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ABSTRACT:This study presents development of surface meteorological data-based models for prediction of 

vertical profile of radioclimatic parameters. To achieve this, suitable models were developed on Artificial 

Neural Network (ANN) and Adaptive-Neuro Fuzzy Inference System (ANFIS) using data obtained from previous 

research that was conducted by launching both radiosounde and collecting data from fixed mast. The two 

results obtained from ANFIS and ANN were compared to see which will achieve a greater accuracy. Primary 

and secondary radioclimatic parameters are essential for computing values of different parameters used in the 

design of wireless networks. The secondary radio parameter are determined from the primary radioclimatic 

parameters namely; atmospheric pressure, relative humidity and temperature. The results revealed that 

prediction obtained by ANFIS has a greater accuracy and the result can actually be used for prediction. This 

research shows that data acquired using ANN and ANFIS models are cost effective and can be used in place of 

launching radiosonde equipment in order to capture the vertical profile of the radioclimatic parameters. The 

result of the research will go a long way in solving the problem encountered during the launch of radiosounde 

equipment.  Also, the need to visit sites whenever data collation is needed will be to a great extent reduced.  The 

loss of radiosounde equipment, which often happens at site, will also be completely eliminated. 
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I.      INTRODUCTION 
Over the years, wireless communication networks have grown to become the dominant communication 

technology across the globe. In the design and planning of wireless communication networks, the vertical profile 

of some radioclimatic parameters is required. Among such parameters is the radio refractive index at the lower 

part of the atmosphere. Refractive index is defined as a ratio of the radio wave propagation velocity in free 

space to its velocity in a specified medium. Radio–wave propagation is determined by changes in the refractive 

index of air in the troposphere. Changes in the value of the troposphere radio refractive index can curve the path 

of the propagating radio wave.  At standard atmosphere conditions near the earth surface, the radio refractive 

index is equal to approximately 1.0003[1]. As the conditions of propagation in the atmosphere vary from the 

standard ones, the anomalous radio-wave propagation is observed. Such anomalies are incident with some 

meteorological conditions (inversion of temperature, high evaporation and humidity, passing of the cold air over 

the warm surface and conversely) [2]. 

Analytically, the atmosphere radio refractive index depends on primary radioclimatic parameters, 

namely; air temperature, humidity, atmospheric pressure and water vapour pressure. Furthermore, air 

temperature, pressure and humidity depend on the height (altitude) at a point above the ground surface. Even 

small changes in any of these variables can make a significant influence on radio- wave propagation, because 

radio signals can be refracted over whole signal path [3]. In a well–mixed atmosphere, pressure, temperature and 

humidity decrease exponentially as a function of height, h [4]. The value of radio refractive index is very close 

to the unit and the changes in this value are very small in time and space. With the aim of making them more 

visible, the term of refractivity, N, is used. 
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Another important characteristic of the atmosphere is the vertical gradient of the refractive index. 

Profiles of refractive index values in the 1 km interval above ground are important for the estimation of super–

refraction and ducting phenomena and their effects on radar observations and VHF field strength at points 

beyond the horizon. The vertical gradient of the refractive index is responsible for bending of propagation 

direction of the electromagnetic wave [5]. 

Given the relevance of vertical profile of radioclimatic parameters in wireless network design and their 

dependence on altitude, data of the lower and upper atmosphere are regularly collected using radiosonde 

equipment which is launched from ground level into the atmosphere using whether balloon or any other means 

of lifting the radiosonde equipment.  The main aim of this research is to develop a model that can effectively 

generate the vertical profile of the primary and hence, calculate the secondary radioclimatic parameters based on 

surface meteorological data captured at ground level. This will eliminate the need to launch the radiosonde into 

the atmosphere. 

 

II.  MATERIALS AND METHODS 

In this study, analytical and simulation research methods were used. In the analytical method, 

mathematical expressions along with ANN algorithms and ANFIS rule base are derived for prediction of the 

vertical profile of various radioclimatic parameters of interest. The simulation part entails the simulation of the 

ANN and ANFIS models using Mathlab/Simulink and the primary radioclimatic data obtained from the study 

area. The primary radioclimatic data is the data set of clear air (in the absence of rain, fog or snow) radiosonde 

data for Calabar which was obtained from the Nigerian Meteorological Agency (NIMET). Particularly, the 

vertical profile of air temperature, atmospheric pressure and relative humidity as well as refractivity index were 

considered. The prediction performance of ANN and ANFIS model for the vertical profile for a height of 0 m 

(surface) to 1000 m were considered and compared. The results of the analysis were verified and validated in 

comparison with existing models. 

 

2.1 Study area 

The study area for this work is a location in Cross River state in the South-South region of Nigeria. 

Cross River state is located at 4°57’north in latitude and 8°19' east in longitude. The southern part of Nigeria 

experiences heavy and abundant rainfall. The storms are usually conventional in nature due to the regions 

proximity to the equatorial belt. The annual rainfall received in this region is very high, usually above the 

2000mm (78.7in) rainfall totals applicable to tropical rainforest climate worldwide. 2.2 Data 

collection  

In this research, radiosonde data from Nigerian Meteorological Agency (NIMET) for Cross River state 

was used. Twelve (12) months data for the year 2013 was used. The data contains the monthly data of 

temperature, pressure and relative humidity for various altitudes above sea level for the 12 months in the year 

2013. The radiosonde sounding data was obtained in word pad format and had to be exported to Microsoft Excel 

platform for easy manipulation. When the data was successfully exported to Excel, clear air parameters 

(temperature, pressure and humidity) were carefully sorted out at different altitudes. 

Particularly, the data used for this study is a radio sounde data from 0 m altitude to about 1000 m 

altitude with atmospheric parameters comprising of temperature, pressure and relative humidity for different 

months. Sample data for the month of January and February are given in Table Iand TableII respectively. 2.3

 Vertical profile of radioclimatic parameters based on surface data 

Artificial neural network (ANN) was used to predict the atmospheric parameters with altitude and 

surface data as input. Particularly, multilayer perceptron MLPartificial neural network was used. The ANN 

includes three layers, named input layer, middle or hidden layer and output layer. In the ANN architectural, 

there are four input (altitude, surface temperature, surface pressure and surface relative humidity), five hidden 

neurons in the hidden layer and three outputs (atmospheric parameters in the orders of pressure, temperature and 

relative humidity). 

The number of neurons in the middle layer has to be optimized during the network design. In this 

study, the sigmoid function was selected as the transfer functions. Specifically, the hyperbolic tangent sigmoid 

was selected for the middle layer and the linear transfer function for the output layer. Also, the radiosounde 

dataset were partitioned into 70% for training the ANN model, 15 % for validation and 15 % for testing.There 

are 20 data sets for each month, selecting 70% for training, 15% for test and 15% for validation means 14 data 

sets were used for training, 3 data sets were used for validation and 3 data sets used for test respectively. The 

program was done in such a way that first to fourteenth data sets were used for training, fifteenth to seventeenth 

dataset were used for validation and the rest were used for test respectively as shown in Table III, Table IV and 

Table Vfor the month of January. The same was applied for the other months.Table VI shows ANN prediction 

of pressure in Januaryand Table VII shows the ANFIS prediction of pressure in January. The maximum number 

of neurons in a layer can be calculated from the Equation 2.1[6]: 
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n ≤
k ni +no  −no

ni +no +1
         Equation 2.1 

Where, k = number of samples, ni  = number of inputs and no  is the number of outputs. Based on the available 

data k =14, ni = 4  and no= 3. According to calculations, the maximum number of neurons for the training data 

is about 11.875 neurons.       

Accordingly, at first, the number of neurons was set at 12 in the multi-layer perceptron (MLP) neural network to 

find the optimal number of neurons in the hidden layer. The optimizing criterion was minimizing the Mean 

Squared Error of the model predictions in comparison to the test data. The number of neurons was reduced 

gradually. Eventually the optimal value was five. Hence, five (5) neurons were used in the ANN model. In 

addition, the LewenbergMarquard algorithm was used as the training function. 

After determining the number of optimal neurons, the weights and biases of the input and hidden layers were 

calculated. The weights and biases were used in making the prediction for any given input 

data.2.4Determination of the vertical profile of atmospheric radio refractivity index 

Atmospheric radio refractivity is estimated from the radiosonde data. The data used are the primary clear-air 

radioclimatic parameters, namely; temperature, pressure and relative humidity. Also, for any given altitude, the 

ANN predicted temperature, pressure and relative humidity were used to determine the refractivity index at that 

altitude. The refractivity is computed according to the ITU-R P.453-9   model given as [7] [8]: 

N =Ndry + Nwet  =
77.6

T
  (P+4810

e

T
 )           Equation 2.2      

The dry term of the radio refractivity is given as [7] [8]: 

Ndry =
77.6 P

T
             Equation 

2.3    

The wet term of the radio refractivity is given as [7] [8]: 

Nwet  =
 77.6

T
  ( 4810

e

T
 )   =3.73256 105 

e

T2          Equation 

2.4       

Where, T = atmospheric temperature in kelvin, P = total atmospheric pressure in hpa, e = water vapour pressure 

in  hpa.  

The water vapour pressure is determined with the expression [7] [8]: 

e =
  6.112H

100
exp(

17.5t

t+240.9
)            Equation 

2.5 

where, H = relative humidity,  t = atmospheric temperature in Kelvin 

Altitude was used as the input and three outputs; namely, the temperature, pressure and relative 

humidity at the altitude of interest. The input data are converted to degrees of memberships and membership 

values in a process called fuzzification. The triangular membership function was used for the four inputs as well 

as the output. Each of the four inputs was divided into three triangular membership functions. Also, the outputs 

were divided into three triangular membership functions. The input variables (explanatory variables) and the 

output variables were imported to the ANFIS environment via the workspace key after clicking on load data. 

Fuzzification process was performed in the MATLAB FIS editor. 

The performance measures used to evaluate the developed model are regression coefficient or 

coefficient of determination (R2), root means square error (RMSE) and sum of square errors (SSE). The root 

mean square error (RMSE) is given in Equations 2.6 and Equation 2.7. 

Also, for any given altitude, the ANFIS predicted temperature, pressure and relative humidity were used to 

determine the refractivity index at that altitude. The refractivity index was computed using the Equation 2.2 to 

Equation 2.5. 

 



n

i

tt YY
n

MSE
1

2
ˆ1

        Equation 2.6 

Where, Yt = actual industrial electricity consumption and Ŷ t = predicted value from the model. The Root 

Means Square Error (RMSE) is given as; 

RMSE =  MSE          Equation 2.7 

The formula for the sum of square error (SSE) is given as; 

 



n

i

tt YYSSE
1

2
ˆ

        Equation 2.8 
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III. RESULTS AND DISCUSSION 

Table I shows the ANN Predicted radio sounde data for January from ground level (0 m) to 1050 m. 

The atmospheric parameters predicted are the Pressure, temperature and relative humidity.Figure 1 shows the 

comparison between the predicted value using ANN model and the actual value used in the building of the ANN 

model.Figure 2 shows the comparison between the predicted value using ANFIS model and the actual value 

used in the building of the ANFIS model. From Table II, R-square for ANN = 85.518 while R-square for ANFIS 

= 91.227. Figure 3shows thecomparisonbetween Actual, ANN and ANFIS models for January when compared 

side by side. 

 

IV. CONCLUSION 

Radiosounde data equipment was used to obtain the radioclimatic data of altitude ranging from 0m 

(ground level) to 1000m. Two artificial intelligence models namely; ANN and ANFIS were used to predict the 

atmospheric parameters. A statistical performance model was implored to obtain the best model for prediction 

and further implementation. It was observed that ANFIS had a better prediction performance greater than 91% 

accuracy in all cases over ANN which has values around 85% accuracy in some cases. 

 

Figures and Tables 

 

Table I: Radiosounde data for January 
S/N Altitude (m) Pressure (pa) Temperature (oC) Relative Humidity (%) 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 
11 

12 

13 

14 

15 

16 
17 

18 

19 
20 

0 

44.3 
107.4 

169.6 

225.8 
277.1 

328.4 

379.8 
445.4 

512.8 
577.8 

635.7 

689.5 

740.7 

790.2 

837.3 
886.5 

937.6 

991.9 
1047.6 

1013.1 

1006.7 
1000.4 

994.2 

988.3 
982.4 

976.1 

969.5 
962.8 

956.3 
950.1 

944.2 

937.7 

932.3 

927.1 

921.8 
916.6 

911.4 

905.8 
900.1 

31.5 

30.3 
29.6 

28.9 

28.2 
27.7 

27.2 

26.7 
26.2 

25.7 
25.2 

24.6 

24.1 

23.5 

23 

22.7 
22.4 

22.1 

21.4 
20.9 

66 

84 
79.7 

75.3 

70.9 
70.9 

72 

73.2 
74.4 

75.6 
77 

78.4 

79.9 

81.4 

82.9 

83.2 
83.3 

83.4 

83.4 
82 

 

Table II: Radiosounde data for February 
S/N Altitude (m) Pressure (pa) Temperature (oC) Relative Humidity (%) 

1 

2 
3 

4 

5 
6 

7 

8 

9 

10 

11 
12 

13 
14 

15 

16 
17 

18 

19 
20 

0 

44.3 
107.4 

169.6 

225.8 
277.1 

328.4 

379.8 

445.4 

512.8 

577.8 
635.7 

689.5 
740.7 

790.2 

837.3 
886.5 

937.6 

991.9 
1047.6 

1014.2 

1009 
1003.9 

998.8 

993.8 
988.8 

984.1 

979.6 

975.2 

970.8 

966.4 
961.8 

956.8 
951.5 

946.2 

940.9 
935.6 

930.1 

924.7 
919.2 

31.9 

30.2 
29.7 

29.2 

28.8 
28.3 

28 

27.6 

27.2 

26.8 

26.4 
26 

25.5 
25.1 

24.6 

24.1 
23.7 

23.2 

22.7 
22.2 

58 

61 
64 

66.4 

67.1 
67.7 

68.4 

69.4 

70.5 

71.5 

72.5 
73.6 

75.2 
76.8 

78.3 

79.9 
81.4 

82.5 

83.6 
84.7 
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Table III: Training data for the month of January 
S/N Altitude (m) Pressure (pa) Temperature (oC) Relative Humidity (%) 

     1 

     2 
     3 

     4 

     5 
     6 

     7 

     8 
     9 

    10 

    11 
    12 

    13 

    14 

0 

         44.3 
        107.4 

        169.6 

        225.8 
        277.1 

        328.4 

        379.8 
        445.4 

        512.8 

        577.8 
        635.7 

        689.5 

        740.7 

1013.1 

       1006.7 
       1000.4 

994.2 

 988.3 
982.4 

 976.1 

 969.5 
962.8 

 956.3 

       950.1 
   944.2 

    937.7 

932.3 

         31.5 

         30.3 
         29.6 

         28.9 

         28.2 
         27.7 

         27.2 

         26.7 
         26.2 

         25.7 

         25.2 
         24.6 

         24.1 

         23.5 

         66 

 84 
         79.7 

         75.3 

         70.9 
         70.9 

 72 

         73.2 
         74.4 

         75.6 

77 
         78.4 

         79.9 

         81.4 

 

Table IV: Validation data for the month of January 
S/N Altitude (m) Pressure (pa) Temperature (oC) Relative Humidity (%) 

    15 

    16 
    17 

        790.2 

        837.3 
        886.5 

  927.1 

 921.8 
916.6 

23 

22.7 
22.4 

82.9 

83.2 
83.3 

 

Table V: Test data for the month of January 
S/N Altitude (m) Pressure (pa) Temperature (oC) Relative Humidity (%) 

18 

19 
20 

937.6 

991.9 
1047.6 

911.4 

905.8 
900.1 

22.1 

21.4 
20.9 

83.4 

83.4 
82 

 

Table VI: ANN prediction of pressure in January 
S/N Altitude (m) Actual Predicted e e2 |e%| 

1 
2 

3 

4 

5 

6 

7 
8 

9 

10 
11 

12 

13 
14 

15 

16 
17 

18 

19 
20 

0 
44.3 

107.4 

169.6 

225.8 

277.1 

328.4 
379.8 

445.4 

512.8 
577.8 

635.7 

689.5 
740.7 

790.2 

837.3 
886.5 

937.6 

991.9 
1047.6 

1013.1 
1006.7 

1000.4 

994.2 

988.3 

982.4 

976.1 
969.5 

962.8 

956.3 
950.1 

944.2 

937.7 
932.3 

927.1 

921.8 
916.6 

911.4 

905.8 
900.1 

1012.1 
1007.3 

1000.4 

993.99 

988.15 

982.57 

976.75 
970.7 

962.76 

954.48 
946.8 

941.78 

937.96 
932.49 

926.92 

921.78 
916.61 

911.39 

905.84 
900.09 

1.0420 
-0.6497 

0.0056 

0.2099 

0.1549 

-0.1713 

-0.6516 
-1.2043 

0.0446 

1.8155 
3.2955 

2.4163 

-0.2640 
-0.1852 

0.1780 

0.0196 
-0.0078 

0.0134 

-0.0369 
0.0124 

1.0857 
0.4221 

0.0000 

0.0441 

0.0240 

0.0293 

0.4246 
1.4502 

0.0020 

3.2961 
10.8604 

5.8385 

0.0697 
0.0343 

0.0317 

0.0004 
0.0001 

0.0002 

0.0014 
0.0002 

0.0010 
0.0006 

0.0000 

0.0002 

0.0002 

0.0002 

0.0007 
0.0012 

0.0000 

0.0019 
0.0035 

0.0026 

0.0003 
0.0002 

0.0002 

0.0000 
0.0000 

0.0000 

0.0000 
0.0000 

 

 
Figure 1: Plot showing the prediction of Pressure with ANN for January 
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Table VII: ANFIS Prediction of Pressure in January 
S/N Altitude (m) Actual Predicted e e2 |e%| 1.0e-03 

     1 

     2 
     3 

     4 

     5 
     6 

     7 

     8 
     9 

    10 

    11 
    12 

    13 

    14 
    15 

    16 

    17 
    18 

    19 

    20 

           0 

         44.3 
        107.4 

        169.6 

        225.8 
        277.1 

        328.4 

        379.8 
        445.4 

        512.8 

        577.8 
        635.7 

        689.5 

        740.7 
        790.2 

        837.3 

        886.5 
        937.6 

        991.9 

       1047.6 

       1013.1 

       1006.7 
       1000.4 

        994.2 

        988.3 
        982.4 

        976.1 

        969.5 
        962.8 

        956.3 

        950.1 
        944.2 

        937.7 

        932.3 
        927.1 

        921.8 

        916.6 
        911.4 

        905.8 

        900.1 

        1012.9 

         1007 
       1000.1 

       994.33 

       988.37 
       982.34 

       976.04 

       969.57 
       962.78 

       956.26 

       950.12 
        944.2 

       937.75 

       932.23 
       927.07 

       921.92 

       916.53 
       911.36 

       905.86 

       900.08 

    0.1596 

   -0.3444 
    0.3182 

   -0.1343 

   -0.0709 
    0.0605 

    0.0619 

   -0.0748 
    0.0154 

    0.0375 

   -0.0152 
    0.0014 

   -0.0539 

    0.0716 
    0.0283 

   -0.1194 

    0.0708 
    0.0359 

   -0.0637 

    0.0205 

    0.0255 

    0.1186 
    0.1013 

    0.0180 

    0.0050 
    0.0037 

    0.0038 

    0.0056 
    0.0002 

    0.0014 

    0.0002 
    0.0000 

    0.0029 

    0.0051 
    0.0008 

    0.0143 

    0.0050 
    0.0013 

    0.0041 

    0.0004 

    0.1575 

    0.3421 
    0.3181 

    0.1351 

    0.0717 
    0.0616 

    0.0634 

    0.0771 
    0.0160 

    0.0392 

    0.0160 
    0.0015 

    0.0575 

    0.0768 
    0.0305 

    0.1295 

    0.0773 
    0.0394 

    0.0704 

    0.0227 

 

 

 
Figure 2: Refractivity Prediction with ANN and ANFIS models for January 

 

 
Figure 3: Bar chart of the R-square value for ANN and ANFIS for January 
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