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ABSTRACT : In this paper, we present Euler’s method and fourth-order Runge Kutta Method (RK4) in solving 

initial value problems (IVP) in Ordinary Differential Equations (ODE). These two proposed methods are quite 

efficient and practically well suited for solving these problems. For us to obtain and verify the accuracy of the 

numerical outcomes, we compared the approximate solutions with the exact solution. We found out that there is 

good agreement between the exact and approximate solutions. We also compared the performance and the 

computational effort of the two methods. In addition, to achieve more accuracy in the solutions, the step size 

needs to be very small. Lastly, the error terms have been analyzed for these two methods for different steps sizes 

and compared also by appropriate examples to demonstrate the reliability and efficiency. 
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I. INTRODUCTION 
It is a common truth that Differential Equations are among the most important Mathematical tools used 

in producing models in the engineering, mathematics, physics, aeronautics, elasticity, astronomy, dynamics, 

biology, chemistry, medicine, environmental sciences, social sciences, banking and many other areas [1]. Many 

researchers have studied the nature of Differential Equations and many complicated systems that can be 

described quite precisely with mathematical expressions. A differential equation that has only one independent 

variable is called an Ordinary Differential Equation (ODE), and all derivatives in it are taken with respect to that 

variable. Most often, the variable is time, t; although, some authors use x as the independent variable. The 

differential equation where the unknown function depends on two or more variables is referred to as Partial 

Differential Equations (PDE). Although there are many analytic methods for finding the solution of differential 

equations, there exist quite a number of differential equations that cannot be solved analytically [2]. This means 

that the solution cannot be expressed as the sum of a finite number of elementary functions (polynomials, 

exponentials, trigonometric, and hyperbolic functions). For simple differential equations, it is possible to find 

closed form solutions [3]. But many differential equations arising in applications are so complicated that it is 

sometimes impractical to have solution formulas; even when a solution formula is available, it may involve 

integrals that can be calculated only by using a numerical quadrature formula. In either case, numerical methods 

provide a powerful alternative tool for solving the differential equations under the prescribed initial condition or 

conditions [3].  

There are many types of practical numerical methods for solving initial value problems for ordinary 

differential equations. Historically, the ancestor of all numerical methods in use today was developed by 

Leonhard Euler between 1768 and 1770 [4], improved Euler’s method and Runge Kutta methods described by 

Carl Runge and Martin Kutta in 1895 and 1905 respectively [5]. We have excellent and exhaustive books on this 

can be consulted, such as [1-3, 6-15]. In this work, we shall consider two standard numerical methods Euler and 

Runge Kutta for solving initial value problems of ordinary differential equations. 
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From the literature review, we found that many authors have worked on numerical solutions of initial 

value problems using the Euler method and the Runge Kutta method. Many researchers have attempted to solve 

initial value problems to get a higher accurate solution by applying numerous methods, such as the Euler 

method and the Runge Kutta method, and many other methods. In [16], the authors studied on some numerical 

methods for solving initial value problems in ordinary differential equations and also in [17],the authors 

presented Euler’s method for solving initial value problems in ordinary differential equations. Islam 

[18]discussed accurate solutions of initial value problems for ordinary differential equations with the fourth 

order Runge Kutta method, while [19] discussed accuracy analysis of numerical solutions of initial value 

problem for ordinary differential equations. [20-24]also studied numerical solutions of initial value problems in 

ordinary differential equations using different numerical techniques. In this paper, Euler’s method and fourth 

order Runge Kutta methods are applied without discretization, transformation or restrictive assumptions for 

solving initial value problems in ordinary differential equations. 

Euler’s method historically is the first numerical technique. It is also called the tangent line method. It 

is the simplest to understand and geometrically easy to articulate. The method needs to take a smaller value of h, 

because of this restriction the method is unsuitable for practical use. If h is not small enough, this method is too 

inaccurate. A rigorous and elaborate numerical technique is the Runge Kutta method. This technique is the most 

widely used one since it gives starting values and is particularly suitable when the compilation of higher 

derivatives is complicated [19].  The numerical results are very encouraging.  

Finally, we used two examples to illustrate the proposed formulae. The results obtained from each of 

the numerical examples show that the convergence and error analysis which we presented clearly illustrate the 

efficiency of the methods. In general, each of the numerical methods has its own advantages and disadvantages 

to use. Euler’s method requires less time consumption, it is simple and single step. Also, in Euler’s method 
dy

dx
 

changes rapidly over an interval, this gives a poor approximation at the beginning of the process in comparison 

with the average value over the interval. So the calculated value of y in this method occurs much error than the 

exact value, which reasonably increased in the succeeding intervals, then the final value of y differs on a large 

scale than the exact value. 

In fact, Euler’s method needs to take a smaller value of h, and as such, the method is suitable for 

practical use. If h is not too small enough, this method is inaccurate. But, the Runge Kutta method has the 

advantage of being the most widely used numerical weapon, since it gives reliable values, starting values and 

particularly suitable when the computation of higher order derivatives are complicated. It gives a greater 

accuracy than the Euler’s method and also possesses the advantage of requiring only the function values at some 

selected points on the sub-intervals. Moreover, it is easy to change step-length for special procedures necessary 

for starting, which minimize the computing time. The Runge Kutta method is very useful and also very 

laborious. It is a lengthy procedure and needs to check back the values computed earlier. The inherent error in 

the Runge Kutta method is hard to be estimated and the method has its limitation in solving certain types of 

differential equations only and the step-length is the key factor of the computation. 

Lastly, this paper is structured as follows: Section 2: problem formulations; Section 3: numerical examples; 

Section 4: discussion of results; and the last section, the conclusion of the paper. 

 

II. PROBLEM FORMULATION 
In this section, we consider two numerical methods for finding the approximate solutions of the initial value 

problem (IVP) of the first order ordinary differential equation of the form 

y′ = f x, y ,   x ∈  a, b ,               y a = y0     (2.1) 

Where y′ =
dy

dx
 and f(x, y) is a given function and y(x) is the solution of the equation (2.1). 

Theorem 2.1  [1] 

Let f(x, y) be defined and continuous for all points (x, y) in the region D defined by a ≤ x ≤ b, −∞ < y < ∞, a 

and b finite, and let there exist a constant L such that, for every x, y, y∗, such that (x, y) and (x, y∗) are both in D, 

|f x, y − f(x, y∗) ≤ L(y − y∗)|.        (2.2) 

Then, if y0 is any given number, there exists a unique solution y(x) of the initial value problem (2.1), where 

y(x) is continuous and differentiable for all (x, y)in D. 

In this paper, we determine the solution of this equation in the range a ≤ x ≤ b, where a and b are finite, and we 

assume that f satisfies the Lipchitz conditions stated in Theorem 2.1.  

 A continuous approximation to the solution y(x) will not be obtained; instead, an approximation to y 

will be generated at various values. Called mesh points, in the interval a ≤ x ≤ b. Numerical techniques for the 

solution of (2.1) is to obtain approximations to the values of the solution corresponding to the sequence of points 
 xn  defined by xn = a + nh,   n = 0, 1, 2, 3, ….The parameter h is called the step size. The numerical solution of 

(1) is given by a set of points { xn , yn : n = 0, 1, 2, 3, … , N} and each point (xn , yn ) is an approximation to the 

corresponding point (xn , y(xn)) on the solution curve. 
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2.1.1. Euler’s Method 

 Euler’s method is also called the tangent method and it is the simplest one-step method. It is the most 

basic example method for numerical integration of ordinary differential equations. The Euler method is named 

after Leonhard Euler, who treated it in his book Institutiones Calculi Integralis published 1768-1870, 

republished in his collected works (Euler 1913) [2]. The Euler method is subdivided into three namely: 

 Forward Euler’s method 

 Improved Euler’s method 

 Backward Euler’s method 

In this paper, we shall only consider the forward Euler’s method. 

1.1.1. Derivative of Euler’s Method 

Let us consider the initial value problem  

y′ =
dy

dx
= f x, y ;    y x0 = y0       (2.3) 

We know that if the function f is continuous in the open interval a < x < bcontaining x = x0, there exists a 

unique solution of the equation (2.3) as  

yn = y xn ; n = 1, 2, 3, …        (2.4) 

The solution is valid for throughout the interval a < x < b. We wish to determine the approximate value of yn  

of the exact solution y = y(x) in the given interval for the value x = xn  = x0 = nh;  n = 0, 1, 2, ….Now, the 

equation of the tangent line through (x0, y0) of (3) is 

y x = yn + f(x0, y0) x − x0 , 
Setting x = x1, we have 

y1 = y0 + hf(x0, y0), 
Similarly, we get the next approximation as  

y2 = y1 + hf x1, y1 , atx = x2 

y3 = y2 + hf x2, y2 , atx = x3 

In general, the (n + 1)th  approximation at x = xn+1 is given by  

yn+1 = yn + hf xn , yn ; n = 0, 1, 2, 3, …      (2.5) 

 

1.1.2. Truncation Error for Euler’s method 

 Numerical stability and errors are well discussed in depth in [10, 12-14]. There are two types of errors 

in the numerical solution of ODEs: Round-off errors and truncation errors. Round-off error occurs because 

computers use a fixed number of bits and hence fixed the number of binary digits to represent numbers. In a 

numerical computation round-off errors are introduced at every stage of computation. Hence though an 

individual round-off error due to a given number at a given numerical step may be small but the cumulative 

effect can be significant. When the number of bits required for representing a number is less than the number is 

usually rounded to fit the available number of bits. This is done either by chopping or by symmetric rounding. 

Also, truncation errorarises when you use an approximation in place of an exact expression in a mathematical 

procedure. To estimate the truncation error for the Euler method, we first recall Taylor’s Series approximation 

of a function. 

Essentially, Taylor’s Theorem State, that, any smooth function can be approximated by a polynomial. The 

Taylor Series Expansion of f(x) at a is  

f x = f a + f ′ a  x − a +
f ′′ a  x − a 2

2!
+

f ′′′ a  x − a 3

3!
+ ⋯ 

=  
f  n  a  x − a n

n!

∞

n=0

                                                                                           (2.6) 

We note that computers are discrete, finite machine. They can’t perform infinite calculation like these, so we 

have to cut the calculation somewhere. This result in truncation error (we truncate the expression). When we 

truncate the Taylor’s Series expression to n terms, there’s error left over, and we can include a remainder tern 

Rn  to keep the = sign exact. 

f x = f a + f ′ a  x − a +
f ′′ a  x−a 2

2!
+

f ′′′ a  x−a 3

3!
+ ⋯ +

f n  a  x−a n

n!
+ Rn   (2.7) 

Where Rn =
f(n +1) ζ .hn +1

 n+1 !
,    andx ≤ β ≤ a. 

In (2.7), let x = xn+1 and x = a, in which  

y xn+1 = y xn + hy′ xn +
1

2
h2y′′(βn )     (2.8) 

Since y satisfies the ordinary differential equation (3), which can be written as 

y′ xn = f(xn , y xn )       (2.9) 

Hence,’ 
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𝑦 𝑥𝑛+1 = 𝑦 𝑥𝑛 + ℎ𝑓 𝑥𝑛 , 𝑦(𝑥𝑛) +
1

2
ℎ2𝑦′′(𝛽𝑛)         (2.10) 

By considering (2.10) to Euler’s approximation in (2.5), it is very clear that Euler’s method is obtained by 

omitting the remainder term 
1

2
ℎ2𝑦′′(𝛽𝑛) in the Taylor’s expansion of 𝑦(𝑥𝑛+1) at the point 𝑥𝑛 . Therefore, the 

truncation 𝑇𝑛+1 error is given by 

𝑇𝑛+1 = 𝑦 𝑥𝑛+1 − 𝑦 𝑥𝑛 = ℎ𝑦′(𝑥𝑛) +
1

2
ℎ2𝑦′′(𝛽𝑛)    (2.11) 

Thus, the truncation error is of 𝛰 ℎ2 : ℎ ⟶ 0, i.e. the truncation error is proportional to ℎ2. By diminishing the 

size h, the error can be minimized. If 𝑀 is positive constant such as  𝑦′′(𝑥) <
𝑀

2
 

 𝑇𝑛+1 <
𝑀ℎ2

2
      (2.12) 

Here the right hand size is an upper bound of the truncation error. The absolute value of 𝑇𝑛+1 is taken for the 

magnitude of the error only. 

 

1.2. Runge Kutta Method 

 Runge Kutta method is a technique for approximating the solution of ODEs. This technique was 

developed by two German Mathematicians, Karl Runge by 1894 and extended by Wilhelm Kutta a few years 

later. The technique is popular because it is efficient, quite accurate, stable, and used in most computer 

programmes for differential equations. The Runge Kutta methods are distinguished by their order in the sense 

that they agree with Taylor’s series solution up to terms of ℎ𝑟 , where 𝑟 is the order of the method. It does not 

demand prior computational of higher derivatives of 𝑦(𝑥) as in Taylor’s series method. The under-listed are the 

order of the Runge Kutta Method: 

 Runge Kutta Method of order one is called Euler’s Method, 

 Runge Kutta Method of order two is the same as modified Euler’s or Heun’s Method, 

 The fourth order Runge Kutta Method is called Classical Runge Kutta Method. 

In this paper, we shall only focus on the fourth order Runge Kutta Method.  

1.2.1. The Derivative of the Fourth Order Runge Kutta method 

We shall derive the formula of fourth order Runge Kutta method to obtain an approximate numerical solution of 

the first order differential equation 𝑦’ = 𝑓(𝑥, 𝑦) with the initial condition  𝑦 𝑥0 = 𝑦0   and it is assumed that is 

not a singular point. 

Let us take the first order differential equation  

𝑦′ =
𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦 ;    𝑦 𝑥0 = 𝑦0      (2.13) 

Let ℎ = 𝑥1 − 𝑥0, from Taylor’s series expansion, we have 

𝑦 𝑥 + ℎ = 𝑦 𝑥 + ℎ𝑦′ 𝑥 +
ℎ2

2!
𝑦′′ 𝑥 +

ℎ3

3!
𝑦′′′ 𝑥 + ⋯ 

or𝑦 𝑥 + ℎ − 𝑦 𝑥 = ℎ𝑦′ 𝑥 +
ℎ2

2!
𝑦′′ 𝑥 +

ℎ3

3!
𝑦′′′ 𝑥 + ⋯    (2.14) 

 Differentiating (2.1) partially with respect to variables  𝑥&𝑦 , we get 

𝑦′ = 𝑓 𝑥, 𝑦 = 𝑓 

𝑦′′ = 𝑓 ′ 𝑥, 𝑦 = 𝑓𝑥 + 𝑓𝑓𝑦   

𝑦′′ = 𝑓 ′′ 𝑥, 𝑦 = 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦
2
 

𝑦𝑖𝑣 = 𝑓 ′′′ 𝑥, 𝑦 = (𝑓𝑥𝑥𝑥 + 3𝑓𝑓𝑥𝑥𝑦 + 𝑓2𝑓𝑥𝑦𝑦 + 𝑓3𝑓𝑦𝑦𝑦 + 𝑓𝑦 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + 3 𝑓𝑥 + 𝑓𝑓𝑦  𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  

+ 𝑓𝑦
2(𝑓𝑥 + 𝑓𝑓𝑦) 

Let us introduce the following convenient form 

𝐹1 = 𝑓𝑥 + 𝑓𝑓𝑦 ,      𝐹2 = 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑥𝑦 ,  𝐹3 = 𝑓𝑥𝑥𝑥 + 3𝑓𝑓𝑥𝑥𝑦 + 𝑓2𝑓𝑥𝑥𝑦 + 𝑓2𝑓𝑦𝑦𝑦  

Then we get as 

𝑦′ = 𝑓,  𝑦′′ = 𝐹1,  𝑦′′′ = 𝐹2 + 𝑓𝑦𝐹1 

𝑦𝑖4 = 𝐹3 + 𝑓𝑦𝐹2 + 3𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝐹1𝑓𝑦
2
 

If we now put them into (2.14), we obtain 

𝑦 𝑥 + ℎ − 𝑦 𝑥 = ℎ𝑓 +
ℎ2

2!
𝐹1 +

ℎ3

3!
 𝐹1 + 𝑓𝑦𝐹1 

+
ℎ4

4!
 𝐹3 + 𝑓𝑦𝐹2 + 3𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑥𝑦  + 𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝐹1𝑓𝑦

2               (2.15) 

Now, we shall develop a fourth-order formula. In order to develop the Runge Kutta formula to find the co-

efficient 𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑛&𝑝 from below 

𝑘1 = ℎ𝑓 𝑥, 𝑦 = ℎ𝑓,   

𝑘2 = ℎ𝑓 𝑥 + 𝑚ℎ, 𝑦 + 𝑚𝑘1  
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𝑘3 = ℎ𝑓(𝑥 + 𝑛ℎ, 𝑦 + 𝑛𝑘2) 

𝑘4 = ℎ𝑓(𝑥 + 𝑝ℎ, 𝑦 + 𝑝𝑘3)          (2.16) 

Our aim then is ∆𝑦 will be expressed in the form 

∆𝑦 = 𝑦 𝑥, 𝑦 − 𝑦 𝑥 = 𝑎𝑘1 + 𝑏𝑘2 + 𝑐𝑘3 + 𝑑𝑘4        (2.17) 

At this stage, we may use Taylor’s series expansion for two variables as the followings 

𝑘1 = ℎ𝑓,    

𝑘2 = ℎ[𝑓 + 𝑚ℎ𝐹1 +
1

2
𝑚2ℎ2𝐹2 +

1

6
𝑚3ℎ3𝐹3 + ⋯⋯⋯  

𝑘3 = ℎ[𝑓 + 𝑛ℎ𝐹1 +
1

2
ℎ2 𝑛2𝐹2 + 2𝑚𝑛𝑓𝑦𝐹1  

+
1

6
ℎ3 𝑛3𝐹3 + 3𝑚2𝑛𝑓𝑦𝐹2 + 6𝑚𝑛2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦   + ⋯⋯⋯ ]  

𝑘4 = ℎ[𝑓 + 𝑝ℎ𝐹1 +
1

2
ℎ2 𝑝2𝐹2 + 2𝑛𝑝𝑓𝑦𝐹1  

+
1

6
ℎ3 𝑝3𝐹3 + 3𝑛2𝑝𝑓𝑦𝐹2 + 6𝑛𝑝2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 6𝑚𝑛𝑝𝐹1𝑓𝑦

2 + ⋯⋯⋯ ] 

Substituting the values of 𝑘1 , 𝑘2, 𝑘3&𝑘4 in (2.17), we obtain 

𝑦 𝑥 + ℎ − 𝑦 𝑥 = 𝑎ℎ𝑓 + 𝑏ℎ[𝑓 + 𝑚ℎ𝐹1 +
1

2
𝑚2ℎ2𝐹2 +

1

6
𝑚3ℎ3𝐹3 + ⋯⋯⋯ +  

𝑐ℎ[𝑓 + 𝑛ℎ𝐹1 +
1

2
ℎ2 𝑛2𝐹2 + 2𝑚𝑛𝑓𝑦𝐹1 +

1

6
ℎ3 𝑛3𝐹3 + 3𝑚2𝑛𝑓𝑦𝐹2 + 6𝑚𝑛2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦   + ⋯⋯⋯ ] 

+𝑑ℎ[𝑓 + 𝑝ℎ𝐹1 +
1

2
ℎ2 𝑝2𝐹2 + 2𝑛𝑝𝑓𝑦𝐹1   

+
1

6
ℎ3 𝑝3𝐹3 + 3𝑛2𝑝𝑓𝑦𝐹2 + 6𝑛𝑝2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 6𝑚𝑛𝑝𝐹1𝑓𝑦

2 + ⋯⋯⋯ ] 

This can be represented as  

𝑦 𝑥 + ℎ − 𝑦 𝑥 =  𝑎 + 𝑏 + 𝑐 + 𝑑 ℎ𝑓 +  𝑏𝑚 + 𝑐𝑛 + 𝑑𝑝 ℎ2𝐹2 + 

 𝑏𝑚2 + 𝑐𝑛2 + 𝑑𝑝2 
ℎ3𝐹1

2
+ (𝑏𝑚3 + 𝑐𝑛3 + 𝑑𝑝3)

ℎ4𝐹2

6
+ 

 𝑐𝑚𝑛 + 𝑑𝑛𝑝 ℎ3𝑓𝑦𝐹1 +  𝑐𝑚2𝑛 + 𝑑𝑛2𝑝 ℎ4𝑓𝑦𝐹2 + 

(𝑐𝑚𝑛2 + 𝑑𝑛𝑝2)ℎ4𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝑑𝑚𝑛𝑝ℎ4𝑓𝑦
2𝐹1 + ⋯⋯⋯    (2.18) 

When we compare (2.15) and (2.18), we get 

𝑎 + 𝑏 + 𝑐 + 𝑑 = 1, 𝑏𝑚 + 𝑐𝑛 + 𝑑𝑝 =
1

2
,  𝑏𝑚2 + 𝑐𝑛2 + 𝑑𝑝2 =

1

3
,  𝑏𝑚3 + 𝑐𝑛3 + 𝑑𝑝3 =

1

4
, 

𝑐𝑚𝑛 + 𝑑𝑛𝑝 =
1

6
,  𝑐𝑚2𝑛 + 𝑑𝑛2𝑝 =

1

12
,  𝑐𝑚𝑛2 + 𝑑𝑛𝑝2 =

1

8
,  𝑑𝑚𝑛𝑝 =

1

24
 

By solving the above equations, we obtain 

𝑚 = 𝑛 =
1

2
, 𝑝 = 1, 𝑎 = 𝑑 =

1

6
,     𝑏 = 𝑐 =

1

3
  

Now we put these values in (2.16) and (2.17), we get the fourth-order Runge Kutta formulae as follows: 

𝑘1 = ℎ𝑓 𝑥, 𝑦 = ℎ𝑓,  𝑘2 = ℎ𝑓  𝑥 +
ℎ

2
, 𝑦 +

𝑘1

2
 , 𝑘3 = ℎ𝑓(𝑥 +

ℎ

2
, 𝑦 +

𝑘2

2
), 𝑘4 = ℎ𝑓 𝑥 + ℎ, 𝑦 + 𝑘3   

∆𝑦 = 𝑦(𝑥 + ℎ) − 𝑦 𝑥 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

When the initial values are  𝑥0, 𝑦0 , then, the first increment in y is computed from the given formulae below 

𝑘1 = ℎ𝑓 𝑥0 , 𝑦0 = ℎ𝑓, 𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1

2
 , 𝑘3 = ℎ𝑓(𝑥0 +

ℎ

2
, 𝑦0 +

𝑘2

2
),   

𝑘4 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 + 𝑘3  

∆𝑦 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

or,  𝑦 𝑥0 + ℎ = 𝑦 𝑥0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

or,  𝑦1 = 𝑦0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

Hence, the general fourth-order Runge Kutta formulae for the  𝑛𝑡ℎ  interval is given by the followings: 

𝑘1 = ℎ𝑓 𝑥𝑛 , 𝑦𝑛 = ℎ𝑓,   𝑘2 = ℎ𝑓  𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
 ,    𝑘3 = ℎ𝑓(𝑥𝑛 +

ℎ

2
, 𝑦𝑛 +

𝑘2

2
),  

𝑘4 = ℎ𝑓 𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3    

𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)     (2.19) 

 

1.2.2. Truncation Error in Runge Kutta Method  

 One of the serious drawbacks of Runge Kutta method is error estimation [17]. The direct method of 

estimating the error of higher order Runge Kutta formulae are very complicated and time consuming. Moreover, 

it is possible to computing the errors in laborious ways, are very hard, involving higher order partial derivatives. 
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We shall first estimate the error in second-order Runge Kutta formulae and the errors for higher orders can be 

obtained by generalizing the computed error. We get the second order Runge Kutta formulae as follows: 

𝑦𝑛+1 = 𝑦𝑛 +
1

2
(𝑘1 + 𝑘2) 

𝑘1 = ℎ𝑓 𝑥𝑛 , 𝑦𝑛  

𝑘2 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘1) (2.20) 

Now, the truncated error is given by the following formula 

𝐸𝑟 = 𝑦 𝑥𝑛+1 − 𝑦𝑛+1     (2.21) 

Now expanding 𝑦(𝑥𝑛+1) by Taylor’s series expansion, we get 

𝑦 𝑥𝑛+1 = 𝑦 𝑥𝑛 + ℎ = 𝑦 𝑥𝑛 + ℎ𝑦′ 𝑥𝑛 +
ℎ2

2!
𝑦′′ 𝑥𝑛 +

ℎ3

3!
𝑦′′′ 𝑥𝑛 +

ℎ4

4!
𝑦′′′ 𝑥𝑛 ⋯⋯⋯ 

= 𝑦𝑛 + ℎ𝑓 +
ℎ2

2!
(𝑓𝑥 + 𝑓𝑓𝑦) +

ℎ3

3!
(𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2) + 𝑜(ℎ4)   (2.22) 

We may use Taylor’s series expansion in (2.20), we get 

𝑘1 = ℎ𝑓 

𝑘2 = ℎ  𝑓 + ℎ 𝑓𝑥 + 𝑓𝑓𝑦 +
ℎ2

2
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯⋯⋯  

= ℎ𝑓 + ℎ2 𝑓𝑥 + 𝑓𝑓𝑦 +
ℎ3

2
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯⋯⋯ 

𝑦𝑛+1 = 𝑦𝑛 +
1

2
 ℎ𝑓 + ℎ𝑓 + ℎ2 𝑓𝑥 + 𝑓𝑓𝑦 +

ℎ3

2
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯⋯⋯  

𝑜𝑟𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 +
ℎ2

2
 𝑓𝑥 + 𝑓𝑓𝑦 +

ℎ3

4
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  +  (2.23) 

Now, substituting (2.22) and (2.23) in (2.21), we get 

𝐸𝑟 =  𝑦𝑛 + ℎ𝑓 +
ℎ2

2
 𝑓𝑥 + 𝑓𝑓𝑦 +

ℎ3

6
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2 + ⋯  − 

 𝑦𝑛 + ℎ𝑓 +
ℎ2

2
 𝑓𝑥 + 𝑓𝑓𝑦 +

ℎ3

4
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯   

=  
ℎ3

6
−

ℎ2

4
  𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  +

ℎ3

6
(𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2 + ⋯ 

= −
ℎ3

12
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  +

ℎ3

6
 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2 + ⋯ 

= −
ℎ3

12
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + 2𝑓𝑦 − 2𝑓𝑓𝑦

2 ⋯     (2.24) 

Hence, (2.24) shows that the truncation error of the second-order Runge Kutta formula is of order ℎ3. Similarly, 

we can show that the truncation errors in the third-order, fourth-order Runge Kutta formula are of ℎ4&ℎ5 

respectively.  

Hence, by applying Taylor’s series expansion as above manner, we get the truncation error of the n
th

 -order 

Runge Kutta formulae of order ℎ𝑛+1 as follows 

𝐸𝑟 = 𝑐ℎ𝑛+1𝑦𝑛+1     (2.25) 

 

III. NUMERICAL EXAMPLES 
 In this section, we present two numerical examples prove which of the two numerical methods 

converge faster to the analytical solutions. The numerical results and errors are computed and the findings are 

represented graphically. The computations were done using MATLAB programing language. The convergence 

of the  IVP is calculated 𝑒𝑛 = |𝑦(𝑥𝑛) − 𝑦𝑛 | < 𝛿 where 𝑦(𝑥𝑛) represents the exact solution and 𝛿 depends on 

the problem which varies from 10−6 while the absolute error is computed by |𝑦(𝑥𝑛) − 𝑦𝑛 |. 
Example 1: We consider the initial value problem 𝑦′ = 2𝑦 + 4 − 𝑥, 𝑦 0 = 0.5, on the interval 0 ≤ 𝑥 ≤ 1. 

The exact solution of the given problem is given by 𝑦 𝑥 = −
7

4
+

1

2
𝑥 +

9

4
𝑒2𝑥 . The approximate results and the 

absolute errors are derived and shown in Tables 1(a)–(d) while the graphs of the numerical solutions are 

displayed in Figures 1-7.     

Table 1. (a) Numerical approximations and absolutes errors for step size ℎ = 0.1; (b) Numerical approximations 

and absolutes errors for step size ℎ = 0.05; (c) Numerical approximations and absolutes errors for step sizeℎ =
0.025; (d) Numerical approximations and absolutes errors for step size ℎ = 0.0125. 
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(a) 
𝒏 𝒙𝒏 Exact Solution 𝒚𝒏 Runge Kutta Method 𝒉 = 𝟎. 𝟏 Euler Method 𝒉 = 𝟎. 𝟏 

 𝒚 𝒙𝒏  𝒆𝒓𝒓𝒐𝒓𝒔 𝒚 𝒙𝒏  𝒆𝒓𝒓𝒐𝒓𝒔 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 1.0481562059 1.0481500000 0.0000062059 1.0000000000 0.0481562059 

2 0.2 1.7066055697 1.7065904100 0.0000151597 1.5900000000 0.1166055697 

3 0.3 2.4997673009 2.4997395268 0.0000277741 2.2880000000 0.2117673009 

4 0.4 3.4574670891 3.4574218580 0.0000452311 3.1156000000 0.3418670891 

5 0.5 4.6161341140 4.6160650574 0.0000690567 4.0987200000 0.5174141140 

6 0.6 6.0202630762 6.0201618611 0.0001012151 5.2684640000 0.7517990762 

7 0.7 7.7241999254 7.7240556971 0.0001442283 6.6621568000 1.0620431254 

8 0.8 9.7943229549 9.7941216284 0.0002013264 8.3245881600 1.4697347949 

9 0.9 12.3117067949 12.3114301570 0.0002766380 10.3095057920 2.0022010029 

10 1.0 15.3753762226 15.3750007937 0.0003754289 12.6814069504 2.6939692722 

(b) 
𝒏 𝒙𝒏 Exact Solution 

𝒚𝒏 

Runge Kutta Method 𝒉 = 𝟎. 𝟎𝟓 Euler Method 𝒉 = 𝟎. 𝟎𝟓 

 𝒚 𝒙𝒏  𝒆𝒓𝒓𝒐𝒓𝒔 𝒚 𝒙𝒏  𝒆𝒓𝒓𝒐𝒓𝒔 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 1.0481562059 1.0481557844 0.0000004214 1.0225000000 0.0256562059 

2 0.2 1.7066055697 1.7066045402 0.0000010295 1.6442250000 0.0623805697 

3 0.3 2.4997673009 2.4997654147 0.0000018862 2.3860122500 0.1137550509 

4 0.4 3.4574670891 3.4574640174 0.0000030717 3.2730748225 0.1843922666 

5 0.5 4.6161341140 4.6161294243 0.0000046897 4.3359205352 0.2802135788 

6 0.6 6.0202630762 6.0202562025 0.0000068737 5.6114638476 0.4087992285 

7 0.7 7.7241999254 7.7241901306 0.0000097948 7.1443712556 0.5798286698 

8 0.8 9.7943229549 9.7943092825 0.0000136724 8.9886892193 0.8056337356 

9 0.9 12.3117067949 12.3116880080 0.0000187869 11.2098139554 1.1018928396 

10 1.0 15.3753762226 15.3753507266 0.0000254960 13.8868748860 1.4885013370 

(c) 
𝒏 𝒙𝒏 Exact Solution 𝒚𝒏 Runge Kutta Method 𝒉 = 𝟎. 𝟎𝟐𝟓 Euler Method 𝒉 = 𝟎. 𝟎𝟐𝟓 

 𝒚 𝒙𝒏  𝒆𝒓𝒓𝒐𝒓𝒔 𝒚 𝒙𝒏  𝒆𝒓𝒓𝒐𝒓𝒔 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 1.0481562059 1.0481561784 0.0000000275 1.0348890625 0.0132671434 

2 0.2 1.7066055697 1.7066055026 0.0000000671 1.6742747485 0.0323308212 

3 0.3 2.4997673009 2.4997671780 0.0000001229 2.4406767335 0.0590905673 

4 0.4 3.4574670891 3.4574668890 0.0000002001 3.3614678239 0.0959992652 

5 0.5 4.6161341140 4.6161338085 0.0000003056 4.4699198366 0.1462142775 

6 0.6 6.0202630762 4.6161338085 0.0000004478 5.8064748734 0.2137882028 

7 0.7 7.7241999254 7.7241992872 0.0000006382 7.4202905615 0.3039093639 

8 0.8 9.7943229549 9.7943220641 0.0000008908 9.3711183044 0.4232046505 

9 0.9 12.3117067949 12.3117055709 0.0000012240 11.7315863059 0.5801204890 

10 1.0 15.3753762226 15.3753745614 0.0000016612 14.5899746023 0.7854016203 

(d) 
𝐧 𝐱𝐧 Exact Solution 

𝐲𝐧 

Runge Kutta Method 𝐡 = 𝟎. 𝟎𝟏𝟐𝟓 Euler Method 𝐡 = 𝟎. 𝟎𝟏𝟐𝟓 

 𝐲 𝐱𝐧  𝐞𝐫𝐫𝐨𝐫𝐬 𝐲 𝐱𝐧  𝐞𝐫𝐫𝐨𝐫𝐬 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 1.0481562059 1.0481562041 0.0000000018 1.0414065194 0.0067496865 

2 0.2 1.7066055697 1.7066055654 0.0000000043 1.6901376465 0.0164679232 

3 0.3 2.4997673009 2.4997672930 0.0000000078 2.4696333866 0.0301339143 

4 0.4 3.4574670891 3.4574670763 0.0000000128 3.4084531100 0.0490139791 

5 0.5 4.6161341140 4.6161340945 0.0000000195 4.5413936364 0.0747404777 

6 0.6 6.0202630762 6.0202630476 0.0000000286 5.9108515116 0.1094115646 

7 0.7 7.7241999254 7.7241998847 0.0000000407 7.5684828098 0.1557171156 

8 0.8 9.7943229549 9.7943228980 0.0000000568 9.5772254418 0.2170975131 

9 0.9 12.3117067949 12.3117067168 0.0000000781 12.0137631400 0.2979436549 

10 1.0 15.3753762226 15.3753761166 0.0000001060 14.9715275865 0.4038486361 
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Figure 1: Exact Numerical Solution 

 

 
Figure 2: Numerical Approximation for step size h=0.1 

 

 
Figure 3: Numerical Approximation for step size h=0.05 
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Figure 4: Numerical Approximation for step size h=0.025 

 

 
Figure 5: Numerical Approximation for step size h=0.0125 

 

 
Figure 6: Error for different step size using RK4 method 
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Figure 7: Error for different step size using Euler’s method 

 

Example 2: We consider the initial value problem y′ = y − x2 + 1, y 0 = 0.5, on the interval0 ≤ x ≤ 2. The 

exact solution of the given problem is given by y x = x2 + 2x + 1 − 0.5ex . The approximate results and the 

absolute errors are obtained and shown in Tables 2(a)-(d) while the graphs of the numerical solutions are 

displayed in Figures 8-14. 

 

Table 2. (a) Numerical approximations and absolutes errors for step size h = 0.1; (b) Numerical approximations 

and absolutes errors for step size h = 0.05; (c) Numerical approximations and absolutes errors for step size 

h = 0.025, (d) Numerical approximations and absolutes errors for step size h = 0.0125. 

(a) 
𝐧 𝐱𝐧 Exact Solution 

𝐲𝐧 

Runge Kutta Method 𝐡 = 𝟎. 𝟏 Euler Method 𝐡 = 𝟎. 𝟏 

 𝐲 𝐱𝐧  𝐞𝐫𝐫𝐨𝐫𝐬 𝐲 𝐱𝐧  𝐞𝐫𝐫𝐨𝐫𝐬 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 0.6574145401 0.6574143750 0.0000001660 0.6500000000 0.0074145410 

2 0.2 0.8292986209 0.8292982760 0.0000003449 0.8140000000 0.0152986209 

3 0.3 1.0150705962 1.0150700584 0.0000005378 0.9914000000 0.0236705962 

4 0.4 1.2140876511 1.2140869057 0.0000007455 1.1815400000 0.0325476512 

5 0.5 1.4256393646 1.4256383956 0.0000009690 1.3836940000 0.0419453646 

6 0.6 1.6489405998 1.6489393904 0.0000012094 1.5970634000 0.0518771998 

7 0.7 1.8831236463 1.8831221786 0.0000014677 1.8207697400 0.0623539063 

8 0.8 2.1272295358 2.1272277907 0.0000017451 2.0538467140 0.0733828218 

9 0.9 2.3801984444 2.3801964018 0.0000020426 2.2952313854 0.0849670590 

10 1.0 2.6408590858 2.6408567242 0.0000023616 2.5437545239 0.0971045619 

(b) 
𝐧 𝐱𝐧 Exact Solution 𝐲𝐧 Runge Kutta Method 𝐡 = 𝟎. 𝟎𝟓 Euler Method 𝐡 = 𝟎. 𝟎𝟓 

 𝐲 𝐱𝐧  𝐞𝐫𝐫𝐨𝐫𝐬 𝐲 𝐱𝐧  𝐞𝐫𝐫𝐨𝐫𝐬 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 0.6574145401 0.6574145304 0.0000000106 0.6536250000 0.0037895410 

2 0.2 0.8292986209 0.8292985989 0.0000000220 0.8214715625 0.0078270584 

3 0.3 1.0150705962 1.0150705619 0.0000000343 1.0029473977 0.0121231986 

4 0.4 1.2140876511 1.2140876036 0.0000000475 1.1973995059 0.0166881453 

5 0.5 1.4256393646 1.4256393029 0.0000000618 1.4041079553 0.0215314094 

6 0.6 1.6489405998 1.6489405227 0.0000000771 1.6222790207 0.0266615791 

7 0.7 1.8831236463 1.8831235527 0.0000000935 1.8510376203 0.0320860260 

8 0.8 2.1272295358 2.1272294246 0.0000001111 2.0894189764 0.0378105594 

9 0.9 2.3801984444 2.3801983144 0.0000001300 2.3363594215 0.0438390230 

10 1.0 2.6408590858 2.6408589355 0.0000001503 2.5906862622 0.0501728236 

(c) 

n xn  Exact Solution yn  Runge Kutta Method h = 0.025 Euler Method h = 0.025 

 y xn  𝐞𝐫𝐫𝐨𝐫𝐬 y xn  𝐞𝐫𝐫𝐨𝐫𝐬 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 0.6574145401 0.6574145403 0.0000000007 0.6554982324 0.0019163085 

2 0.2 0.8292986209 0.8292986195 0.0000000014 0.8253384788 0.0039601421 

3 0.3 1.0150705962 1.0150705940 0.0000000022 1.0089333673 0.0061372289 
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4 0.4 1.2140876511 1.2140876482 0.0000000030 1.2056345492 0.0084531020 

5 0.5 1.4256393646 1.4256393608 0.0000000039 1.4147263688 0.0109129958 

6 0.6 1.6489405998 1.6489405949 0.0000000049 1.6354188765 0.0135217233 

7 0.7 1.8831236463 1.8831236404 0.0000000059 1.8668401152 0.0162835311 

8 0.8 2.1272295358 2.1272295287 0.0000000070 2.1080276077 0.0192019281 

9 0.9 2.3801984444 2.3801984362 0.0000000082 2.3579189592 0.0222794852 

10 1.0 2.6408590858 2.6408590763 0.0000000095 2.6153414848 0.0255176010 

(d) 
n xn  Exact Solution yn  Runge Kutta Method h = 0.0125 Euler Method h = 0.025 

 y xn  𝐞𝐫𝐫𝐨𝐫𝐬 y xn  𝐞𝐫𝐫𝐨𝐫𝐬 

0 0.0 0.5000000000 0.5000000000 0.0000000000 0.5000000000 0.0000000000 

1 0.1 0.6574145401 0.6574145409 0.0000000000 0.6564508731 0.0009636678 

2 0.2 0.8292986209 0.8292986208 0.0000000001 0.8273066068 0.0019920141 

3 0.3 1.0150705962 1.0150705961 0.0000000001 1.0119825867 0.0030880095 

4 0.4 1.2140876511 1.2140876510 0.0000000002 1.2098331143 0.0042545368 

5 0.5 1.4256393646 1.4256393644 0.0000000002 1.4201450250 0.0054943397 

6 0.6 1.6489405998 1.6489405995 0.0000000003 1.6421306378 0.0068099620 

7 0.7 1.8831236463 1.8831236459 0.0000000004 1.8749199705 0.0082036758 

8 0.8 2.1272295358 2.1272295353 0.0000000004 2.1175521396 0.0096773962 

9 0.9 2.3801984444 2.3801984439 0.0000000005 2.3689658626 0.0112325818 

10 1.0 2.6408590858 2.6408590852 0.0000000006 2.6279889679 0.0128701179 

 

 
Figure 8: Exact Numerical Solution 

 
Figure 9: Numerical Approximation for step size h=0.1 
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Figure 10: Numerical Approximation for step size h=0.05 

 

 
Figure 11: Numerical Approximation for step size h=0.025 

 

 
Figure 12: Numerical Approximation for step size h=0.0125 
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Figure 13: Error for different step size using RK4 method 

 

 
Figure 14: Error for different step size using Euler’s method 

 

IV. DISCUSSION AND RESULTS 
 The obtained results are displayed in Table 1(a)-(d) and Table 2(a)-(c) and graphically represented in 

Figures (1-7) and Figures (8-14) respectively. The approximate solutions and absolute errors are calculated 

using Matlab programming language with the step sizes 0.1, 0.05, 0.025, and 0.0125 and also computed with 

the exact solution. From the tables for each of the methods, we observed that the numerical solutions converge 

to the exact solution and the errors incurred in the Euler’s method are greater than that of the Runge Kutta 

method. We also observed that the Runge Kutta approximations for the same size converge firstly to the exact 

solution. This indicates that the small step size provides a better approximation. The fourth order Runge Kutta 

method is laborious, it requires four evaluations per step size, but it gives more accurate results than the Euler’s 

method with only one-fourth the step size. We equally observed that the fourth order Runge Kutta Method 

converges faster, more accurate and cost effective than the Euler’s method (as can be seen in the tables and 

figures) in solving initial value problems in ordinary differential equations.  

 

V. CONCLUSION 
 In this paper, the fourth order Runge Kutta and Euler’s methods are used for solving initial value 

problems (IVP) in Ordinary Differential Equations (ODE). To find more accurate results, we reduced the step 

size for both methods. From our tables and figures, we analyzed that the solution for both methods converges to 

the exact solution for decreasing the step size h. The numerical solutions obtained by the two methods are in 

good agreement with the exact solutions. However, by comparing the results of the two methods, we state that 

the RK4 Method is appropriate, consistent, convergent, quite stable, and more accurate than the Euler’s method 

and it is widely used in numerical solutions of initial value problems in ordinary differential equations. In our 
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subsequent research, we shall examine the comparison of RK4 method with other existing method like the 

Adomian decomposition.  
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