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I. INTRODUCTION 
 One important and interesting area of research of fractional differential equations is a new branch of 

mathematics by valuable tools in the modelling of many phenomena in various fields of science and 

engineering. Indeed, we can find numerous applications in viscoelasticity, elec- trochemistry, control, porous 

media, electromagnetic, etc. (see [14, 15]) and reference therein. Impulsive differential equations have become 

important in recent years as mathematical models of phenomena in both the physical and social sciences. There 

has a significant de- velopment in impulsive theory especially in the area of impulsive differential equations 

with fixed moments and the references therein [1, 7–13, 18, 19, 21]. In [2, 4, 6] M. S. Abdo et. al., studied the 

fractional integro-differential equation with Caputo fractional derivative and Ψ- Hilfer fractional derivative, 

continuous dependence for fractional neutral functional differential equations.  

∗sureshkongucas@gmail.com(S. Suresh), gthamil@rediffmail.com(G. Thamizhendhi)  

1  

 Nonlocal conditions come up once values of the function on the boundary are connected to values 

within the domain. It is found to be a lot of plausible than the standard initial condi- tions for the formulation of 

some physical phenomena in certain problems of thermodynamics, elasticity tion x(0) and =  

∑mwave propagation. In passing, we have a tendency to noticed that nonlocal condi-  

k=1  

ckx(tk) can be applied in physical problems yields better effect than the initial  

conditions and the references therein [3, 5, 16, 17].  

Motivated by the above works, to study an impulsive fractional integro differential equations with nonlocal 

condition of the form  

cDθx(t) = U(t)x(t) + V (t) +  

∫ t0 K(t, s)f(x(s))ds,0 <t<b, (1) x(t+k ) = x(t−k ) + yk,k = 1,2, ...m, yk ∈ X (2)  

x(0) =  

∑mk=1  

ckx(tk), tk ∈ (0,b) (3)  

where cDθ denotes the Caputo fractional derivative of order θ, 0 < θ < 1, f : X → X, K : {(t, s); 0 ≤ s ≤ t ≤ b} → 

R+, U, V : [0,b] → X are given appropriate functions, ck is real numbers and tk satisfy 0 = t0 < t1 < ... < tm < 

tm+1 = b.  

 The rest of this paper is planned as shades. In section 2, has definitions and elementary results of the 

fractional calculus. In section 3, the existence and uniqueness results for impulsive fractional integro differential 

equations involving nonlocal conditions are proved by using the standard fixed point theorems. In section 4, 
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Some examples are illustrating the main results.  

2 Preliminaries  

Let us recall some basic definitions of fractional calculus. Let P = C([0,b],R) denote the Banach space of all 

continuous functions from [0,b] into R endowed with the usual norm defined by  

x = sup{|x(t)|,t ∈ [0,b]}.  

Definition 1. The fractional derivative of order θ > 0 of a function f : (0,∞) → X is given by  

D0+θf(t) = Γ(n 1  

− θ)( dtd)n ∫ t0  

(t − f(s)  

s)θ−n+1ds,  

where n = [θ]+1, provided the right side is pointwise defined on (0,∞).  

Definition 2. The fractional integral of order θ > 0 of a function f : (0,∞) → X is given by  

I0+θf(t) = Γ(θ)  

1∫ t0 (t − s)θ−1f(s)ds,  

provided the right side is pointwise defined on (0,∞), where Γ(·) is the Gamma function.  

2  

Definition 3. Let θ > 0 and f : [0,b] → X. The left sided Riemann-Liouville fractional integral of order θ of a 

function f is defined as  

I0θ+f(t) = 1Γ(θ)  

∫ t0 (t − s)θ−1f(s)ds, t ∈ [0,b],  

Where f(t).  

Γ(.) is the Euler gamma function and I0θ+f is exists for all α > 0. Moreover, I0θ+f(t) =  

Definition 4. Let n − 1 <θ<n,n ∈ N and f ∈ Cn([0,b],X). The left side Caputo fractional derivative of order θ of a 

function f is defined as  

cD0θ+f(t) = I0n−θ  

+ dtdnnf(t). t ∈ [0,b],  

Where n = [θ]+1, and [θ] denotes the integer part of the real number θ.  

Lemma 1. Let 0 <θ<b, and V,f,K are continuous functions. If x ∈ C([0,b],X), then x satisfies the problem (1)-(2) 

if and only if u satisfies the integral equation:  

x(t) =  

A y1 ∑k=1 + mA  

c∑kx(tΓ(θ) mk)  

∫ tk  

0 (tk − s)θ−1Hx(s)ds + Γ(θ)  

1∫ t(t − s)θ−1Hx(s)ds, t ∈ [0,t1) 0 k=1  

ckx(tk)  

∫ Γ(θ)  

0 tk  

(tk − s)θ−1Hx(s)ds + 1Γ(θ)  

y1 + y2 + A  

∫ tk  

∫ t(t − s)θ−1Hx(s)ds, t ∈ [t1,t2) 0 0 (tk − s)θ−1Hx(s)ds + Γ(θ)  

1∫ t0 (t − s)θ−1Hx(s)ds, t ∈ [t2,t3) ...∑mi=0  

∑mk=1  

ckx(tk) Γ(θ)  

yk + A  

∑m∫ k=1 ckx(tk) Γ(θ)  

tk (tk − s)θ−1Hx(s)ds + 0 1Γ(θ)  

∫ t(t − s)θ−1Hx(s)ds, t ∈ (tm,b] 0 (4)  

where  

Hx(s) = U(s)x(s) + V (s) +  

∫ s0 K(s, σ)f(x(σ))dσ and  

A = 1 −  

∑1 mk=1  
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ck  

 Theorem 1. (Krasnoselkii’s fixed point theorem) Let K be a closed convex and nonempty subset of a 

banach space X.Let T and S, be two operators such that (i) Tx + Sy ∈ K for any x, y ∈ K (ii) T is compact and 

continuous. (iii) S is contraction mapping. Then there exists z1 ∈ K such that z1 = Tz1 + Sz1.  

3  

3 Main results  

To prove the existence and uniqueness results we need the following assumptions :  

• (A1) U(t) and V (t) are bounded and continuous function on [0,b].  

• (A2) f : X → X is a continuous function.  

• (A3) There exists constant l > 0 such that  

||f(t, u) − f(t, u1)|| ≤ l||u − u1||, u, u1 ∈ X  

for each t ∈ [0,b].  

• (A4) K : D → R+ is continuous on D with K0 = max{|K(t, s)| : (t, s) ∈ D}, where D = {(t, s):0 ≤ s ≤ t ≤ b}.  

Theorem 2. Assume that the assumption (A1),(A2), (A3) and (A4) are hold. If  

∑mi=0  

[A  

ck(tk)θ + bθ]ρ Γ(θ + bK+ 1) 0l  

< 1 (5)  

then there exists a unique solution for the problem (1) − (3) on [0,b]  

Proof:  

We transform the problem (1)-(3) into a fixed point problem and define the operator M : C([0,b],X) → 

C([0,b],X) is given by  

M(x)(t) =  

||yk|| +  

∑mk=1  

∑myk + A ∑mi=0 k=1  

ckx(tΓ(θ)  

k)  

∫ 0 tk  

(tk − s)θ−1Hx(s)ds + 1Γ(θ)  

∫ t(t − s)θ−1Hx(s)ds, t ∈ (tm,b] 0 (6)  

where  

Hx(s) = U(s)x(s) + V (s) +  

∫ s0 K(s, σ)f(x(σ))dσ  

A = 1 −  

∑1 mk=1  

ck  

and define Br = {x ∈ C([0,b],X);||x|| ≤ r} for some r > 0. Choosing  

r ≥  

∑m||yk|| + 2[A ∑mck(tk)θ + bθk=0  

k=1  

](η + bK0μ0  

)  

Γ(θ + 1)  

Let  

μ0 = ||f(0)||, η = sup  

||V (t)||, ρ = sup  

||U(t)||. t∈[0,b]t∈[0,b]4  

Step:1  

We show that MBr ⊂ Br (i.e., the operator M has a fixed point on Br ⊂ C([0,b],X).  

||M(x)(t)|| ≤  

∑m∫ tk  

(tk − s)θ−1||Hx(s)||ds i=0 0 + Γ(θ)  

1||yk|| + A  
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∑m∫ tk=1  

ck||x(tk)|| Γ(θ)  

0 (t − s)θ−1||Hx(s)||ds (7)  

where  

||Hx(s)|| ≤ ||U(s)||||x(s)|| + ||V (s)| +  

∫ s0 ||K(s, σ)||[||f(x) − f(0)|| + ||f(0)||]dσ ≤ (ρ + bK0l)||x|| + η + bK0μ0  

Therefore, the equation (8) we get,  

||M(x)(t)|| ≤  

∑mcki=0  

[(ρ + bK0l)r  

Γ(θ + 1) + η Γ(θ + bK+ 0μ1)  

0  

](tk)θ  

+  

||yk|| + A ∑m[(ρ + bKΓ(θ + k=1  

0l)r 1) + η Γ(θ + bK+ 0μ1)  

0  

]bθ  

≤  

∑i=0 m||yk|| + Γ(θ r  

+ 1)[A  

ck(tk)θ + bθ][(ρ + bK0l) + η + bKr  

0μ0  

]  

≤ r  

Step:2  

Next we show that M : Br → Br is a contraction mapping. For any u1,u2 ∈ Br and for t ∈ (tm,b].  

||Mu1(t) − Mu2(t)|| ≤  

∑mk=1  

∑m∫ i=0  

t0 ||yk|| + A  

∑m(tk − s)θ−1||Hu1(s) − Hu2(s)||ds  

+ Γ(θ)  

1∫ tk=1  

ck Γ(θ)  

0 (t − s)θ−1||Hu1(s) − Hu2(s)||ds  

≤  

∑m[A ck(tk)θ + bθi=0  

]ρ Γ(θ + bK+ 1)0l  

||u1 − u2||  

By (5), the operator M is a continuous. Hence by Banach’s contraction principle, M has a unique fixed point 

which is a unique solution of the problem (1) − (3).  

Theorem 3. Assume that the assumption (A1),(A2), (A3) and (A4) are hold. If  

A  

||yk|| +  

∑mk=1  

∑mk=1  

ck[ρ + bK0l] Γ(θ (tk)+ θ  

1) < 1 (8)  

5  

and  

[A  

ck(tk)θ + bθ](ρ Γ(θ + bK+ 1) 0l)  

< 12 (9)  

then there exists atleast one solution for the problem (1) − (3) on [0,b]  

Proof:  

We define the operator M : C([0,b],X) → C([0,b],X) is given by  

M(x)(t) =  
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∑mk=1  

∑m∑m∫ i=0  

k=1  

ckx(tΓ(θ)  

k)  

∫ 0 tk  

(tk − s)θ−1Hx(s)ds + 1Γ(θ) tyk + A  

(t − s)θ−1Hx(s)ds, t ∈  (tm,b] 0 (10)  

where  

Hx(s) = U(s)x(s) + V (s) +  

∫ s0 K(s, σ)f(x(σ))dσ  

A = 1 −  

∑1 mk=1  

ck  

The operator M = M1 + M2 as follows  

M1(x)(t) = A  

∫ tk  

0 (tk − s)θ−1Hx(s)ds (11)  

M2(x)(t) =  

∑mk=1  

ckx(tk) Γ(θ)  

∫ t0 (t − s)θ−1Hx(s)ds (12)  

Now, we prove that M1x + M2x∗  ∈  Sr ⊂ C([0,b],X), for every x, x∗  ∈  Sr, Sr = {x ∈  C([0,b],X : ||x|| ≤ r}.  

Let  

μ0 = ||f(0)||, η = sup  

t∈ [0,b]||V (t)||, ρ = sup  

t∈ [0,b]||U(t)||.  

r ≥  

∑mi=0  

yk + Γ(θ) 1∑m||yk|| + 2[A  

∑mck(tk)θ + bθ) k=0  

k=1  

||M1x(t)|| ≤ A  

](η + bK0μ0  

Γ(θ + 1)  

∑mck||x(tk)|| ∫ k=1 Γ(θ)  

tk (tk − s)θ−1||Hx(s)||ds 0 (13)  

where  

||Hx(s)|| ≤ ||U(s)||||x(s)|| + ||V (s)| +  

∫ s0 ||K(s, σ)||[||f(x) − f(0)|| + ||f(0)||]dσ ≤ (ρ + bK0l)||x|| + η + bK0μ0  

6  

Therefore, the equation (13) we get,  

||M1x(t)|| ≤ A  

ck[(ρ + bK0l)r  

Γ(θ + 1) + η Γ(θ + bK+ 0μ1)  

0  

](tk)θ  

||M2x∗ (t)|| =  

∑mk=1  

∫ t0 (t − s)θ−1||Hx*(s)||ds  

||M2x∗ (t)|| ≤  

∑mi=0  

||yk|| + Γ(θ)  

1[(ρ + bK0l)r  

Γ(θ + 1) + η Γ(θ + bK+ 0μ1)  

0  

]bθ  

≤  

∑mi=0  
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||yk|| +  

∑mi=0  

||yk|| + Γ(θ r  

+ 1)[A  

∑mck(tk)θ + bθk=1  

][(ρ + bK0l) + η + bKr  

0μ0  

]  

Therefore,  

||M1x + M2x∗ || ≤ ||M1x|| + ||M2x∗ || ≤ r  

M1x + M2x∗  ∈  Sr Next, prove that the operator M1 is a contraction map on Sr and M2 is completely contin- 

uous on Sr.  

||M1x(t) − M1x∗ (t)|| ≤ A  

∑mk=1  

ck(ρ + bK0l) Γ(θ (tk)+ θ  

1)||x − x∗ ||  

From (8), M1 is a contraction map on Sr.  

Now we prove that (M2Sr) is uniformly bounded, (M2Sr) is equicontinuous and M2 : Sr → Sr is continuous. 

For any x ∈  Sr we have  

||M2x(t)|| ≤  

∑mi=0  

[(ρ + bK0l)r  

Γ(θ + 1) + (η Γ(θ + bK+ 0μ1)  

0)  

]bθ = l  

Thus M2Sr ⊂ Sl and the set is uniformly bounded.  

Let x ∈  Sr and t1,t2 ∈  [0,b] with t1 ≤ t2, we have  

||M2x(t1) − M2x(t2)|| ≤  

||yk|| +  

∑m∫ i=0 ||yk|| + Γ(θ) 1+ Γ(θ) 1∫ t1  

0 t2  

(t2 − s)θ−1||Hx(s)||ds t1 (t1 − s)θ−1||Hx(s)||ds  

≤  

∑mi=0  

||yk|| + 2((ρ + bK0l)r Γ(θ)  

+ (η + bK0μ0)  

)(t2 − t1)θ  

We observe that, ||M2x(t1)−M2x(t2)|| → 0 when |t2−t1| → 0. Therefore, (M2Sr) is equicon- tinuous and M2 is 

completely continuous on Sr.  

Hence by Arzela-Ascoli theorem, the operator M2 is compact on Sr. Therefore, the equation (1) − (3) has 

solution x(t) ∈  C([0,b],X. Hence the prove is completed.  

7  

 

II. CONCLUSION 
 We study the existence of solutions of the initial value problem for impulsive fractional integro 

differential equations involving nonlocal conditions. The existence results are proved by using the fixed point 

theorems. Further, the problem (1)-(3) to study the existence of solutions for Caputo-Hadamard fractional 

integro differential equations involving fractional impulsive conditions.  
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