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ABSTRACT: Sigmoidal models were compared to describe the growth curve of Saccharomyces cerevisiae in 

batch ethanol fermentation of sugarcane molasses. Five classical functions and some of their 

reparameterizations were fitted to three experimental data sets: logistic, Gompertz, Chapman-Richards, 

Morgan-Mercer-Flodin and a Weibull-type model. Since these models are nonlinear, measures of nonlinearity 

were used to evaluate the statistical properties of the least squares estimators. The measures used were the 

intrinsic (IN) and parameter-effects (PE) curvatures of Bates and Watts, the bias measure of Box, and the 

Hougaard’s measure of skewness. Among the models analyzed, only a reparameterization of the Weibull-type 

model presented close to linear behavior, ensuring the statistical validity of the parameters estimated by the 

method of least squares. 
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I. INTRODUCTION 
Saccharomyces cerevisiae growth 

Saccharomyces cerevisiae, commonly known as baker’s yeast, is popular and commercially significant 

among the yeasts. This microorganism has been used for a long time in the food industry, mainly in the baking, 

and alcoholic beverages industries. The Saccharomyces cerevisiae has also been used to produce ethanol by 

using fermentation of sugarcane juice or molasses, and more recently, by fermentation of lignocellulosic 

biomass, which further increases the importance of this microorganism in the biofuel industry.  

Yeast cells grow in three main phases: lag, exponential, and stationary. When a culture of yeast cells is 

inoculated in a different growth medium, it enters the lag phase or adaptation time. In this phase, the cells are 

biochemically active, but they do not divide. After this, the cell growth increases, initially, slowly, in a positive 

acceleration phase; then it increases rapidly, approaching an exponential growth rate; but, after this rapid growth, 

the acceleration declines in a negative phase until a zero-growth rate, when the population stabilizes. This 

slowdown in the growth rate results in an environmental resistance increase, which becomes proportionately 

more important at a higher density of cell’s population. This type of growth is termed “density-dependent”, since 

the growth rate depends on the number of cells available in the population. The point of stabilization, or zero-

growth rate, is termed the “saturation value” or “carrying capacity” of the environment for that microorganism 

(Allaby, 2014). Moreover, if the cell concentration is plotted against time, a typical sigmoidal or “S-shaped” 

growth curve is obtained.   

Processes producing sigmoidal or “S-shaped” growth curves are widespread in biology, agriculture, 

engineering, and economics. Such curves start at some fixed point and increase their growth rate monotonically 

to reach an inflexion point. After this, the growth rate decreases to approach asymptotically some final value. 

Additionally, numerous mathematical functions have been proposed for modeling sigmoidal growth curves, 

many of which are claimed to have some underlying theoretical bases. Among these are the logistic equation and 

the Gompertz model.  

 

Hyperbolastic models 

Tabatabai et al. (2005) developed three sigmoid growth models called "hyperbolastic models" for predicting and 

analyzing self-limited growth behavior. These models are briefly presented below. For further details, see the 

original work. 
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Hyperbolastic model H1 

The following function is called hyperbolastic growth model of type I or simply H1. 

𝑃 𝑡 =
𝑀

1+𝛼.𝑒𝑥𝑝  −𝑀𝛽𝑡 −𝜃arcsinh ⁡(𝑡) 
(1) 

Where P(t) represents the population size at time t, β is the parameter representing the intrinsic growth rate, α 

and θ are parameters, and M represents the maximum sustainable population (carrying capacity), which is 

assumed to be constant, though, in general, the carrying capacity may change over time. For growth curves, β 

must be positive, leading to an eventually increasing curve with an asymptote at M; β can be negative only for 

eventual inhibition curves or decay. If θ = 0, then the equation (1) reduces to a general logistic model. 

The observed value of P(t) at t = 0 is used to obtain an approximate value of α: 

𝛼 =
𝑀−𝑃(0)

𝑃(0)
𝑒𝑥𝑝 𝑀𝛽𝑡0 + 𝜃arcsinh⁡(𝑡0) (2) 

Replacing equation (2) in equation (1), the H1 model becomes a three-parameter model. 

 

Hyperbolastic model H2 

The function P(t) in equation (3) is called hyperbolastic growth model of type II or simply H2.  

𝑃 𝑡 =
𝑀

1+𝛼.arcsinh ⁡(𝑡) exp ⁡(−𝑀𝛽𝑡 𝛾  
     (3) 

Where M is the carrying capacity, and α, β and γ are parameters. As in the H1 model, the observed value of P(t) 

at t=0 is used to obtain an approximate value of α: 

𝛼 =
𝑀−𝑃(0)

𝑃 0 𝑎𝑟𝑐𝑠𝑖𝑛 ℎ 𝑒𝑥𝑝  −𝑀𝛽𝑡0
𝛾
  

    (4) 

Replacing equation (4) in equation (3), the H2 model becomes a three-parameter model. 

 

Hyperbolastic model H3 

The function in equation (5) is called hyperbolastic growth model of type III or simply H3. 

𝑃 𝑡 = 𝑀 − 𝛼. 𝑒𝑥𝑝 −𝛽𝑡𝛾 − arcsinh⁡(𝜃. 𝑡) (6) 

Again, M is the carrying capacity and α, β, γ and θ are parameters If θ = 0, then this model reduces to the 

Weibull function. As in the H1 and H2 models, the observed value of P(t) at t=0 is used to obtain an approximate 

value of α: 

𝛼 =  𝑀 − 𝑃(0) 𝑒𝑥𝑝 𝛽𝑡0
𝛾
+ arcsinh⁡(𝜃𝑡0) (7) 

Replacing equation (7) in equation (6), the H3 model becomes a four-parameter model. 

The aim of this work was to compare the hyperbolastic models with the classic growth models, in the description 

of the growth curve of Saccharomyces cerevisiae during ethanol production. Since these models are nonlinear, 

measures of nonlinearity were used to evaluate the statistical properties of the least-squares estimators. The 

measures used were the intrinsic (IN) and parameter-effects (PE) curvatures of Bates and Watts, the bias 

measure of Box, and the Hougaard’s measure of skewness. 

 

Measures of nonlinear behavior  

Most asymptotic inferences for nonlinear regression models are based on analogies with linear models. 

Since these inferences are approximate, some measures of nonlinearity have been proposed as a guide for 

understanding how good linear approximations are likely to be (El-Shaarawi&Piegorsch, 2002). The most used 

measures of nonlinearity are the curvature measures of Bates and Watts (1980), the bias measure of Box (1971), 

and the Hougaard’s (1985) measure of skewness. These measures are described summarized below. For further 

details, see the original works. 

 

Curvature measures   

Bates and Watts (1980) divide the concept of nonlinearity into two parts: intrinsic nonlinearity (IN) and 

parameter-effects nonlinearity (PE). Relative intrinsic and parameter-effects curvatures can be used to quantify 

the global nonlinearity of a nonlinear regression model. Furthermore, the intrinsic nonlinearity (IN) measures the 

curvature of the solution locus in sample space. For a linear regression model, IN is zero since the solution locus 

is straight (a line, plane, or hyperplane). For a nonlinear regression model, the solution locus is curved, with IN 

measuring the extent of that curvature (Ratkowsky, 1990). The parameter-effect nonlinearity (PE) is a measure 

of the lack of parallelism and the inequality of spacing of parameter lines on the solution locus at the least-

squares solution. (Bates & Watts, 1980).  

If IN and PE can be considered small, the nonlinear model behaves close to a linear model, i.e., the least 

squares estimators of the parameters are close to being unbiased and normally distributed, and they have 

minimum variance. Ratkowsky (1983) termed such nonlinear regression models close-to-linear models. The 

criteria that determine if IN and PE are small enough (or not statistically significant) so that the nonlinear model 

can be considered close-to-linear are presented in section Matherial and methods: curvature measures. 
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Bias and skewness 

In practice, only a few of the parameters might dominate the global nonlinearity. These parameters are 

the reparameterization parameters of interest. Unfortunately, the global nonlinearity measures of Bates and Watts 

(1980) do not differentiate the parameters based on their contribution to the overall curvature. Additionally, 

manifestations of nonlinear behavior include significant bias and skewness. Hence, it is essential to estimate, at 

least these, basic statistical properties of the parameter estimates, in order to identify the reparameterization 

parameters of interest (Gebremariam, 2014).   

The bias and skewness of the parameter estimates of a nonlinear regression model can be estimated by 

using the bias measure of Box (1971) and the Hougaard (1985) measure of skewness. Box’s bias represents the 

discrepancy between the estimates of the parameters and the true values. Skewness is a measure of lack of 

symmetry. Hougaard’s measure of skewness can be employed to assess whether a parameter is close to linear or 

if it contains considerable nonlinearity, because of the close link between the extent of nonlinear behavior of an 

estimator, and the extent of nonnormality in the sampling distribution of this estimator (Ratkowsky, 1990). 

II. MATERIAL ANDMETHODS 
Strain, medium, fermentation and analyses 

A strain of Saccharomyces cerevisiae (Mauriferm Y904, Mauri, Brazil) was cultivated in two distinct 

fermentation media: diluted sugar cane molasses, and a synthetic medium containing 3g/L of bacteriological 

peptone, 5 g/L of yeast extract and 20 g/L of glucose. The inoculum preparation included the suspension of 100 

g of the dried yeast in 900 g of water, maintained in a shake flask at 100 rpm and 34 °C for 30 minutes. The 

experiments were carried out in duplicate at 34 ºC and 100 rpm in a 3.0 L fermentor NBS Bioflo 110 (New 

Brunswick Scientific, USA), in which 2000 mL of the culture medium was inoculated with 1% of seed culture. 

Samples were withdrawn at regular time intervals and measurements of the dry weight of cells quantified the 

biomass concentration.  

 

Models 

The models fitted to the experimental growth data of Saccharomyces cerevisiae are shown in Table I. In 

H1, H2 and H3 models (see Equations 1, 3 and 6), the variable P(t) was replaced by X(t), where X(t) is the 

biomass concentration at time t. 

The fits of the hyperbolastic models to the experimental data were compared with those of the logistic, 

Weibull and Gompertz models. These classical sigmoid models were not chosen at random. The hyperbolastic 

models H1 and H3 (Equations 1 and 5) reduce to the logistic and Weibull models, respectively, when θ = 0. The 

Gompertz model was included as an alternative to the logistic model because has an asymmetric inflection point 

and a shorter period of fast growth. 
 

Table 1 

Sigmoidal models fitted to the Saccharomyces cerevisiae growth data. 

 
 

Measures of nonlinearity 

In this study, the parameter estimates and their respective measures of nonlinearity were obtained by 

using the NLIN procedure of the SAS software. For each measure, the criteria for assessing the extent of 

nonlinear behavior of the parameter estimates are described below. Details about the development, procedure, 

and equations for determining the curvature measures of nonlinearity of Bates and Watts (1980), the bias 

measure of Box (1971), and the Hougaard (1985) measure of skewness are found in the original works. 

 

Curvature measures 

The statistical significance of the intrinsic nonlinearity (IN) and the parameter-effects nonlinearity (PE) 

were evaluated by comparing these values with1  𝐹 , where 𝐹 = 𝐹 𝛼, 𝑛 − 𝑝, 𝑝 is the inverse of Fisher´s 
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probability distribution obtained at significance level α=0.05, p is the number of parameters and n is the number 

of observations. The value1  𝐹 may be regarded as the radius of the curvature of the100 1 − 𝛼 %confidence 

region. Hence, the solution locus may be considered to be sufficiently linear within an approximately 95% 

confidence region if IN <1  𝐹 (α= 0.05). Similarly, if PE <1  𝐹 the projected parameter lines on the solution 

locus may be regarded as being sufficiently parallel and uniformly spaced, i.e., the parameter estimates do not 

depend on the user being able to supply a good initial estimate and the tests of parameters invariance will be 

adequate. (Ratkowsky, 1990). 

 

Box’s bias 

Box’s bias in the least square estimates of the parameters in nonlinear regression can be expressed as a 

percentage of the least square estimate. This percentage bias is estimated by: 

%𝐵𝑖𝑎𝑠 𝜃  = 100. 𝐵𝑖𝑎𝑠 𝜃  / 𝜃     (8) 

Where 𝜃  is the least square parameter estimate. According to Ratkowsky (1983), a percentage bias greater than 

1% in absolute value is considered to be significantly nonlinear. 

Hougaard’s skewness 

The degree to which a parameter estimator exhibits nonlinear behavior can be assessed with Hougaard’s measure 

of skewness, g1i. According to Ratkowsky (1990), if |g1i| < 0.1, the estimator of the parameter is very close to 

linear and, if 0.1 < |g1i| < 0.25, the estimator is reasonably close to linear. For |g1i| > 0.25, the skewness is very 

apparent, and |g1i| > 1 indicates considerable nonlinear behavior. 

 

III. RESULTS AND DISCUSSION 
Table II shows the results of the growth of Saccharomyces cerevisiae. 

 

Table 2 

Dry mass concentration (X) of Saccharomyces cerevisiae in the two fermentation media. Each data set 

corresponds to the arithmetical mean of two runs. 

 
 

Measures of nonlinearity 

The models in Table 1 were fitted to the experimental results shown in Table 2. Tables 3 and 4 show the 

least squares parameter estimates with the respective values for the measures of nonlinearity to the two 

experimental data sets. 

For all models, IN <1  𝐹 (𝛼 = 0.05) and therefore the solution locus may be considered to be 

sufficiently linear within an approximately 95% confidence interval. However, only the logistic model presented 

PE <1  𝐹 , indicating that the projected parameter lines on the solution locus may be regarded as being 

sufficiently parallel and uniformly spaced. Therefore, among the studied models, the logistic model was the only 

one that presented close-to-linear behavior, ensuring the statistical validity of the parameters estimated by the 

method of least squares. For this model, the parameter estimates are almost unbiased, normally distributed and 

have close-to-minimal variance. 

On the other hand, Gompertz and Weibull models, and all the hyperbolastic models have exhibited high 

parameter-effects curvature (PE >1  𝐹 ). This indicates that at least one parameter in these models is departing 

from linear behavior, and the Hougaard's skewness and Box's bias indicate which parameter or parameters are 

responsible for this behavior. For the H1 model, measures of skewness and bias indicate that all parameter 

estimates in Table 3 can be considered close-to-linear. However, the parameter-effects curvature exceeded the 

critical value. In this case, the nonlinear behavior is probably due to the estimate of M, that presented the highest 

skewness among the parameter estimates. In Table 4, all parameter estimates for this model are skewed and 

biased. 
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Table 3 

Statistical results of the least-squares estimation for the models in Table 1. Medium: diluted sugarcane molasses. 

 
ρ = critical curvature value (ρ = 1/√F), F (α, n-p, p) is the inverse of Fisher´s probabilitydistribution obtained at 

significance level α = 0.05, p is the number of parameters and n is the number ofobservations. 

 

Table 4 

Statistical results of the least-squares estimation for the models in Table 1. Synthetic medium. 

 
ρ = critical curvature value (ρ = 1/√F), F (α, n-p, p) is the inverse of Fisher´s probabilitydistribution obtained at 

significance level α = 0.05, p is the number of parameters and n is the number ofobservations. 

 

The estimates of M for the H2 model are skewed and therefore responsible for the significant 

parameter-effects curvature. For the H3 model, the high parameter-effect curvature is due to the estimates of M 

and β. The estimates of M are skewed and the estimates of β are skewed and biased. 

All the parameter estimates of the Gompertz model are skewed and therefore responsible for the 

significant parameter-effects curvature. For the Weibull model, the nonlinear behavior is due to the high 

skewness of β (Table 3) and α estimates (Tables 3 and 4). 

The fit of the logistic model to each data set is shown in Figure 1. The other models presented far from 

linear behavior, which implies invalid inference results based on asymptotic approximations for the least squares 

estimators. Therefore, it does not make sense to display graphs representing the fit of these models to the 

experimental data. 
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Figure 1. Growth curve of Saccharomyces cerevisiae fitted with the logistic model. 

(A) Sugarcane molasses; (B) Synthetic medium. 

 

IV.   CONCLUSION 
In this work, hyperbolastic and classical sigmoid models were compared to describe the growth curve of 

Saccharomyces cerevisiae in batch ethanol fermentation. Among all the models fitted to the experimental data, 

only the logistic model presented a close-to-linear behavior, ensuring the statistical validity of the parameters 

estimated by the method of least-squares. For this model, the parameter estimates are almost unbiased, normally 

distributed and have close-to-minimal variance. 

The hyperbolastic models, in addition to Gompertz and Weibull models presented a far-from-linear 

behavior, due to skewed or biased parameter estimates, which implies invalid inference results based on 

asymptotic approximations for the least-squares estimators. 
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