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ABSTRACT :A brief review of the mathematical and statistical techniques involved in Machine Learning 

isgiven. The algebraic techniques include non-square matrices, determination of theirsingularvalues and 

singularvectors and quadraticformsuseful in representation of data matrices. The standard techniques in 

optimization like steepestdescent, Newton’smethod and ConjugateGradientalgorithms for unconstrained and 

constrained extremum problems are discussed. In the probabilisticapproach, Bayes, Naive Bayes and Bayes 

Belief Networks techniques for classification arepresented. The randomprocesses like Markov models, Hidden 

Markov Models, for observed and hidden variables are givenwith a brief mention of EM algorithms.  
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I. INTRODUCTION 

 Machine Learning (ML) is a set of tools that, broadly speaking, allows us to “teach” computers how to 

perform tasks by providing examples of how they should be done. For any task, writing rules to accurately 

distinguish genuine from non-genuine (spam emails) can be very difficult to do with. A machine learning 

algorithm is an algorithm that can learn from data. Mitchell (1999) provides the definition of what do we mean 
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by learning: “A computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P if its performance at tasks in T as measured by P improves with experience E.” 

ML tasks are usually described in terms of how the ML system should process an example. We typically 

represent examples or data as a vector x  ∈ Rn  where the components xi of data vector x   are attributes or features. 

In nearly all real-world situations our data and knowledge about the world is incomplete, indirect and noisy; 

hence, uncertainty must be a fundamental part of a decision-making process. In this context we have to use 

Bayesian probability theory which is distinguished by defining probabilities as degrees of belief in contrast to 

frequentist statistics, where the probability of an event is defined as the frequency in the limit of infinite number 

of repeated trials. 

 A well-defined learning problem requires a well-specified task, performance metric, and source of 

training experience. Designing an ML approach involves a number of design choices, including choosing a type 

of training experience, the target function to be learnt, a representation for this target function and an algorithm 

for learning the target function examples. 

Learning involves search: Searching through a space of possible hypotheses to find the hypothesis that best fits 

the available training examples and other prior constraints or knowledge. The different hypotheses spaces which 

can be searched include: 

i) Spaces containing numerical functions 

ii) Neural Networks 

iii) Decision Trees 

iv) Symbolic Rules,  

And using theoretical results that characterize conditions under which these search methods converge 

towards an optimal hypothesis.  

Although it is still not possible to make competitive learning nearly as well as humans learn, many 

algorithms have been invented that are effective for certain types of learning tasks such as speech recognition 

and data mining. In data mining, ML algorithms are being used routinely to discover valuable knowledge from 

large commercial databases containing equipment maintenance records, loan applications, financial transactions, 

medical records, and the like. 

 

II. REVIEW OF LINEAR ALGEBRA 

2.1 Vector Spaces & Matrices 

Definition: Vector Space: A set V is said to be a vector space over a field F if V is an Abelian group under 

addition “+”, and for each a ∈ F and v ∈ V, ∃ an element av ∈ V, ∋, the following conditions hold:  

∀a, b ∈ F and ∀u, v ∈ V 

(i) a v + u = av + au 

(ii)  a + b v = av + bv 

(iii) a bv =  ab v 

(iv) 1v = v 

Subspace: Let V be a vector space over a field F and let U be a subset of V. If U is also a vector space over F 

under the operations of V, we say that U is a subspace of V. 

Linear Independence  l. i  

A set of vectors is said to be linearly dependent  l. d  over the field F, if there are vectors v1 , v2, … , vn  from V 

and elements a1, a2, … , an  from F, such that 

 aivi

n

i=1

= 0 

A set of vectors that is not l.d. over F is called linearly independent  l. i  over F. 

 

Basis 

Let V be a vector space over F. A subset B ⊂ V is called a basis for V if B is  l. i  over F and every element 

v ∈ V is a unique linear combination  l. c  of elements of B, i.e., v =  aivi . All bases of V contain the same 

number of vectors. This number is called the dimension of V, (dim V). 

 

Example 1) Let R be the field &Rn  the set of column n-vectors with real components. We call Rn  an n-

dimensional real vector space, and we can write v   in component form, 

v  =  

a1

.
an

  

Example 2) In R3, the vectorsv1 =  1, 0, 0 , v2 =  1, 0, 1 &v3 =  (1, 1, 1) are  l. i over R  

To verify this, assume  aivi = 0 ⟹ a1v1 + a2v2 + a3v3 = 0 
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Or a1 1, 0, 0 + a2 1, 0, 1 + a3 1, 1, 1 =  0, 0, 0  

⟹ a1 + a2 + a3 = 0 

a3 = 0 

a2 + a3 = 0 

⟹ a1 = a2 = a3 = 0 

⟹ v1 , v2, v3 are linearly independent. 

2.2Inner Product < , > 

Consider a vector space Rn  over field R. We define the inner product <,>: Rn × Rn → R by 

< x  , y  > =   xiyi

n

i=1

=  x  Ty   

having the following properties: 

(i) < x  , x  >≥ 0, < x  , x  > = 0 iffx  = 0 

(ii) < x  , y  > = < y  , x  > 

(iii) < x  + y  , z > = < x  , z >  +< y  , z > 

(iv) < rx  , y  > = r < x  , y  > 

The vectors x  andy   are orthogonal if < x  , y  > = 0 

The Euclidean norm of a vector x   is  x   =  < x  , x  > =   x  Tx   
Orthogonality in R3 

We can write < a  , b  > =  a  . b  =  a    b   cosθ . a  &b   are orthogonal if a  . b  = 0 ⟹ θ = 90 

Using the process known as Gram-Schmidt orthogonalization, we can show that every finite dimensional 

Euclidean space has an orthonormal basis. 

2.3 Eigenvalues & Eigenvectors of a Matrix 

A matrix is a rectangular array of numbers A. An mxn matrix can be written as 

A =  

a11
a12 . a1n

a21 a22 . a2n.
am1

.
am2

.

.

.
amn

  

We can denote A by A = [a  1 … a  n] where a  i =  

a1i

a2i
.

ami

  

The maximal number of l.i columns of A is called the rank of the matrix A, denoted by rank(A). Note that 

rank(A) is the dimension of the span [a  1 … a  n] 
A p

th
 order minor of an mxn matrix A, with p ≤ min⁡(m, n) is the determinant of a pxp matrix obtained from A 

by deleting m – p rows and n – p columns. We have the following theorem: 

Theorem: If an mxn(m ≥ n) matrix A has a nonzero n
th

 order minor then the columns of A are l.ithat is, rankA 

= n. 

Lemma: Let A ∈ Rm×n , m > n, then, rankA = n iff rankATA = n (i.e., the square matrix ATA is non-regular). 

Eigenvalues & Eigenvectors (Square matrices only) 

Let A be a nxn square matrix. A ∈ Rn×n . 

The equation Av  = λv   where λ is a scalar (possibly complex) and v   a non-zero vector is called an eigenvalue 

problem with v   as eigenvector and λ as eigenvalue. 

⟹ [A − λI] v   = 0 

Or A − λI is a singular matrix &det A − λI = 0. Thus λi  are solutions of the characteristic polynomial equation 

det A − λI = 0 

If the characteristic equation has n distinct roots λ1 …λn , then∃n  l.i set of vectors v  1 … v  n  such that Avi    =
λivi    i=1…n 

W.r.t the basis B formed by the l.i set of eigenvectors {vi    }, the matrix A can be written as a diagonal matrix 

D =  
λ1 . 0
.
0

. .

. λn

  

Writing M = [v  1 … v  n]  where each vi    is an eigenvector of A, we can transform A as M−1AM = D  or A =
MDM−1 

Consider symmetric matrices: We have the following theorems: 

(i) All λi  of a symmetric matrix A are real i.e., λ = λ  

(ii) Any real symmetric matrix A has a set of n eigenvectors {vi    ; i = 1,2, … n} that are mutually orthogonal. 

2.4 Singular Values and Singular Vectors 

Let An×m  be of rank r. Then, ∃Un×r , Vm×randΣr×r ∋ 
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UHU = I = VH V and A = UΣVH  

In Σ = diag(σ1σ2 …σn ), the r diagonal elements of Σ are strictly positive and are called singular values of the 

matrix A. Let σ1 ≥ σ2 ≥ ⋯ ≥ σr  

The Singular Value Decomposition (SVD) of matrix A may be expressed as 

A =  σiui    vi    
H

r

i=1

 

(i) A = UΣVH ⟹ AV = UΣ ⟹ Avi    = σiui      i=1,2,…, r 

AH = VΣUH ⟹ AH U = VΣ ⟹ AH uj    = σjvj      j=1,2,…, r 

Or AHAvi    = σi
2vi       i=1,2,…,r 

Thus the r nonzero eigenvalues of AH A are the squares of the singular values of A 

(ii) A = UΣVH ⟹ AAHui    = σi
2ui      i=1,2,…,r 

HenceAAHand AHA have the same set of unique eigenvalues. 

Theorem: A rectangular matrix Amn  can be decomposed using the following method as  

Amn = Umm Dmn Vnn
T  

where Umn  and Vnn  are orthogonal matrices (UUT = 1 = VVT)  with columns of U being orthonormal 

eigenvectors of AAT  and columns of V being orthonormal eigenvectors of ATA. 

Dmn  is a diagonal matrix whose elements are  λi  , λi  are eigenvalues of U or V in descending order. 

Using SVD to simplify data 

We use SVD to represent our original data set with a much smaller dataset (we are removing noise and 

redundant information), and extract knowledge from data. 

Matrix factorization: There are many techniques for decomposing matrices (Cf.-factoring in algebra). These 

various factorization techniques have different properties that are more suited for one application or another. 

Mmn (Datamn ) = (i) Um ×m Σm×nVn×n
T  ; (ii) Um×3Σ3×3V3×n

T ; etc. 

In the 2
nd

 decomposition Σ is a diagonal matrix. Its diagonal elements are called singular values. The singular 

values σi  are  λi  of M. 

Σ has only diagonal elements sorted from largest to smallest. After a certain number of singular values (call this 

r) of M, the other values will drop to 0. This implies the data set has only r important features, and the rest of the 

features are noise or repeats. 

SVD (Application) 

Example 3: Analyzing a document data. Consider 3204 newspaper articles from 6 different sections: 

entertainment, financial, foreign, metro, national and sports. The data was processed using standard techniques 

to remove common words, to adjust for the different frequencies with which terms appear, and to adjust for the 

different lengths of documents. 

The data matrix A is a document-term matrix, where each row represents a document and each column a term 

(word): aij  is the j
th

 term in the i
th

 document.  

An SVD analysis of A was performed to find the first 100 (σi) singular values (σ1 , … , σ100 ) and singular 

vectors. (It is too expensive to find a full SVD or PCA decomposition and often pointless since relatively few of 

the σi , uc    , vi     are required to capture the structure of the matrix A). 

Observations: 

(i) The largest singular value σ1 is associated with common terms that are frequent, but not eliminated by the 

pre-processing.  

(ii) Associated with the second right singular vector v2     are the following top 10 terms (words) (all associated 

with sports) 

“game, score, lead, team, play, rebound, season, coach, league, goal” 

(iii) Associated with the third right singular vector v3     are the following top 10 terms (words) 

“earn, million, quarter, bank, rose, billion, stack, company, corporation, revenue” (all financial terms) 

Using v2     and v3     , we reduced the dimensionality of the data (D’ is the new data matrix with two attributes) 

D′ = D . [v2    , v3    ] 
In other words, all documents were expressed in terms of two attributes: sports & finance. 

 

2.5 Quadratic forms 

A quadratic form f: Rn → R is a function 

f x   =  x  TQx   
where Q is a n x n real matrix. Without loss of generality, we can assume Q to be symmetric i.e., Q = QT . 

(Otherwise we can obtain a symmetric matrix Q’ from Q) 

A quadratic form x  TQx   is said to be positive definite if x  TQx  > 0 , ∀x  ≠ 0 i.e., f x   > 0 
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and positive semi-definite if x  TQx  ≥0, ∀x  ≠ 0 i.e.,  

f x   ≥ 0 

Similarly, 

A quadratic form x  TQx   is said to be negative definite if x  TQx  < 0 , ∀x  ≠ 0 i.e., f x   < 0 

and negative semi-definite if x  TQx  ≤0, ∀x  ≠ 0 i.e., 

f x   ≤ 0 

Range and Nullspace of A 

Let A ∈ Rm×n , (Rm×n  denotes the set of m x n matrices with elements in the field of real numbers). 

Let the image (or) range of A be denoted by 

R A =  Ax  : x  ∈ Rn  ,  
and the nullspace (or kernel) of A be denoted by 

N A =  x  ∈ Rn : Ax  = 0    
Note that R(A) and N(A) are subspaces. 

Lemma: Let A ∈ Rm×nm ≥ n. Then, rank(A) = n iff rank ATA = n. i.e., the square matrix ATA is non-singular. 

Theorem: The unique vector x  ∗  that minimizes f x =   Ax  − b   
2

 is given by the solution to the 

equationATAx  = ATb , i.e., x  ∗ = (ATA)−1ATb  . 

Thus, x  ∗ = (ATA)−1ATb   is the unique minimizer of  Ax  − b   
2
 

 

2.6 Optimization Techniques: Unconstrained and Constrained optimization 

We consider the optimization problem 

Minimize f x    

Subject tox  ϵΩ 

where f: Rn → R is a real valued function, called the objective function or cost function. The set Ω ⊂ Rn , is 

called the constraint set or feasible set. It normally takes the form: 

Ω =  x  : h   x   = 0  , g   x   ≤ 0   , functional constraints, 

where h   and g   are given functions. The constraint may also include Ω = Rn  which is usually called the 

unconstrained case. 

Conditions for local minimizers 

We derive conditions for a point x  ∗ to be a local minimizer. For the given optimization problem with constraint 

set Ω ⊂ Rn  , the minimizer may be either in the interior or on the boundary of Ω. A vector d  Rn , d  ≠ 0   is 

called a feasible direction at x  ϵΩ , if ∃α0 > 0 ∋ x  +  αd  ϵΩ∀α[0, α0] 
 

First-Order Necessary Condition (FONC) 

If we define x   α = x∗ + αd  ∈ Ω(Obviously x   0 = x  ∗) 
Then, by Taylor’s theorem, 

f x  ∗ +  αd   − f x  ∗ =  αd  T∇f x   0  + o α  

Let Ω ⊂ Rn  and f ∈ C1 a real valued function on Ω. If x∗ is a local minimizer of f over Ω, then for any possible 

direction d   at x  k , we have  

d  T∇f x  n ≥ 0 

Second-Order Necessary Condition (SONC) 

Let Ω ⊂ Rn  and f ∈ C2, x∗ a local minimizer of f over Ω, and d   a feasible direction at x  ∗ 

If d  T∇f x  ∗ = 0, then, d  T∇2f x  ∗ d  ≥ 0 .  H = ∇2f(x  ) is the Hessian. 

 

2.6.1 Steepest Descent 

We consider a class of search methods for f: Rn → R. These methods use the ∇f. For the function f the set of 

points x   satisfying f  x   = c  for some constant c is called a level set (see fig) (Cf. level curves on hill, 

equipotential curves or surfaces) 

Note that −∇f(x  ) is in the direction of negative gradient or the direction of maximum rate of decrease. Consider 

the point x  (0), the starting point, and another point x  (0) − α∇fx  (0) 

f  x  (0) − α∇f x  (0)  = f(x   0 ) − α ∇f(x   0 ) 
2

+ O(α2) 

For sufficiently small α > 0, we can write when ∇f x   0  ≠ 0 

f  x  (0) − α∇f x  (0)  < f(x   0  

Thus, if we start with a point x  k , to find the next point we move by an amount −αk∇f(x   k ) i.e., 
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x  (k+1) = x  (k) − αk∇f(x   k ) 

In the method of steepest descent, the step size αk  is chosen to minimize  

f  x  (k) − α∇f x  (k)   i.e., 

αk = argmin
α≥0

f  x  (k) − α∇f x  (k)   

We can prove that the algorithm possesses the descent property f(x   k+1 ) < f(x   k ) 

Example 4: 

Let’s apply the steepest descent algorithm to the following function, 

F x = x1
2 + 25x2

2 
Starting from the initial guess 

x0 =  
0.5
0.5

  

The first step is to find the gradient: 

∇F x =

 
 
 
 

∂

∂x1

F(x)

∂

∂x2

F(x)
 
 
 
 

=  
2x1

50x2
  

If we evaluate the gradient at the initial guess we find 

g0 =  ∇F(x) x=x0
=  

1
25

  

Assume that we use a fixed learning rate of α = 0.01. The first iteration of the steepest descent algorithm would 

be 

x1 = x0 − αg0 =  
0.5
0.5

 − 0.01  
1

25
 =  

0.49
0.25

  

The second iteration of the steepest descent produces 

x2 = x1 − αg1 =  
0.49
0.25

 − 0.01  
0.98
12.5

 =  
0.4802
0.125

  

 

2.6.2Newton’s Method 

We can write for the function f: Rn → R with f ∈ C2, Taylor expansion of f about the point x  k , neglecting terms 

of order three & higher as: 

f(x)    ≈ f x   k  +  x  − x   k  
T

g  (k) +
1

2
 x  − x   k  

T
H(x   k ) x  − x   k  ≜ q(x  ), say 

In this g  (k) = ∇f(x  (k)  and H x  k = ∇2f(x   k ) 

Setting x   k+1 = x   k + d   k , we can write the iterative steps as: 

(i) Solve H x  k d   k = −g  (k) ford   k  

(ii) Set x   k+1 = x   k + d   k  

 

Example5: 
F x = x1

2 + 25x2
2 

The gradient and Hessian matrices are 

∇F x =  

∂

∂x1
F(x)

∂

∂x2
F(x)

 =  
2x1

50x2
 , ∇2F x =  

2 0
0 50

  

If we start from the same initial guess 

x0 =  
0.5
0.5

 , 

The first step of Newton’s method would be 

x1 =  
0.5
0.5

 −  
2 0
0 50

 
−1

 
1

25
 =  

0
0
  

This method will always find the minimum of a quadratic function in one step. This is because Newton’s 

method is designed to approximate a function as quadratic and then locate the stationary point of the quadratic 

approximation. 

 

2.6.3 Q-Conjugate Algorithm 

Defn: Q Conjugate Directions: Let Q be a symmetric positive definite nxn matrix. If the directions 

d   1 , d   2 , … , d   k ∈ Rn , k ≤ n − 1 are non-zero and we say that they are Q-conjugate if d   i TQd   j = 0  ∀i ≠ j.  
Theorem: The Q-Conjugate directions are l.i. 
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Algorithm: We now apply the conjugate direction algorithm to minimize the quadratic function 

f x   =
1

2
x  TQx  − x  Tb   

(i) Given Q, and a starting point x  (0), we first find Q-conjugate directions d   0 , d   1 , … , d   n . 

(ii) Obtain g   k = ∇fx   k = Qx   k − b  , and αk = −
g   k d    k 

d    k T Qd    k  where αk =learning rate 

(iii) x  (k+1) = x  (k) + αkd   k  

2.6.4 Extremum problems with constraints: (Equality constraints) 

Let h: R2 → R be the constraint function. We know that at each point x in the domain, the ∇h(x) is orthogonal to 

the level set that passes through that point. Let us choose a point x  ∗ = (x1
∗ , x2

∗)T ∋ h x  ∗ = 0 and assume that 

∇h x  ∗ ≠ 0. The level set through the point x  ∗ is the set  x  : h x   = 0 . We then parametrize this level set in 

anneighborhood of x  ∗ by a curve x(t), that is a continuously differentiable vector function f: R → R2 such that 

x   t =  
x1(t)
x2(t)

 t ∈ (a, b)x  ∗ = x   t∗ , x∗(t∗) ≠ 0t∗ ∈ (a, b) 

We now show that ∇h(x∗) is orthogonal to x∗(t∗) 

Since h is constant on the curve [x t : t ∈  a, b ] we have ∀t ∈ (a, b) 

h x t  = 0   ⟹
d

dt
h x t  = 0     ∀t ∈ (a, b) 

Therefore, 
d

dt
h x t  = ∇h x   t T . x  t  = 0   ⟹ ∇h x∗ ⊥ x (t) 

Now suppose that x  ∗ is a minimizer of f: R → R2 on the set  x: h x = 0  
We claim that ∇f(x∗)  ⊥ x (t∗) 

Consider the composite function of t given by 

φ t = f x t   

It achieves a minimal t∗ ⟹ the FONC for the unconstrained extremum problem  

⟹
dφ(t∗)

dt
= 0 

⟹ 0 =  
d

dt
φ t∗ = ∇[f x t∗  ]Tx (t∗) 

The fact that x (t∗) is tangent to the curve x(t) at x* means that ∇f( x  ∗)  ⊥ to the curve at x  ∗. 

Now ∇h(x  ∗) is also orthogonal to x    t∗ . Therefore the vector ∇h(x∗) and ∇f x∗  are parallel i.e., ∇f( x  ∗) is a 

scalar multiple of ∇h(x  ∗). 

Lagrange’s Theorem: (General case) 

Let x  ∗be a local minimizer of f: Rn → R subject to h x   = 0 , h: Rn → Rm , m≤ n. Assume that x  ∗is a regular 

point. Then ∃aλ∗ϵRm  such that  

Df x  ∗ + λ∗TDh x  ∗ = 0T  

Lagrange’s theorem states that if x  ∗is an extremizer then ∇f can be expressed as a l.c. of the gradients of the 

constraints. We refer to λ∗as a Lagrange multiplier vector and its components as Lagrange multipliers. 

 

2.6.5 Extremum Problems with Constraints (Equality and Inequality Constraints) 

KKT Theorem: (Karush-Kuhn-Tucker) 

Let f , h  , g  ∈ C1 . Let x  ∗ be a regular point and a local minimizer for the problem of minimizing f subject to 

h   x   = 0   and g   x   ≤ 0  . Then there exists λ∗ϵRm and μ∗ϵRp  such that 

(i) μ∗ ≥ 0 

(ii) Df x   + λ∗TDh x  ∗ + μ∗TDg x  ∗ = 0T  

(iii) μ∗Tg x  ∗ = 0 

In the above theorem, we refer to λ∗as a Lagrange multiplier vector and μ∗as a KKT multiplier vector. 

Example 6: Use the KKT conditions to solve the following NLPP (Nonlinear programming problem) 

Maximize z = 8x1 + 10x2 − x1
2 − x2

2 

Subject to: 3x1 + 2x2 ≤ 6 

  x1, x2 ≥ 0 

Here, f x   = 8x1 + 10x2 − x1
2 − x2

2 

and    h x   = 3x1 + 2x2 − 6 ≤ 0 

The KKT conditions are: 
∂f

∂xi

− λ
∂h

∂xi

= 0 ⟹  
8 − 2x1 − 3λ = 0

10 − 2x2 − 2λ = 0
  

λh x   = 0  ⟹ λ 3x1 + 2x2 − 6 = 0 

𝑕 𝑥  ≤ 0, 𝑥1, 𝑥2 ≥ 0,   𝜆 > 0 
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⟹ 𝜆 3𝑥1 + 2𝑥2 − 6 ≤ 0 

Now depending upon the value of 𝜆, the following two cases arise: 

Case I) If 𝜆 = 0, then 8 − 2𝑥1 = 0 𝑎𝑛𝑑 10 − 2𝑥2 = 0 implies 𝑥1 = 4, 𝑥2 = 5, but, this does not satisfy the 

condition 𝑕 𝑥  = 3𝑥1 + 2𝑥2 − 6 ≤ 0 

Case II) If 𝜆 ≠ 0,  3𝑥1 + 2𝑥2 − 6 = 0 

Eliminating 𝜆, we get −2𝑥1 + 3𝑥2 − 7 = 0 

Solving the above two equations we get  𝑥1 , 𝑥2 =  
4

13
,

33

13
  

Using these values, we get 𝜆 =
206

33
 implies 𝜆 > 0 

The optimal solution is  𝑥1 , 𝑥2 =  
4

13
,

33

13
  and the maximum value of Z is  

𝑧𝑚𝑎𝑥 = 𝑧 𝑥 𝑜𝑝𝑡  = 21.3 

 

III. REVIEW OF PROBABILITY THEORY 

3.1 Discrete and Continuous Univariate Random Variables 

Suppose we flip a coin 10 times (or flip 10 coins once) and let the outcome be 

Ω = {H, H, T, H, T, H, H, T, T, T} 

In this, number of heads in 10 tosses = 5 

An r.v. (random variable) X is a function 𝑋: 𝛺 → 𝑅 (where 𝛺= Sample space, R = Real number) 

An r.v. can be discrete or continuous. 

Discrete r.v. X: 

a) X, Bernoulli r.v.𝑝 𝑥 =  
𝑝

1 − 𝑝
   where p = probability of heads in a toss of a coin. 

b) X, Binomial r.v.: This is the number of heads in n independent flips of a coin with heads probability p 

𝑃 𝑥 = 𝐶𝑥
𝑛 𝑝𝑥(1 − 𝑝)𝑛−𝑥  

Example 7: Find the probability of 3 heads in 5 tosses where 𝑝 = 1
2  and 1 − 𝑝 = 1

2  

𝑃 3 = 𝐶3
5  

1

2
 

3

 
1

2
 

2

=
10

32
 = 0.3 

Continuous r.v. X: 

Uniform pdf X ~𝑈(𝑎, 𝑏) where a < b 

Example 8: 𝑈 𝑋   =  
1  0 ≤ 𝑥 ≤ 1  
0   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Example 9:𝑈 𝑋  =  
1

𝑏−𝑎
𝑖𝑓𝑎 ≤ 𝑥 ≤ 𝑏

0   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

X~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎2  

𝑓 𝑥 =  
1

 2𝜋𝜎2
 𝑒−

1

2
 
𝑥−𝜇

𝜎
 

2

− ∞ < 𝑥 < ∞ 

Properties: (Continuous X) (pdf = probability distribution function) 

i) 𝑓 𝑥 ≥ 0 

ii)  𝑓 𝑥 𝑑𝑥 = 1
∞

−∞
 

iii)  𝑓 𝑥 𝑑𝑥 = 𝑃(𝑋𝜖𝐴)
𝑥𝜖𝐴

 

Properties: (Discrete X) (pmf = probability mass function) 

i) 0 ≤ 𝑝𝑋(𝑥) ≤ 1 

ii)  𝑝𝑋 𝑥 = 1𝑥∈𝑉𝑎𝑙 (𝑋)  

iii)  𝑝𝑋 𝑥 = 𝑃(𝑥 ∈ 𝐴)𝑥∈𝐴  
Characteristics of pmf or pdf 

For X, with pdf f(x), we haveE[X]→ 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 

Let 𝑓𝑋 𝑥  be a pdf of a continuous r.v. X, and 𝑔: 𝑅 → 𝑅  is an arbitrary function of X, then 𝐸 𝑔 𝑥  =

 𝑔 𝑥 𝑓𝑋 𝑥 𝑑𝑥
∞

−∞
  (for continuous r.v.)  

𝐸 𝑔 𝑥  =  𝑔(𝑥)𝑥∈𝑉𝑎𝑙 (𝑋) 𝑝𝑋 𝑥   (for discrete r.v.) 

Variance 

𝑉𝑎𝑟 𝑋 = 𝐸[(𝑋 − 𝐸 𝑥 )2] = 𝐸 𝑋2 − (𝐸 𝑥 )2 
 

Example 10:  

Calculate the mean & variance of the uniform r.v. X with pdf 𝑓𝑋 𝑥 =  
1    𝑥 ∈ [0,1]
0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Mean E[X] =  𝑥𝑓𝑋 𝑥 𝑑𝑥 =  𝑥. 1𝑑𝑥 =  
𝑥2

2
 

0

1
1

0

∞

−∞
=

1

2
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Variance Var[X] = 𝐸[(𝑋 − 𝐸 𝑥 )2] = 𝐸 𝑋2 −  𝐸 𝑥  2 =  𝑥21

0
𝑑𝑥 −  

1

2
 

2

=  
𝑥3

3
 

0

1

−
1

4
=

1

3
−

1

4
=

1

12
 

3.2 Discrete and Continuous Multivariate Random Variables 

Two Random Variables (2 r.v.’s): 

Joint Distribution 

1.Discrete case: (X, Y) 

𝑃𝑟 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑓 𝑥, 𝑦 = 𝑓(𝑥 ∩ 𝑦) 

𝑓 𝑥, 𝑦 ≥ 0 

  𝑓 𝑥, 𝑦 = 1

𝑦𝑥

 

2. Continuous case: (X,Y) 

𝑃𝑟 𝑎 < 𝑋 < 𝑏, 𝑐 < 𝑌 < 𝑑 =   𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝑑

𝑦=𝑐

𝑏

𝑥=𝑎

 

𝑋~𝑛 𝑋; 𝜇, 𝜎2  

𝑃 𝑋 ≤ 𝑥 =  𝑓 𝑥 𝑑𝑥

𝑥

−∞

 

Joint Cumulative Distribution Function 𝐹𝑋𝑌 𝑥, 𝑦 = 𝑃𝑟 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦  

Marginal Distributions 

Discrete: 𝑃𝑋 𝑥 =  𝑃𝑋𝑌 𝑥, 𝑦 𝑦  

Continuous: 𝑓𝑋 𝑥 =  𝑓𝑋𝑌
∞

−∞
 𝑥, 𝑦 𝑑𝑦 

 

Conditional Distributions 

Discrete 

𝑃𝑟𝑌|𝑋 𝑦 𝑥 =
𝑃𝑋𝑌(𝑥, 𝑦)

𝑃𝑋 𝑥 
 

Let A and B be two events s.t. P(A) > 0. Denote by P(B|A), the probability of B given A has occurred. A 

becomes the new sample space replacing the original S, thus 

𝑃 𝐵 𝐴 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
 

Continuous Distributions 

𝑓𝑌|𝑋 𝑦 𝑥 =
𝑓𝑋𝑌(𝑥, 𝑦)

𝑓𝑋(𝑥)
 

Bayes rule: 

𝑓𝑌|𝑋 𝑦 𝑥 𝑓𝑋 𝑥 = 𝑓𝑋|𝑌 𝑥 𝑦 𝑓𝑌 𝑦  

Expectation & Covariance 

𝐸 𝑔 𝑋, 𝑌  =   𝑔 𝑥, 𝑦 𝑃𝑋𝑌 𝑥, 𝑦 =   𝑔 𝑥, 𝑦 𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

∞

0

∞

0𝑦𝑥

 

Similar to variance, we have covariance as 

Cov(X,Y) = E[(X – E(X)) (Y – E(Y))] 

Cov(X,Y) = E[XY] – E[X]E[Y] 

 

Independent identically distributed rvs (iid) 

If X & Y are independent, then cov(X,Y)=0 We can write E[f(X)g(Y)] = E[f(X)] E[g(Y)] 

Multiple Random Variables 

 𝑓𝑋1 ...𝑋𝑛
(𝑥1𝑥2 …𝑥𝑛)

𝑋  ∈𝐴
𝑑𝑥1𝑑𝑥2 …𝑑𝑥𝑛 = probability of the event A in 𝑅𝑛  

𝑋 = (𝑥1 , 𝑥2 , … , 𝑥𝑛)  (Random Vector) 

Example 11: (n-dimensional Gaussian pdf) 

𝑃 𝑋 ; 𝜇, 𝛴 =
1

(2𝜋)
𝑛

2  𝛴 
1

2 
𝑒−

1

2
(𝑥 −𝜇   )𝑇𝛴−1(𝑥 −𝜇   )

 

We write this as X~𝑁 𝜇, 𝛴  

Basic properties 

1) Conditional Probabilities (Chain Rule) 

𝑓 𝑥1 , 𝑥2, … , 𝑥𝑛 = 𝑓(𝑥𝑛 |𝑥1 , … , 𝑥𝑛−1)𝑓(𝑥1 , 𝑥2 , … , 𝑥𝑛−1) 
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 = 𝑓 𝑥𝑛  𝑥1 , … , 𝑥𝑛−1 𝑓 𝑥𝑛−1 𝑥1 , … , 𝑥𝑛−2 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛−2  
                                                  ….. 

                                = 𝑓(𝑥1)  𝑓(𝑥𝑖 |𝑥1 …𝑥𝑖−1)

𝑛

𝑖=2

 

2) Independence (Mutually Independent) 

𝑓 𝑥1 , 𝑥2, … , 𝑥𝑛 = 𝑓 𝑥1 𝑓 𝑥2 … 𝑓 𝑥𝑛  
 

3.3 Bayes’ Rule 

𝑃 𝑏 𝑎 =
𝑃 𝑎 𝑏 𝑃(𝑏)

𝑃(𝑎)
 

 On the surface, Bayes’ rule does not seem very useful. It allows us to compute the single term P(b|a) in 

terms of three terms: P(a|b), P(b) and P(a). There are many cases where we do have good probability estimates 

for these three numbers and need to compute the fourth. Often we perceive as evidence the effect of some 

unknown cause and we would like to determine that cause. 

𝑃 𝑐𝑎𝑢𝑠𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 =
𝑃 𝑒𝑓𝑓𝑒𝑐𝑡 𝑐𝑎𝑢𝑠𝑒 𝑃(𝑐𝑎𝑢𝑠𝑒)

𝑃(𝑒𝑓𝑓𝑒𝑐𝑡)
 

 For example, the doctor knows P(symptoms|disease) and wants to derive a diagnosis 

P(disease|symptoms).  

Example 12: A doctor knows that the disease Meningitis causes the patient to have a stiff neck with probability 

0.7, i.e., P(s|m) = 0.7. The doctor also knows some unconditional facts: the prior probability that a patient has 

meningitis is 1/50000 = P(m) and the prior probability that a patient has stiff neck is P(s) = 0.01 

Hence, 𝑃 𝑚 𝑠 =
𝑃 𝑠 𝑚 𝑃 𝑚 

𝑃 𝑠 
=

0.7×1
50000 

0.01
= 0.0014 

Note that 𝑃 𝑠 ≫ 𝑃 𝑚 . The causal information P(s|m) is unaffected by an epidemic of meningitis, because it 

simply reflects the way meningitis works. 

3.4 Naïve Bayes 

Multiple Evidences 

What happens when we have 2 or more evidences? (catch & toothache) 

 Example 13: What can a dentist conclude if her nasty probe catches in the aching tooth of a patient? 

Each catch and toothache is directly caused by the cavity and but neither has a direct effect on the other; 

toothache depends on the state of the nerves in the tooth, whereas the probe’s accuracy depends on the dentist’s 

skill, to which the toothache is irrelevant i.e., they are conditionally independent given the cavity. 

Since P(X,Y|Z)=P(X|Z).P(Y|Z) when X and Y are conditionally independent given Z, we can write 

𝑃 𝑇 ∧ 𝐶𝑕 𝐶𝑣 = 𝑃 𝑇 𝐶𝑣 . 𝑃(𝐶𝑕|𝐶𝑣) 
When we have more evidences, we can write using chain rule: 

𝑃 𝑐𝑎𝑢𝑠𝑒, 𝑒𝑓𝑓𝑒𝑐𝑡1 , 𝑒𝑓𝑓𝑒𝑐𝑡2, … , 𝑒𝑓𝑓𝑒𝑐𝑡𝑛 = 𝑃(𝑐𝑎𝑢𝑠𝑒)  𝑃(𝑒𝑓𝑓𝑒𝑐𝑡𝑖 |𝑐𝑎𝑢𝑠𝑒)

𝑖

 

Such a probability distribution is called a Naïve Bayes model.  

 

 Example14:Consider the problem of classifying days according to whether someone will play tennis. 

Each day is described by the 4 attributes <outlook, temperature, humidity, wind>. We have to classify the new 

instance x = <sunny, cool, high, strong>. The task is to predict the target value y taking <yes or no> for this new 

x. 

From the table we see that there are n=14 training samples, each sample with 4 attributes 𝑥 = (𝑥1, 𝑥2 , 𝑥3 , 𝑥4) 

with 

𝑥1taking values “Sunny, Overcast, Rain” 

𝑥2 taking values “hot, mild, cool” 

𝑥3 taking values “high, normal” 

𝑥4taking values “weak, strong” 

From table, we see that 𝑃 𝐶1 =
9

14
 and 𝑃 𝐶2 =

5

14
 

 

The conditional probabilities are estimated as follows: 

For example, 

𝑃 𝑥4 = 𝑠𝑡𝑟𝑜𝑛𝑔 𝑦 = 𝐶1 =
3

9
𝑃 𝑥4 = 𝑠𝑡𝑟𝑜𝑛𝑔 𝑦 = 𝐶2 =

3

5
 

𝑃 𝑥4 = 𝑤𝑒𝑎𝑘 𝑦 = 𝐶1 =
6

9
𝑃 𝑥4 = 𝑤𝑒𝑎𝑘 𝑦 = 𝐶2 =

2

5
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Similarly we can work out for the other variables leading to 20 values.  

Consider the test data, x = <sunny, cool, high, strong> 

Since we are using NB classifier, we have 𝑃 𝑥  𝐶𝑗 =  𝑃 𝑥𝑖  𝐶𝑗  𝑖  

Hence, for 𝐶1 , 
𝑃 𝐶1 𝑥  = 𝑃 𝐶1 . 𝑃 𝑆𝑢𝑛𝑛𝑦 𝐶1 . 𝑃 𝑐𝑜𝑜𝑙 𝐶1 . 𝑃 𝑕𝑖𝑔𝑕 𝐶1 𝑃 𝑠𝑡𝑟𝑜𝑛𝑔 𝐶1 = 0.0053 

Similarly for 𝐶2, 

𝑃 𝐶2 𝑥  = 𝑃 𝐶2 . 𝑃 𝑆𝑢𝑛𝑛𝑦 𝐶2 . 𝑃 𝑐𝑜𝑜𝑙 𝐶2 . 𝑃 𝑕𝑖𝑔𝑕 𝐶2 𝑃 𝑠𝑡𝑟𝑜𝑛𝑔 𝐶2 = 0.0206 

Normalizing to 1, we obtain 

𝑃 𝐶2 𝑥  = 0.795 

𝑃 𝐶1 𝑥  = 0.205 

Hence, the test data belongs to class 𝐶2 
Day Outlook Temperature Humidity Wind Play Tennis? 

1 Sunny Hot High Weak No 

2 Sunny Hot High Strong No 

3 Overcast Hot High Weak Yes 

4 Rain Mild High Weak Yes 

5 Rain Cool Normal Weak Yes 

6 Rain Cool Normal Strong No 

7 Overcast Cool Normal Strong Yes 

8 Sunny Mild High Weak No 

9 Sunny Cool Normal Weak Yes 

10 Rain Mild Normal Weak Yes 

11 Sunny Mild Normal Strong Yes 

12 Overcast Mild High Strong Yes 

13 Overcast Hot Normal Weak Yes 

14 Rain Mild High Strong No 

Table 1 – Weather parameter values 

 

Conditional Independence 

X is conditionally independent of Y given Z ⇒ 𝑃 𝑋 𝑌, 𝑍 = 𝑃 𝑋 𝑍  

Similarly, the set of variables {𝑋1, 𝑋2, … , 𝑋𝑙} is conditionally independent of the set of variables {𝑌1 , 𝑌2 , … , 𝑌𝑚 } 

given the set of variables {𝑍1, 𝑍2, … , 𝑍𝑛} if 

𝑃 𝑋1 …𝑋𝑙  𝑌1𝑌2 …𝑌𝑚 ; 𝑍1𝑍2 …𝑍𝑛 = 𝑃 𝑋1 …𝑋𝑙 𝑍1𝑍2 …𝑍𝑛  

 

3.5 Bayesian Belief Networks (BBN) 

The conditionally independent assumption made by NB classifiers may seem too rigid especially for 

classification problems in which the attributes are somewhat correlated. 

a) If a node X does not have any parents, then the CPT contains only the prior probabilities P(X). 

b) If a node X has only a single parent Y, then the CPT contains P(X|Y) 

c) If a node X has multiple parents { 𝑌1𝑌2 …𝑌𝑘}  then the CPT contains the conditional probabilities 

P(X|𝑌1𝑌2 …𝑌𝑘) 

Normally the BBN does not give us the full CPT. We can always construct the CPTs from the individual tables, 

but that takes exponential time & space. 

 

Representation and Conditional Independence 

 In general, a BBN represents a joint pd by specifying a set of conditional independent assumption 

(represented by a Directed Acyclic Graph), together with sets of local conditional probabilities. Each variable in 

the joint space is represented by a node in the BN. For each variable, two types of information are specified:  

1
st
 – the network arcs represent the assertion that the variable is conditionally independent of its non-

descendants in the network given to immediate predecessor in the BN. We say that X is a descendant of Y if 

there is a directed path form Y to X. 

2
nd

 – a CPT is given for each variable, describing the pd for that variable given the value of its immediate 

predecessor. 

The joint probability for any desired assignment of values < 𝑦1 , 𝑦2 , … , 𝑦𝑛 > to the tuple of network variables 

< 𝑌1, 𝑌2 , … , 𝑌𝑛 > can be computed by the formula 

𝑃 𝑦1 , 𝑦2 , … , 𝑦𝑛 =  𝑃 𝑦𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑌𝑖  

𝑛

𝑖=1

 

Where Parents (𝑌𝑖) − the set of immediate predecessors of 𝑌𝑖  in the BN 

And, 𝑃 𝑦𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑌𝑖  − values stored in the CPT associated with node 𝑌𝑖 . 
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We see that the combination of the topology of the BN (i.e., the set of nodes and links) and the conditional 

distribution suffices to specify (implicitly) the full joint distribution for all the variables. There are two ways in 

which we can understand the semantics of the BBNs:  

The 1
st
 is to see the BN as a representation of the joint pdf. 

The 2
nd

 is to view it as an encoding of a collection of conditionally independent statements. 

Example 15: The BBN shown in Figure represents the joint pd over the Boolean variables:  

𝑋 =  𝑆𝑡𝑜𝑟𝑚, 𝐿𝑖𝑔𝑕𝑡𝑒𝑛𝑖𝑛𝑔, 𝑇𝑕𝑢𝑛𝑑𝑒𝑟, 𝐹𝑜𝑟𝑒𝑠𝑡𝐹𝑖𝑟𝑒, 𝐶𝑎𝑚𝑝𝐹𝑖𝑟𝑒, 𝐵𝑢𝑠𝑇𝑜𝑢𝑟𝐺𝑟𝑜𝑢𝑝  

i.e., 𝑋 =  𝑆, 𝐿, 𝑇, 𝐹𝐹, 𝐶𝐹, 𝐵𝑇𝐺  
Consider the node CF: It is conditionally independent of its non-descendants L & T, given its immediate parents 

S and BTG. Its conditional probability given S and BTG are given in the CPT. 

These together describe the full joint pd for the BBN. 

For ex: P(C|S,B)=0.4 

𝑃 ¬𝐶 ¬𝑆, ¬𝐵 = 0.8 

 

Example: 

 
Fig 1. Bayesian Belief Network 

 

Example of Inferencing Using BBN: 

Suppose we are interested in using the BBN shown in above Figure to diagnose whether a person has heart 

disease. The following cases illustrate how the diagnosis can be made under different scenarios. 

 

Case 1: No Prior Information 

Without any prior information, we can determine whether the person is likely to have heart disease by 

computing the prior probabilities P(HD=Yes) and P(HD=No). To simplify the notation, let α𝜖 {𝑌𝑒𝑠, 𝑁𝑜} denote 

the binary values of Exercise and β𝜖 {𝐻𝑒𝑎𝑙𝑡𝑕𝑦, 𝑈𝑛𝑕𝑒𝑎𝑙𝑡𝑕𝑦} denote the binary values of Diet. 

 

P(HD=Yes) =   𝑃 𝐻𝐷 = 𝑌𝑒𝑠 𝐸 = 𝛼, 𝐷 =  𝛽)𝑃(𝐸 = 𝛼, 𝐷 = 𝛽)𝛽𝛼  

=   𝑃 𝐻𝐷 = 𝑌𝑒𝑠 𝐸 = 𝛼, 𝐷 =  𝛽)𝑃 𝐸 = 𝛼 𝑃(𝐷 = 𝛽)

𝛽𝛼

 

 = 0.25 x 0.7 x 0.25 + 0.45 x 0.7 x 0.75 + 0.55 x 0.3 x 0.25 + 0.75 x 0.3 x 0.75 

 = 0.49 

Since P(HD=no) = 1 – P(HD=yes)=0.51, the person has a slightly higher chance of not getting the disease. 

 

Case 2: High Blood Pressure 

 

If the person has high blood pressure) we can make a diagnosis about heart disease by comparing the posterior 

probabilities, P(HD = Yes | BP=High) against P(HD=No | BP = High). To do this, we must compute P(BP = 

High): 

P(BP=High) =  𝑃 𝐵𝑃 = 𝐻𝑖𝑔𝑕 𝐻𝐷 = 𝛾)𝑃(𝐻𝐷 = 𝛾)𝛾  
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= 0.85 x 0.49 + 0.2 x 0.51 = 0.5185. 

Where 𝛾𝜖 {𝑌𝑒𝑠, 𝑁𝑜}. Therefore, the posterior probability the person has heart disease is 

P(HD = Yes | BP=High) = 
𝑃(𝐵𝑃 = 𝐻𝑖𝑔𝑕  | 𝐻𝐷 = 𝑌𝑒𝑠) 𝑃 (𝐻𝐷 = 𝑌𝑒𝑠)

𝑃(𝐵𝑃=𝐻𝑖𝑔𝑕)
 = 

0.85×0.49

0.5185
= 0.8033. 

 

Similarly, P(HD=no | BP=High) = 1 – 0.8033= 0.1967. Therefore, when a person has high blood pressure, it 

increases the risk of heart disease. 

 

 

Case 3: High Blood Pressure, Healthy Diet, and Regular Exercise 

Suppose we are told that the person exercises regularly and eats a healthy diet. How does the new information 

affect our diagnosis? With the new information, the posterior probability that the person has heart disease is 

P(HD=Yes | BP=high, D=Healthy, E=Yes) 

=
𝑃(𝐵𝑃 = 𝐻𝑖𝑔𝑕|𝐻𝐷 = 𝑌𝑒𝑠, 𝐷 = 𝐻𝑒𝑎𝑙𝑡𝑕𝑦, 𝐸 = 𝑌𝑒𝑠)

𝑃(𝐵𝑃 = 𝐻𝑖𝑔𝑕|𝐷 = 𝐻𝑒𝑎𝑙𝑡𝑕𝑦, 𝐸 = 𝑌𝑒𝑠)
× 𝑃(𝐻𝐷 = 𝑌𝑒𝑠, 𝐷 = 𝐻𝑒𝑎𝑙𝑡𝑕𝑦, 𝐸 = 𝑌𝑒𝑠) 

=
𝑃(𝐵𝑃 = 𝐻𝑖𝑔𝑕|𝐻𝐷 = 𝑌𝑒𝑠, 𝐷 = 𝐻𝑒𝑎𝑙𝑡𝑕𝑦, 𝐸 = 𝑌𝑒𝑠)

 𝑃 𝐵𝑃 = 𝐻𝑖𝑔𝑕 𝐻𝐷 = 𝛾 𝑃(𝐻𝐷 = 𝛾|𝐷 = 𝐻𝑒𝑎𝑙𝑡𝑕𝑦, 𝐸 = 𝑌𝑒𝑠)𝛾

 

=
0.85 × 0.25

0.85 × 0.25 + 0.2 × 0.75
 

= 0.5862 
 

While the probability that the person does not have heart disease is 

P(HD=No|BP=High, D=Healthy, E=Yes) = 1 – 0.5862=0.4138 

 

IV. DISCRIMINATIVE & GENERATIVE LEARNING ALGORITHMS 

For a classification problem (supervised or unsupervised) there are two different approaches: 

i) In a direct approach called DLA, we use a functional form of the generalized linear model explicitly to 

determine its parameters directly by using maximum likelihood. (There is an efficient algorithm for finding 

such solutions known as Iterative Reweighted Least Squares IRLS). In this direct approach, we are 

maximizing a likelihood function defined – through the conditional distribution 𝑃(𝐶𝐾|𝑥 ) which represents a 

form of DLA. 

Example: Linear Regression 

Let 𝑥 𝑖  be an i
th

 sample vector of n dimensions.  

When we consider m number of samples, we can construct a data matrix X of mxn dimensions, i.e., X = 

[𝑥 1, 𝑥 2, … 𝑥 𝑚 ]. Let 𝑦(𝑖) = 𝑕𝜃(𝑥 𝑖) be the target value of 𝑥 𝑖 . 
The linear regression hypothesis is  

𝑦(𝑖) = 𝑕𝜃 𝑥 
𝑖 = 𝜃0 + 𝜃1𝑥1

(𝑖) + ⋯ + 𝜃𝑛𝑥𝑛
(𝑖)= 𝜃𝑗𝑥𝑗

(𝑖)=𝑥 (𝑖)𝑇𝜃  

The error for the i
th

 sample is 𝑒(𝑖) = 𝑥 (𝑖)𝑇𝜃 − 𝑦(𝑖) 

We define the cost function 𝐽 𝜃 =
1

2
  𝑥 (𝑖)𝑇𝜃 − 𝑦(𝑖) 𝑚

𝑖=1  

And minimize J with respect to 𝜃  by Ordinary Least Squares method.  

 

There are two methods of minimizing J: 

a) Explicit minimization by obtaining the normal equations. 

To minimize J, we set the derivatives of J with respect to 𝜃  equal to zero and obtain the normal equations 

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦  
b) Iterative Algorithm: Gradient Descent Algorithm: We use a search algorithm that starts with some “initial 

guess” for 𝜃  and that repeatedly changes 𝜃  to make 𝐽 𝜃  smaller. The update equation is: 𝜃𝑗 = 𝜃𝑗 −

𝛼
𝜕

𝜕𝜃𝑗
𝐽 𝜃  

ii) In the indirect approach called GLA, we fit the class-conditional densities 𝑃(𝐶𝐾|𝑥 ) and the class priors 

separately (given in the training set) and then apply Bayes’ theorem to find the posterior 𝑃(𝐶𝐾|𝑥 ). This 

represents an example of generative modelling because we could take such a model & generate synthetic 

data by drawing values of 𝑥  from the marginal distribution 𝑃(𝑥 ). 
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V. RANDOM PROCESSES 

5.1 Markov Models 

Given a set of states 𝑆 = {𝑠1 , 𝑠2 , … , 𝑠 𝑆 } we can observe a series over time 0 to T. For example, we might have 

the states from a weather system S = {sun, cloud, rain} with |S|=3 and observe the weather over a few days 

{𝑧1 = 𝑠𝑠𝑢𝑛 , 𝑧2 = 𝑠𝑐𝑙𝑜𝑢𝑑 , 𝑧3 = 𝑠𝑐𝑙𝑜𝑢𝑑 , 𝑧4 = 𝑠𝑟𝑎𝑖𝑛 , 𝑧5 = 𝑠𝑐𝑙𝑜𝑢𝑑 } with T = 5. 

 The observed states of our weather example represent the output of a random process over time. 

Without some further assumptions, state 𝑠𝑗  at time t could be a function of any number of variables, including 

all the states from times 1 to t − 1 and possibly many others that we don't even model. However, we will make 

two Markov assumptions that will allow us to tractably reason about time series.  

 The limited horizon assumption is that the probability of being in a state at time t depends only on the 

state at time t−1. The intuition underlying this assumption is that the state at time t represents “enough” 

summary of the past to reasonably predict the future. Formally: 

𝑃 𝑧𝑡  𝑧𝑡−1, 𝑧𝑡−2, … , 𝑧1 = 𝑃(𝑧𝑡 |𝑧𝑡−1) 

The stationary process assumption is that the conditional distribution over next state given current state does not 

change over time. 

 𝑃 𝑧𝑡  𝑧𝑡−1 = 𝑃 𝑧2 𝑧1 ;   𝑡𝜖 2 …𝑇 

 

 
 Note that these numbers represent the intuition that the weather is self-correlated: if it's sunny it will 

tend to stay sunny, cloudy will stay cloudy, etc. This pattern is common in many Markov models and can be 

observed as a strong diagonal in the transition matrix. Note that in this example, our initial state s0 shows 

uniform probability of transitioning to each of the three states in our weather system 

 

Two questions of a Markov Model 

1. What is the probability of a particular sequence of states 𝑧  ?  
2. And how do we estimate the parameters of our model A such to maximize the likelihood of an observed 

sequence 𝑧  ? 

 

1.Probability of a state sequence 

We can compute the probability of a particular series of states 𝑧  by use of the chain rule of probability: 

𝑃 𝑧  = 𝑃 𝑧𝑡 , 𝑧𝑡−1 , … , 𝑧1; 𝐴  
𝑃 𝑧  = 𝑃(𝑧𝑡 , 𝑧𝑡−1 , … , 𝑧1 , 𝑧0; 𝐴) 

𝑃 𝑧  = 𝑃 𝑧𝑡  𝑧𝑡−1, … , 𝑧1; 𝐴 𝑃 𝑧𝑡−1 𝑧𝑡−2, … , 𝑧1; 𝐴 …𝑃 𝑧1 𝑧0; 𝐴  
𝑃 𝑧  = 𝑃 𝑧𝑡  𝑧𝑡−1; 𝐴 𝑃 𝑧𝑡−1 𝑧𝑡−2; 𝐴 …𝑃 𝑧1 𝑧0; 𝐴  

=  𝑃 𝑧𝑡  𝑧𝑡−1; 𝐴 

𝑇

𝑡=1

 

=  𝐴𝑧𝑡−1
𝑧𝑡

𝑇

𝑡=1

 

For example, for the sequence 𝑧 = (𝑧1 , 𝑧2, 𝑧3 , 𝑧4, 𝑧5) = (𝑠, 𝑐, 𝑟, 𝑟, 𝑐), we have 

𝑃 𝑧 = 𝑃 𝑠𝑢𝑛 𝑠0 𝑃 𝑐𝑙𝑜𝑢𝑑 𝑠𝑢𝑛 𝑃 𝑟𝑎𝑖𝑛 𝑐𝑙𝑜𝑢𝑑 𝑃 𝑟𝑎𝑖𝑛 𝑟𝑎𝑖𝑛 𝑃 𝑐𝑙𝑜𝑢𝑑 𝑟𝑎𝑖𝑛  
= 0.33 × 0.1 × 0.2 × 0.7 × 0.2 = 0.000924 

 

2.Estimation of transition parameters A 

 

We determine the parameters A that maximize the log-likelihood of sequence z. 

𝑙 𝐴 =𝑙𝑜𝑔 𝐴𝑧𝑡−1
𝑧𝑡

𝑇
𝑡=1 =  𝑙𝑜𝑔 𝐴𝑧𝑡−1

𝑧𝑡
𝑇
𝑡=1  

=    1 𝑧𝑡−1 = 𝑠𝑖 ∧ 𝑧𝑡 = 𝑠𝑗  𝑙𝑜𝑔𝐴𝑖𝑗

𝑇

𝑡=

 𝑆 

𝑗 =1

 𝑆 

𝑖=1
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In the last line we use an indicator function whose value is 1, when the condition holds, and 0 otherwise, to 

select the observed transition at each time-step. 

When solving this optimization problem, we should keep in mind that A is a valid transition matrix. Thus, 

𝑚𝑎𝑥𝐴 𝑙 𝐴  such that 

 

 𝐴𝑖𝑗 = 1
|𝑆|
𝑗=1    , I = 1,…,|S| 

And 

𝐴𝑖𝑗 ≥ 0    , i ,j = 1,2,…,|S| 

 

This constrained optimization problem can be solved in closed form using the method of Lagrange Multipliers, 

and we can show that 

𝐴𝑖𝑗 =
 1 𝑧𝑡−1 = 𝑠𝑖 ∧ 𝑧𝑡 = 𝑠𝑗  

𝑇
𝑡=

 1 𝑧𝑡−1 = 𝑠𝑖 
𝑇
𝑡=

 

The ML parameter corresponds to the fraction of time when we are in state i that we transitioned to state j. 

 

5.2 Hidden Markov Model (HMM) 

Now as earlier (in MM), there is a series of states 𝑧 = (𝑧1 , 𝑧2, … , 𝑧𝑡) drawn from a state alphabet 

𝑆 = (𝑠1 , 𝑠2, … , 𝑠 𝑆 ) with a state transition matrix A. Now, Z is a hidden state and we don’t get to observe the 

actual sequence of states in Z. 

However, at each time step t, the system randomly evolves from state 𝑧𝑖  to 𝑧𝑖+1 , while emitting 

symbols from x governed by an emission probability matrix B. An HMM can be visualized by imagining that 2 

different dice are associated with each state. Both the transitions and emissions depend on the current state only 

and not on the past. Only the symbols emitted by the system are observable, not the underlying random walk 

between states 𝑧𝑗  𝑠𝑘  to  𝑧𝑗+1 𝑠𝑙 . 

 

We model the probability of generating an output observation as a function of our hidden state by the output 

independence assumption. 

𝐵𝑗𝑘 = 𝑃 𝑥𝑡 = 𝑣𝑘  𝑧𝑡 = 𝑠𝑗  = 𝑃(𝑥 = 𝑣𝑘 |𝑥1 , … , 𝑥𝑇 , 𝑧1 , … , 𝑧𝑇) 

The matrix B encodes the probability of our hidden state generating output 𝑣𝑘 given that the state at the 

corresponding time was 𝑠𝑗 .  

Thus, the transition model specifies the values 𝑃 𝑍𝑡 𝑍0,…,𝑡−1 = 𝑃 𝑍𝑡  𝑍𝑡−1 = 𝐴𝑖𝑗  

And the conditional probability 𝑃 𝑥𝑡  𝑥0:𝑡 , 𝑧1:𝑡 = 𝑃 𝑥𝑡  𝑧𝑡 = 𝐵𝑖𝑗  

For the sensor world, the specification is only for a particular state𝑧𝑖 . Thus, B is a diagonal matrix. 

The probability of an observed sequence x can be worked out in a similar fashion of the Markov Model and can 

be shown to be: 

𝑃 𝑧0:𝑡       , 𝑋1:𝑡
        = 𝑃(𝑧0    )  𝑃(𝑧𝑖   |𝑧𝑖−1        

𝑡

𝑖=1

)𝑃(𝑥𝑖    |𝑧𝑖   ) 

The parameters A and B can be found out as in A for MM, but involves tedious calculations using EM algorithm 

(Expectation Maximization) 
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