Neveles, R. D., J. C. Goswani and H. Tehrani(1997) Semi-orthogonal versus orthogonal wavelet basis sets for solving integral equations. IEEE Trans. Antennas Propagat., 45(9): 1332 - 1339.
[5] Chrysafinos, k.,(2007) Approximations of parabolic integro-differential equations using wavelet-Galerkin compression techniques. BIT Numerical Mathematics, 47: 487-505.
[6] Abbasa, Z., S. Vahdatia K. A. Atanb and N. M. A. NikLonga, (2009) Legendre multi-wavelets direct method for linear integro-differential equations. Applied Mathematical Sciences, 3(14): 697-700.
[7] Fedotov, A. I (2009) Quadrature-difference method for solving linear and nonlinear singular integrodifferential equations. Nonlinear Anal., 71: 303-308.
[8] S. M. El-Sayed, M. R. Abdel-Aziz (2003) Comparison of Adomians decomposition method and waveletGalerkin methods for solving integro- differential equations. Appl. Math. Comput. 136, 151-159.
[9] Liao, S. J. (2004) On the Homotopy analysis method for nonlinear problems. Applied Math. Comput., 147: 499 - 513.
[10] Zhao, J. and R. M. Corless (2006) Compact finite difference method for integro-differential equations. Applied Math. Comput., 177: 325 - 328. DOI:10.1016/j.amc.2005.11.007.
[11] Aruchunan, E. and J. Sulaiman, (2010) Numerical Solution of second- order linear Fredholm integrodifferential equation using Generalized Minimal Residual Method. American Journal of Appl. Sciences. 7(6): $780-783$.
[12] Wang, S. and J. He(2007) Variational Iteration Method for solving integro-differential equations. Phys. Lett. A, 367: 188-191.
[13] Taiwo, O. A. and Onumanyi, P. (1991). A collocation approximation of singularly perturbed second order differential equation, Computer mathematics, vol. 39 pp $205-211$.

