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ABSTRACT: The purpose of this work is to determine the thermo-physical parameters of an anisotropic 

material. The method consists in looking for these parameters from the knowledge of the temperature field. The 

resolution of the problem is based on the finite element method. The direct problem has yielded convincing 

results. The latter thus found are in agreement with the experimental results. Subsequently, we approach the 

opposite problem without apprehension by proposing an optimization method based on the conjugate gradient 

algorithm. 
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I. INTRODUCTION 
 The good knowledge of the thermophysical properties of the materials, made it possible to predict 

thermal phenomena. In the field of mechanical and design knowledge, the thermal properties of materials are 

needed for more realistic modeling. It is also crucial for the design of photovoltaic cells. 

 The exploitation of experimental temperature fields constitutes the basis of the approach framing the 

present study. A rectangular plate is heated [1, 2] on one side and the temperature field is captured by an 

infrared camera. The Inverse Problem is solved by crossing back the equations obtained by the Finite Element 

Method for solving the Direct Problem. Doing so, we elaborate efficient algorithms able to accurately identify 

the thermal parameters of polymethylmethacrylate.  

 

II. DIRECT PROBLEM 
2.1 Position of the problem 

 In our endeavour to identify the thermal characteristics of a material we will undertake a procedure that 

is both experimental and numerical. We consider a rectangular thin solid plate of length L , width h  and 

thickness e . The plate is homogeneous; while its thickness is small, its length is very close to its width. We will 

assume that the temperature distribution is two-dimensional. 

 

2.2 Problem formulation 

 In order to extend the description to strongly anisotropic materials where the conductivity matrix is 

solid, an earlier study was carried out for the diagonal conductivity matrix [10]. The problem to be solved is 

identical to the previous one except that the number of parameters to be determined is greater. 

 This part is devoted to solving a problem of heat transfer [5]. Let us consider that a rectangular 

homogeneous solid plate, with length l, width h and of very small thickness e in front of its other dimensions. 

Suppose then that the plate occupies the interval [0, L] of the, Ox  axis, [0, h] of the, Oy  axis and that at time t = 

0, the distribution of the temperature is known to all M (x, y) of the field, and equal to,
 

( , , )T x y t . A constant 

heat flux 𝜑1  is imposed on the side bounded by 𝑥 = 0 (denoted Γ1), and a constant 𝜑2 is imposed on the side 
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bounded by 𝑦 = 0  (denoted Γ2). The other sides (denoted Γ3 and Γ4) are well protected against any convective, 

radiative or conductive currents [2, 4]. 

 

 
FIG. 1 – Rectangular plate and boundary conditions 

 

Let c  be the heat capacity per unit volume (   being the specific mass and c  the heat capacity per unit 

mass). Let  
11 12

12 22

 

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 
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 

 be the thermal conductivity tensor. 

The direct problem for calculating the temperature ( , , )T x y t  is therefore defined by the following Partial 

Differential Equation (PDE) system: 

 

 



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T
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The above boundary and initial conditions read as follows: 
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Equations (1), (2a), (2b), (2c), (2d) and (2e) defining the direct problem can be solved numerically by the finite 

element method. 

 

2.3 Solving the direct problem by the finite element method 

 With the finite element approach, we will develop a calculation code with quantitative information on 

the thermo-physical properties of the materials, the boundary conditions and heat fluxes applied, as well as the 

characteristics of the chosen discretization (type of element, mesh size). 

we proceed to the discretization of the domain Ω in sub domains Ωe called elements. The geometry of these 

elements is quadrangular element with linear interpolation functions  yxN e

i , . The total number of nodes is N, 

while the total number of elements is Nt.  

 

2.3.1 Local representation 

In this study, the approximate solution is the temperature function T(x,y,t) with the form: 

),()(),,(
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For each element domain e , After simplification of the calculations, we get: 

       eee FTK
dt

dT
C 







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 (4) 
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where  eK ,  eC  and  eF  are respectively conductance matrix, the capacitance matrix and the heat load vector 

per element : 
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2.3.2 Global representation and assembly 

 We deploy w to refer to the cross sectional area and [J] to stand for the Jacobian of the geometric 

transformation by adopting an isoparmetric element. Integrating the Equations (5). 

The assemblage system equation takes the matrix form 
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where the conductance matrix, the capacitance matrix and the heat load vector are respectively : 
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 In solving a problem of transient conduction, we are guided into solving a system of first order 

differential equation with respect to time t  (Equation (6)) for which the initial condition is:

   )0(...)0()0( 210 N
T TTTT   

The determination of the temperature field in the material returns to find the temperature values at the nodes 

over time. The numerical solution of the previous system determines the evolution of the temperature in the 

material for thermo-physical parameters imposed. 

 

2.4 Experimental device 

 The goal is to create a temperature field, we will have to heat the sample studied to identify variations 

in temperature. A heater is confined between two plates, and the electrical power is supplied by a generator. 

Under these conditions, it is assumed that the imposed flow is divided equally between the two plates. The 

heater is controlled by a voltmeter and an ammeter. It requires very low current intensities. To access the 

temperature fields of the material, we use an infrared thermography. Finally, a video monitor connected to it can 

follow the evolution of the thermal mapping 

 

 
FIG. 2 – Fitting the experimental measurement of the temperature. 

 

Figure 3 below illustates the evolution of experimental or simulated temperatures of the plate, with respect to 

time  
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FIG. 3 Temperature distribution of the plate with respect to time 
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 Note that the progression of both temperatures, i.e., numerically calculated and experimental, are very 

close. This comparison also validates the direct approach developed. 

Next, in the inverse problem, and to undertake the experimental conditions, a noise with standard deviation 

0.02 C    is imposed on the temperature according to the precision current infrared cameras 

 

III. INVERSE PROBLEM 

 The experiments were conducted at the Institute P' of the University of Poitiers From the measured 

temperature fields, we try to identify the thermal conductivity tensor 
11 12

12 22

 
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 

 
  
 

 and the specific heat c  

of an anisotropic material. Once the temperature function T(x, y, t) is recorded in a series of points on the 

surface of the plate, at several times, we apply the least squares method for estimating the thermophysical 

parameters. We made m experiments indexed from 1i to m .The time duration of the i
th

 experiment is 

referred to by it . The least squares method brings about the constrained optimization process: Minimize the 

objective function 
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under the positive constraint for c , and the symmetric positive-definite constraints for  .  

To minimize this function by a steepest descent method, we need to express its gradient with respect to the 

conductivity tensor   :  

To minimize this function, we calculate for the conductivity tensor 
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We will also need its derivative 
( )
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r

c



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.  

3.1. Identification algorithm  

 The conjugate gradient algorithm is introduced in detail and applied in thermophysical parameters 

identification. As the steepest descent method to minimize the function ( , )J c  , we implement the projected 

conjugate gradient method, which consists in constructing iteratively a sequence converging to the minimum. 

The algorithm of this method can be summarized as follows 

1. Initialize   by 0  and c  by 0( )c ,  

Deduce the initial values 0r and 0R  of r and R , 

Initialize a sequence of scalars id  by 0 0d r   and a sequence of directions iD by 0 0D R  ,  

2. At iteration i  

calculate i  and i which minimize  ( , )i i ii
J c d D     with respect to   and   

1( ) ( )i i i ic c d       

1i i i iD      

if 1 0i   , 1 1i iproj    

3. if 1ir    and 1iR    stop, otherwise 
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1 1i id r     

1( )t

i i i
i t

i i
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R R
  
   

1 1i i i iD R D     

1i i   and return to step 2. 

The abbreviation (Proj) is a subroutine that executes the projection algorithm of Higham [8]. Indeed, the 

projection of a not positive symmetric matrix takes place orthogonally to the edge of the positive cone matrix. 

 

3.2. Identification Results 

3.2.1. Simulations for anisotropic materials 

The Projected Conjugate Gradient method developed in the last section is applied to the simulated temperature 

fields obtained by solving equation (6) by FEM. The material is supposed to be anisotropic. The results from our 

identification algorithm are shown in the table below. 

 

Parameters Values used in the simulation identified Values 

λ11(W/m/°C) 0.45 0.4309 ±0.0170 

λ12(W/m/°C) 0.2 0.2134 ±0.0121 

λ22(W/m/°C) 0.17 0.1638 ±0.0140 

ρc(J/m3/°C) 1.666 .106 1.6573 .106 ±0.027 .106 

Table 1: Identified Values for an anisotropic material from simulated temperature fields 

 

3.2.2. Experiments for isotropic materials 
The experimental device was applied to an isotropic polymer (polymethylmethacrylate, PMMA), with 

thermophysical parameters [1]: 
31190
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The results from our identification algorithm are shown in the table below. 

Parameters λ11(W/m/°C) ρc(J/m3/°C) 

Manufacturer values [1] 0.17 1.666. 106 

Values identified 0.1786 1.6797 .106 

Table 2: Identified Values for PMMA from experimental temperature fields 

 

IV. CONCLUSION 
 The finite element method meets the requirements imposed by the sample geometry and the boundary 

conditions. Its application on a homogeneous anisotropic material enabled us to transform the Fourier’s heat 

conduction equation in a first order ordinary differential equation. Therefore, the resolution of the direct 

problem needs solely a time integration algorithm. The developed algorithm allows us to simulate the 

temperature field in the bidimensional case. The accuracy of the simulations ensured the validity of our 

approach. Moreover, our code proved to be fast handling both for varied geometric dimensions and for varied 

boundary and initial conditions.  

 The identification algorithm is based on the Projected Conjugate Gradient method. It allows 

characterizing the thermal conductivity tensor and the specific heat of polymers. The identification results are 

demonstrated to be in good agreement with the manufacturer values.  
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