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Abstract: - The Yield line method is widely used for the analysis and design of reinforced, concrete slabs. The 

method here described relies on three parameters - the Geometry of the plate, the length of Yield lines & the 

orientation of the Yield lines. Here the governing equation is broken into integrable parts such that the internal 

work is taken as the sum of all Yield lines including the negative Yield lines multiplied by (2 + number of nodal 

moments) and the average moment (ḿ). The external work is taken as the product of the load and the sum of the 

volume of each integral part with the deflection taken as the length of the positive Yield lines at the segment. 

The solution for the average bending moment over the Yield lines reduces the solution of plates to simple 

geometry. Results from the method compares to those of the work method and equilibrium method. 

 

Keywords: - Equilibrium method, Nodal moments, Pyramidal factor and Prism factor, Yield lines, Work 

method. 

 

I. INTRODUCTION 
 Studies in the yield- line theory of concrete slabs which have largely avoided the question of the 

distribution of the support reaction were addressed by Johnarry [1]. A great deal of researchers [2],[3],[4],[5]and 

[6] has worked extensively on Johansen discovery with the aim of tying the yield line theory with more classical 

plastic theory. It appears that none of the researchers has used or considered the length of the yield line in each 

segment as having all the characteristics required to determine the internal work and external work which in turn 

gives the load or carrying capacity of the slab. The work of Johnarry[1] gave an insight into further research 

which revealed that the Geometry of the plate and the length of the yield lines are just enough for the analysis 

and design of slabs. 

 

II. METHOD 
A review of  Johnarry’s work [1] (referred in the proposed method as the TJ’s method) has the yield-line as the 

s-axis and its normal n-axis. The yield –line method equation is  

   







1..........qdsdndw

dn

dw
md  

 Where dw is the elemental deflection 

   dividing through by (dw/dn), we have     
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Equation (2)  requires the slab  to be divided into  continuously  integrable components, which  must  

be the  same rigid components  produced by  the  yield – lines. The length of the yield lines in each component 

will be relied, upon to achieve this.  

Integration is implied in equation (2) and this must be carried out along the yield lines for example, in fig 1 the 

yield – line BD relates to the support axes AB and BC.  For areas A1 and A2 on both sides of the yield – line  

MF = 2mLBD = q A1 (aR - aq)1 + qA2 (aR  - aq)2 ……(3)  

Where MF is the total amount of forces on both sides of a yield line, aR is the lever arm to the load centre and aR 

is the lever – arm to the reaction centre.  Note that the yield – line length LBD is used twice in equation 3.  For 

the case of a UDL called q, the reaction Rj is  

Rj = qAj…………(4)  

 

2.1 Theoretical formulation of proposed method 

This study  has shown  that it  is unnecessary to  begin to  look  for aR  and aq as proposed by the TJ’s method  

rather the  value  of (aR  - aq), should always be  taken  as  the  length  of the yield line at the segment divided by  

the  pyramidal factor or  prism factor.  In case of a Udl. this means that eqn 3 is modified as  

 5.................
1

1
2

2 



























Fn

Lij
qA

F

LBD
qA

F

LBD
qAM nF

  

For pyramidal factor F = 3 , eqn  5 becomes  

)6(....................
33

21

LBD
qA

LBD
qAM F   

For prism factor F = 2  

)7(....................
22

21

LBD
qA

LBD
qAM F   

In the method here described the equations 6 & 7 are used in combination in most cases  

 

2.1.1 Pyramidal factor  

The volume of a rectangular pyramid is given by  

area
l

lbhvol
33

1
  

The volume of a right angle triangular pyramid is given by  

 

632

1 lbhh
Lbvol   

2.1.2 Prism factor  
The volume of a prism is given by  

area
hlbhh

lbvol
222

            

In fig 2 below                                A  1            2    B     
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D 1           2    C 

Fig. 2 Segments A1E 3, D1E3, B2F3 and C2F3 are pyramids, while segment 1221  is a prism. 
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The left hand side  

MF= 2MLBD ………………………………..(9)  
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Needs modification as reported by researchers [1][2]. Here it has been established that when a yield –line meets 

a  free edge, a  nodal moment will occur at the  dip. This fact is employed in this method to mean than equation 

9 should be modified to carter for cases with free ends. Thus it becomes.  

MF = M (2 + no of free edges) LBD ……(10)  

Equation 10 is the required internal work in the slab, while the right hand side of equations (5), (6), (7) & (8) are 

the external  work done in the slab.  

 

2.2 Point Loads  

In the case  of point loads, the  internal  work  remains the  same, but  the external  work needs to  be  modified 

as follows equation  8 becomes.  

        11....................................
2121 EE AADDAAF AALEFAALBDAALAE

L

P
M             

2.3 Clamped Edges and Re-Entrant Corners  

Here the internal work shall include the sum of positive and negative Yl, but the external work shall only deal 

with volume displaced by the positive Yl alone.  

 

III  Results of  Interest 

It is assumed that, the user of the proposed method is familiar with the theory of yield lines and so should be 

able to draw yield lines for a given supported slab using the rules of Yl postulation[5][6].   

3.1 Simply Supported Square Slab Loaded Uniformly  

 

solution:  
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Equating internal work  to  external work  
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3.2 Case 2: Clamped square slab loaded uniformly 
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941.57

2ql
m   

 

3.3 Case 3: Simply supported rectangular slab loaded uniformly  

 

Solution  
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3.4 Case 4 All round clamped rectangular slab loaded uniformly    2L 

Internal work   02222
2
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External work same as that in case 4  
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6
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Equating  

  M = 0.0374273ql
2
  

  
9185.26

2ql
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3.5 Case 5: Simply supported square slab loaded with a point      
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3.6 Case 6: Simply supported rectangular slab loaded with a Point load 
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3.7 Case 7: Clamped square plate loaded with a point load  
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3.8 Case 8: Clamped rectangle plate loaded with a point load. 
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3.9 Case 9: Square plate s- s on three sides with one edge free acted upon by a UDL q  

Solution       L        L 
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    223
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The results for case A and Case B for  plate S-S on three sides with one edge  free acted upon by a Point load  

Using the described method are respectively 

12

pl
m   and 

6

pl
m   

 

3.10 Case 10 Irregular plates 

A typical example, which was earlier solved using the work method and the reaction method shown below, shall 

be solved using the described method  

 

  

                    

            53mm   

            

      60mm 

       

              1             40
0
               4                                      49mm

        

Solution         

          

         2                              3 

 

 

 

 

The lengths of the line measured are given as                            49mm 

 

 

 

YL 1-2 = 69mm                                          

YL  2.3 = 37. 5mm                 

YL 2-4 = 24  

Internal Energy    mm 5.39112245.3769 
 

To obtain the external Energy, three cases where considered to demonstrate the method. The sharing of the area 

of influence each line such that the division line is perpendicular to yield line 2-3 for  case 1; perpendicular to 

yield line 1-2 for case 2 and the simplest form was sharing the area equally to both yield line 2-3 and yield line 

1-2. Remember that yield line 2-4 is a negative one and does not influence the external energy as described 

earlier. 
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3.10.1 case 1 
 

External Energy q
2

69
5.3.7.

2

1
.5.51.68.

2

1








  

 
q

2

5.37
.5.37.

2

9855
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  q11875.114621  

Equating  

  qm 77.292  

 

3.10.2 case 2 perpendicular to YL 1-2 = 69m  

qMext
2
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1
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1
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


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






 
  

  = 115940.8125 

  qm 145115.296
5.391

8125.115940
  

  M = 296.15q 

  M=313.6q (work method) 

  % diff = - 5.57% 

 

3.10.3 case 3 equal half area  

qmext 
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




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
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2

1
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2

1
 

 = 124345.4063q 

Mint = 391.5m 

Equating  

 
5.391

4063.124345
m  

M = 317. 6q 

% diff = + 1.28% 

 

IV   CONCLUSION 
The reliable results obtained from the method herein described when compared to classical methods 

have given an insight to another view of yield line analysis. The main advantage of the proposed method is in 

the ease with which it can handle irregular plates. The example treated in case 10 is a clear case which could be 

handled with such ease and accuracy. Several plates in Engineering practice have shown serious yield lines 

which is beyond the realm of elastic analysis. The existing methods of handling this which is in fracture 

mechanics are not easily comprehended by those in practice who need simple but accurate hand method to 

handle such problems. The work can be extended to solving problems of cracks in structural walls and slabs, 

highway pavements, earth roads and bond walls around storages with high temperature gradients among others. 

This is possible because only the lengths of the yield lines and the geometry of the plate are required for their 

solutions. The work is limited to the average moment required to create the mechanism and by extension the 

maximum moment in each of the yield lines. The deflection of the plates are not discussed in this paper but can 

be researched into.   
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