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ABSTRACT:The current rising demand in power in Nigerian cities in the South-South zone has led to the 

undesirable impact on the power capacity of the generating units serving this region. In this paper, we present a 

steady stability approach, which uses a swarm intelligence technique called Bee Colony Optimization (BCO) for 

solving the Nigerian 132-kVsub-transmission network, Port-Harcourt zone (PH-132-kV). We present results of 

steady-state analysis of some buses in the PH-132-kV network from the maximum load-ability point of view by 

randomly varying the reactive loading at these buses whilst modifying the displacement angle threshold 

condition of a Maximum Power Point Identification Tracking (MPPIT) routine within the Swarm intelligence 

best search loop. The results reported very variable Pmax before conditioning and reasonable stable Pmax after 

conditioning indicating the sensitive nature of the studied power network during high reactive loading and the 

value of displacement angle signal threshold conditioning. 
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I. INTRODUCTION 
Rationalizing an investment in a facility's infrastructure can be a difficult prospect for any plant 

engineer or technician, often requiring extensive justification. Investments are considered as  “low-risk” when 

power supply is reasonably stable.At the very basic level, thepossibility for a reliable power supply in any given 

power system requires that the steady state stable conditions be met. One way of evaluating this requirement is 

to consider its state of maximum loading. In this context, we say that the electrical networks power system 

supply will be in steady state when its maximum load-ability point does not exceed a specified limit. This limit 

is important as it enables the determination of the maximum power that can be transmitted by the power system 

whichin turn can help inform the power systems engineer on optimizing improvement strategies.  

Stability represents a very vital area in the field power system network control, operation and 

optimization. Conventional stability has been the ones in real power, such as steady state stability, dynamic 

stability and transient stability. The instability phenomenon means the transmission lines where receiving end 

power system variables get much lower values than the nominal ones. In an electrical power system network, 

steady state instability is characterized by progressive decline of voltages or currents caused by the inability of 

the network to meet the increasing load demand. The process of power instability is generally triggered by some 

form of disturbance or change in operating conditions which create increased demand for power which is in 

excess of what the system is capable of supplying. Large and small disturbances in network operating conditions 

can lead to an increase in reactive power demand. Thus, efficient and reliable power system network 

contingency analysis techniques are needed to avert the consequent instabilities and threats to power 

infrastructure which can lead to voltage collapse. 

Steady state stability condition corresponds to the operating state of the electrical power system 

network, which is characterized by gradual or relatively slow (incremental) changes. For example, the load is 

gradually applied, at a rate sufficiently slow in comparison with the natural frequency of oscillation of the major 
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part of the system or with the rate of change of field flux in the rotating machine in response to the variation in 

load. Based on operating modes, the steady state may be classified as:  

(a) Static steady state – in which the operating equilibrium is without voltage regulators, speed governors, 

etc. The excitation voltages here are usually assumed to be constant. 

(b) Dynamic steady-state – in which automatic voltage regulators and well-designed excitation systems are 

used to maintain the terminal voltages constant at specified points.  

 

“This requirement of steady-state stability has been an active area of research and the problem defined 

as a maximum power point identification problem (MPPITP). A power flow program provides the steady state 

solution of a power system scenario.In a power flow program, the initial conditions for stability assessment, 

fault analysis, power quality and contingency analysis are typically provided for. Load flow analysis produces 

steady-state values of voltage magnitude and phase angle of each bus in the power system. This information can 

be used to calculate other system variables such as power losses, which are needed for operation and planning 

studies. Further, the application of load flow analysis can be seen in power system markets studies. 

Generally, power system network based on their operation conditions can be categorized into well and 

ill-conditioned systems. A well-conditioned system is a network including low/medium loading, where the 

conventional methods, such as Gauss-Seidel and Newton-Raphson methods, can be utilized to find the steady-

state information of the grid. A power system considers as ill-conditioned due to the high R/X ratio of 

transmission lines, radial structure of the network and/or the loading of the system approaching towards 

Maximum Loading Point (MLP). An example of an ill-conditioned system is the distribution system, where its 

topology commonly includes a tree-like structure with a high ratio of R/X lines. The steady-state stability of 

distribution and transmission systems is greatly affected in ill-conditioned systems. Thus, in such situations, the 

methods of conventional load flow cannot converge or may result in unreliable/inaccurate solutions. In the case 

of ill-conditioned systems, researchers are mostly concerned in ensuring the load flow convergence and systems 

operation are within the boundary of feasible zones” [1]. 

 

II. REVIEW OF LITERATURE 
Power system load flow solutions are characterized by feasible or non-feasible points – a situation 

attributed to the parabolic nature of the system bus voltages and angles. Feasible power flow regions are 

described by multiple real solutions for the state variables - magnitude and angle of bus voltages, under 

consideration. For infeasible power flow regions, “there are two different complex solutions for the state 

variables, which are not admissible from a technical point of view” [1]. The divergence of conventional power 

flow methods, such as Newton–Raphson (NR) or Gauss–Seidel (GS), may be associated with infeasible power 

flow regions, or with a feasible region, but with a starting point out from the convergence radius of the solution 

method.  

In order to solve the aforementioned problem, some researchers have studied the problem in the 

context of load flow solutions using classical methods based on heuristics as in [2], using continuation power 

flow, temperature conditioned continuation power flowand the use of a security constrained genetic algorithm 

[3]-[5]. More recent researches studies have investigated the potential of swarm intelligence (SI) techniques 

with promising results such as in[5]-[8]. SI was introduced in [9], describing a technique that are population 

based and stochastic and that are useful in combinatorial optimization problems [10]. Swarm Intelligent 

Optimization Algorithm (SIOA) typically involves the collective intelligent behavior of social insects, animals 

or particles some examples which include flock of birds or fish schools, swarm of bees or particles, or colonies 

of ants that interact locally to form functional global patterns; within the context of swarm intelligence, the 

behavior of these organisms appear orchestrated [11]-[13] 

Swarm intelligent Optimization algorithms (SIOA) also belongs to a class of nature inspired techniques 

called meta-heuristics [13], some examples of which include: Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Crow Search Algorithm (CSA), Bat Algorithm, Bee Colony Optimization (BCO), etc. 

Some popular SIOAs that have been recently and successfully used in power systems stability studies include: 

the Particular Swarm Optimization (PSO) and the Bee Colony Optimization (BCO).However, in a swarm 

intelligence load flow, the displacement angles may diverge by very wide margins making it difficult to obtain 

reliable estimates of the maximum load ability or power point. 

In our proposed solution, we provide a stability criterion where the maximum displacement angle 

between the ends of the considered (loaded) transmission line is threshold-constrained to a marginal (small 

enough) value in a swarm-intelligence load-flow solution.This is an important operation that leads to the 

computation of a threshold-constrained Maximum Power Point Index (TMPPI). Thus, our primary objective is 

two-fold: 
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 First, we seek to develop a swarm evolutionary technique/program for solving a power system network 

in the context of a constrained load flow analysis. 

 Second, we develop a threshold technique within the load flow program for identifying the optimal set 

of displacement angles for maximum power point identification in the steady state. 

 

III. MATERIALS AND METHODS 
This section presents the details of the solution technique including the concept of Load Flow solutions in the 

context of Feasible and infeasible regions, Bee Colony Optimization (BCO) and the proposed maximum power 

point identification conditioning strategy. 

 

Concept of Load Flow Solution 

Load flow solution represents an important and primary requirement in the stability analysis of power 

networks. The solution points of a poorly or good conditioned power systems network may be represented as 2-

dimensional spaces where power system variables e.g. load buses or real and reactive powers of generating units 

(see Fig.1). In the figure, solution points are represented by solid (red) dots at different levels of load flow 

solutions [11]. 

 

 
 

Fig. 1.Feasible and infeasible regions in a load flow solution [1] 

 

In the diagrammatic load flow solution shown in Fig.1, there exist feasible and infeasible solution 

zones which represent points or regions of solvable, probably solvable or insolvable load flow models 

respectively. For instance, at point 4 (outermost region) there exists no solution to the load flow model. This 

graphical categorization enhances the process of analysis and makes it far easier to interpret. In a well-

conditioned load flow model/system, there are no violations in load as the levels of operation such as in tripping 

loads are within their specified boundaries; this is even true during contingencies ill conditioned systems are 

represented by the second and third zones as there exists violations in system parameter levels (e.g. during an 

undervoltage or overvoltage state) [1].In general, load flow analysis may give multiple solutions except at the 

Maximum Loadability Point (MLP) where the solution point is one. In practical load flow solutions, there exists 

a functional relationship between the power system network voltage and system loading; this functional 

relationship is depicted in Fig. 2 where the solvable region is shaded in grey. Load flow solutions outside the 

boundary region have no solutions and in this context are defined, as an infeasible zone. It is important to 

emphasize here that “the solvability of load flow equations is related to the loading of the system” [1]. 

 

 

https://www.sciencedirect.com/science/article/pii/S014206151833669X#f0010
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Fig. 2.Load flow solution boundaries and operating zones  [1] 

 

In a typical load flow solution, there are two likely categorizations namely the “Low Voltage Solutions 

(LVS) and High Voltage Solutions (HVS)” [1]. An LVS is typically represented as low voltage profiles with 

unstable equilibrium solution point(s). On the other hand, an HVS is represented by well stabilized power 

system parameters and hence solution points. The HVS and LVS meet at saddle-node bifurcation point (which 

occurs at MLP) as system loading is increased. At this point, further increases in system loading will result in 

the unavailability of the load flow solutions. An LVS may also occur during cascading failures leading to a 

condition termed “Critical Voltage Stability Point (CVSP)” [1]. This situation is depicted in Fig.1. 

 

Bee Colony Optimization 

The “Bee Colony Optimization (BCO)” is a swarm evolutionary computing strategy that utilizes an 

explorative and exploitative behavior of groups of Honey Bees [12], [14-16]. It uses a three-phase foraging 

strategy to find a global optimum point which includes the directed searchforuseful food sources using an 

„employed bee‟ phase, the selection of foods with best qualities using an „onlooker bee‟ phase and the search for 

new food sources using „scout bee‟ phase. Both the employed and onlooker bees perform exploitative functions 

while the scout bee performs exploratory function. An onlooker bee transforms to a scout bee once its 

exploitative duties are over. 

With respect to natural food sourcing, “the employed bees systematically investigate the food sources 

in which the amount of nectar is high. Then, onlooker bees follow the nectar information shared by the 

employed bees to further exploit the food sources with high content. Bees share the information about the 

direction, distance and nectar quality of the food source with the other bees in the colony via the waggle dance, 

a communication mechanism that depicts collective signaling. Scout bees on the other hand, are responsible for 

the randomized discovery of new food locations once the nectar amount is fully consumed in an already 

discovered food source. The location of a food source in the artificial bee colony algorithm represents a possible 

solution to the problem. The nectar quality of the food source is represented by the objective function of the 

solution”[17]. 

In the proposed technique, BCO is used for load flow optimization.The flowchart describing the BCO 

technique is as shown in Fig.3. The basic steps for a BCO program arefollows: 

 

Listing1: BCO Steps 

Step1: A sequences of food sources (real value points) are created randomly. 

Step2: A computation and an update of fitness valuesof these food sources are carried out. 

Step3: A roulette wheel selection of best fitted values and corresponding food sources; any food source not 

selected is discarded. 

Step4: Replacement of the abandoned food sources.  
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Fig. 3.BCO scheme for load flow optimization 

 

The mathematical operations describing the BCO technique is as provided in the following paragraphs [18]: 

 

1) Food sources represented by real valued numbers (at different positions) are initially generated 

randomly using the model as: 

 jjojij pospospospos minmaxmin          (1) 

2) A position update is performed by an enhanced bee by replacing bee fitness information (old nectars) 

with new ones when a new and bettersolution is found. Enhanced bees are updated based on the following 

model: 

 
kjijijij

j

ij pospospospos          (2) 

3) A fitness based probability is used by an onlooker bee to select a fitted solution. This probability is 

defined as: 

 


SN

i i

i

i

fit

fit
p

1

          (3) 

4) A random replacement of abandoned food sources (non-updated food sources) with choice search 

space compliant random food sources after a number of earlier trial searches (called limit trials) have been 

performed. This is defined by the model: 

 

  
 im

jjjij

Djfor

posposrandpospos

,,2,1

,1,0 minmaxmin




     (4) 

Where: 

ijpos = position of food source i in direction j 

jposmin
= lower bound of xi in direction j 

jposmax
= upper bound of xi in direction j 
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SN = food source number 

Dim= dimension of the problem 

  = randomized number between -1 and +1 

o  = randomized number between 0 and +1 

ifit  = fitness value of solution i 

 

Maximum Power Point Identification 

The points of maximum power points typically represent the steady stability or maximum loadability limits of 

the power systems. As the reactance loading is gradually varied, it changes in proportion to the input.For short 

transmission lines, the maximum power transferable between two interconnecting busesis computed as: 
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       (5) 

 

Where: 

sV = sending end (or source generator) voltage 

rV = system voltageat the receiving end 

Z = the impedance of the transmission line 

 = displacement angle of Vs 

 = the impedance angle of the transmission line 

 

From (5) it is obvious that the value of Pmaxwill be unity at the maximum point.  

However, as stated earlier in aforementioned section, this model may fail to give reliable estimates for wide 

variations in displacement angles. Thus, the scheme provided in Listing 2 is used to update (5) as in the 

following paragraph: 

Listing2: Steady-state Stability Index Computation 
Step1: Initialize loadincrement as reactive loading parameter, linedata, as transmission line data, k1and k2as bus 

sites. 

Step2: for all i i.loadincrement do 

Step3:    find Zo (linedata == k1&linedata == k2) //Linedata for bus k1, k2 link 

Step4:  Znabs {linedata(Zo,3) + j.*linedata(Zo,4) + i.loadincrement }// Zn extracts the Resistance and Reactance to 

compute the Impedance 

Step5: Rnlinedata(Zo,3) // Resistance 

Step6: Compute Pmax according to (5) 

Step7: end for 

 

IV. RESULTS AND DISCUSSION 
The results report the loadability performance of the interconnecting Afam (Bus 1) to Alaoji (Bus 2) 

bus. The results are divided into two parts: the first part reports the maximum loadability situation without the 

threshold conditioning and the second part reports the situation with conditioning. Incremental reactance loading 

is performed at values of 0.02 multiplied by a factor of 10 and a BCO-LFA program based on the Listing 1 is 

run within the MATLAB programming environment in order to solve the power network and in addition 

compute the MPPI of the considered interconnecting bus. 

 

Maximum Loadability Point – No thresholding 

In this experiment, the threshold constraints are neglected and the simulation is performed considering 

the aforementioned conditions. The result is as shown in Fig.4. The results indicate a wide variation from the 

expected stability value of about 0 to 1. The computed Pmax is never close to the required stability value of 1.  
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Fig. 4.Steady state stability limit index estimates at 10 different reactance load increments 

(step = 0.02pu) using BCO-LFA- no thresholding 

 

Maximum Loadability Point – Withthresholding 

In this experiment the thresholding constraint is enforced in accordance to Listing 2 to find 

the best fitting displacement angles that gave the maximum power transfer. The result is shown in 

Fig.5 for five different set points of 0.02, 0.03, 0.04, 0.05 and 0.06. The result clearly shows the 

proximity to the expected values of the solution. However, there are some diverging responses of 

the different settings (see Table 1). 

 

 
Fig. 5.Steady state stability limit index estimates at 10 different reactance load increments 

(step = 0.2pu) using BCO-LFA- with thresholding 
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Table 1: Comparative results forbase threshold (th) settings 
th-0.02 th-0.03 th-0.04 th-0.05 th-0.06 

1.01167 1.01167 1.01167 1.04702 1.04999 

1.00610 1.00610 1.00610 1.02541 1.02574 
1.00285 1.00285 1.00285 1.01297 1.01181 

1.00056 1.00056 1.00056 1.00425 1.00205 

0.99878 0.99878 0.99878 0.99753 0.99455 
0.99734 0.99734 0.99734 0.99208 0.98845 

0.99611 0.99611 0.99611 0.98749 0.98333 

0.99505 0.99505 0.99505 0.98353 0.97892 
0.99412 0.99412 0.99412 0.98005 0.97504 

0.99329 0.99329 0.99329 0.97695 0.97158 

 

 
Fig. 6.Steady state stability limit index estimates at 10 different reactance load increments 

(step = 0.2pu) using BCO-LFA- with extended thresholding 

 

As evidenced in Fig. 5, the expected values of the different threshold settings decrease as the reactance 

is increased. In particular, for the first 3 threshold settings, the calculated steady state stability limit (SSSL) 

indices are similar so there is a superimposition of the third setting on the first two (see the Legend of threshold 

setting 3 in Fig. 5). In addition, the point of convergence (MPPI point) for any setting is approximately 1.0 and 

at a reactance of about 0.85p.u. When the reactance is less than 0.90p.u, the SSSL is high for high thresholds. 

For reactance values greater than 0.85p.u, the situation is reversed i.e. the SSSL is low for high thresholds and 

high for low thresholds. It can also be observed that a threshold setting of 0.04 is somewhat in the middle of the 

different responses and may be considered as the least divergent setting. 

In Fig.6 is shown an extended case where the threshold conditioning is increased to a maximum factor 

of 0.10. As in Fig.5, for the first three threshold settings, the calculated indices are similar; in addition the fifth 

and sixth settings (th = 0.06 and th = 0.07) are similar. The result also goes to show that increasing the threshold 

beyond a factor of 0.06 does not lead to any less divergent response as the stability indices keeps on falling 

widely as the reactance loading is increased and at higher thresholds (see Fig.6 and Table 2). In this case, the 

most divergent threshold setting is at 0.10. 
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Table 2: Comparative results for extended threshold (th) settings. 
th-0.02 th-0.03 th-0.04 th-0.05 th-0.06 th-0.07 th-0.08 th-0.09 th-0.10 

1.01167 1.01167 1.01167 1.04702 1.04999 1.04999 1.06637 1.07292 1.08039 

1.00610 1.00610 1.00610 1.02541 1.02574 1.02574 1.03404 1.03734 1.04110 
1.00285 1.00285 1.00285 1.01297 1.01181 1.01181 1.01559 1.01709 1.01879 

1.00056 1.00056 1.00056 1.00425 1.00205 1.00205 1.00270 1.00296 1.00325 

0.99878 0.99878 0.99878 0.99753 0.99455 0.99455 0.99282 0.99214 0.99137 
0.99734 0.99734 0.99734 0.99208 0.98845 0.98845 0.98482 0.98338 0.98176 

0.99611 0.99611 0.99611 0.98749 0.98333 0.98333 0.97810 0.97604 0.97371 

0.99505 0.99505 0.99505 0.98353 0.97892 0.97892 0.97232 0.96972 0.96679 
0.99412 0.99412 0.99412 0.98005 0.97504 0.97504 0.96725 0.96419 0.96072 

0.99329 0.99329 0.99329 0.97695 0.97158 0.97158 0.96273 0.95926 0.95533 

 

V. CONCLUSION 
This paper proposes a swarm intelligence load flow solution called BCO-LFA for the steady state 

stability analysis of the Nigerian 132kV sub-transmission power network (PH-Zone) in the context of the 

maximum loadability or maximum power transferable between the interconnected buses. The results of 

simulations are indicative of the need for threshold conditioning as the standard swarm intelligence solutions 

vary considerably. In future, variants of the proposed swarm intelligence technique and other swarm intelligence 

techniques will be investigated including the development of higher order steady state analytic models.A new 

concept of threshold-constraint has been proposed in this research. This enables the determination of steady 

state stability maximum power point limits within the load flow program from an optimal set of displacement 

angles. 
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