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. INTRODUCTION

An interesting problem in Fourier analysis is to extend the classical inequalities of the Fourier
transform , or what Hardy and Littlewood refer to as the theory of Fourier constant [5] , to tempered
distributions that correspond to lower -dimensional sets.Prticularly important theorems are the L!
inequality known as Hardy’s inequality with the McGehee-Pigono- Smith ( henceforth M . P .S
)generalization .[7], the Plancherel theorem for L? and Payley’s theorem with the Pitt-Stein
[generalization forLé™! |, 0 < & < 1.Extensions of the Plancherel theorem for measures supported on
manifolds inR™ have been established by Agmon and Hormander[1], and more recently by Strichartz
[9] for measures on R™ of dimension—1 < ¢ <n — 1,1 + ¢ not necessarily an integer . We show ,in
the same methodology, an application on the paper ofSteve Hudson and Mark Leckband[11], they
proved a generalized Hardy inequality ( henceforth g.h.i ) for fractal measures on R! of dimension
(1—-¢),0 < &< 1.This result includes the M.P.S. version as the periodic case fore = 1.Each of the
result above fore < n — 1 involves a limit on the Fourier transform side and provides information in
the form of an asymptotic growth estimate for the transform

Some regularity will be required of the support of the fractal measure classically, Hardy’s
inequality and the M.P.S version hold only for measure. Supported on a well ordered set of integers,
which means the transform of the measure is in H'of the unit circle , at least up to a multiplicative
factor of e™™ . The well — known inequalities above, in which £ > 0, are rearrangement — invariant ,
while Hardy’s inequality is not . This implies that the nature of the support of the measure when
e=1o0re=0 is for more important in Hardy’s inequality than in the others. Likewise,when
0 < e <1, itis natural to expect the support of the measure to play a greater role in g. h.i, then in the
other inequalities . This point may be clarified by the last result of the paper , an extension of Paley’s
theorem for 0 — dimensional measures , this is a € > 0 analogue of g.h.i in which the support is
quite arbitrary (see [11]) .

Aseries of fractal measures means a measure v”supported on a set E, ¢ R' . That is uy_, -
measurable, where du;_, is (1 —¢) -dimensional Hausdorff measures and0 < e <1 . Certain
classes of such measure will be studied including measure supported a self — similar sets such as the
cantor set .

It assumed thatv” is finite, so it is a tempered distribution with a Fourier transform locally in
L'(R) . It is also assumed thatv™ is either positive , or is of the formf™du, _, . In the latter case , let
E, = {x: f"(x) # 0}, which we will refer to as supp f".Definethe series
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Y Ol (Brn) = Y (B 0 (o0, (11)
r>1 r=>1
Consider the followingseries of generalized Hardy inequality (see [11])g. h.ifor0 < e <1

f°° If’(x)ldul-s(x)sgm i“ngz cr ffr A () dx (1.2)

>l O-lr_s (ET ’ x) r>1

where C" is a constant that may depend on E, but not f” .This inequality does not hold for general
fractal measures . The collective statement of Theorem 1 and 3 is thatg. h.i holds wherever E, is
(1 — €)- coherent, see Definition 2below . Theorem 3 also holds for quasi — regular sets , see
Definition 2

Before defining coherence, certain problems with sets of measure zeromust be dealt with.For € R,
and § >0 , let Is(x)be the open interval (x —&,x + &) and letls = I5(0). Suppose thatE, c
Rlisp, _.-measurable , with 0 < uy_,(E,) < oo . The upper density of E, at x is defined by

ZF(Er;x) _ Jll_l’)% sup Z.ul—s( E.n] (x)) (1.3)

)
r=>1 r=1
Then ¥, D'=¢(E,,x) =0 for uy_, —a.e.x ¢ E, . And for y;_, —a.e.1 —¢€ E, one has
that2!=¢ < D1-¢ (E,,x) < 1. So E,agreesy; _, — a.e.with its “ Lébesgue set

Z Er= Z{x €E.:27¢ <D"¢(E,,x) <1}.

r=1 r>1
It is not really necessary that E, have finite measure . Givenx € R , let (E,), = E, N (—oo,x] . It will

always be assumed thatu;_.((E,),) <o for somex , for otherwiseg.h.i is trivial . Let s =
sup X1 py . (E,), < oo} . Notice(E,), is ¢” — finte with respect to u;_,, so the result above
still apply ) (Er)s agrees (1, —a.e with (Er)s . LetZrzl ErO = Zer(Er)s and Zer(Ep)x =
Y1 EX N (—o0,x) . Givensets Aand A+ ¢, let2A + e = {2a + s:a € A }.

Definition 1 : Let E, < Ris coherent if there is a constant C"such that for allx < &

limsup ) |(BD), +1518° < ) €y (ED), (14
6-0
r=1 r=>1
This definition depends on the value of 1 — ¢, which will normally be understood. If there is any risk

of confusion we will call the set (1 — ) -coherent . The inequality in the definition can always be
reversed ( if),,>; C" = 1) by the definition of Hausdorff measure . The right — hand side is equal to
Yos1 CT o (E), and t0Y,s; C" —ol_. (E, x) . It is necessary to use Y,-(EY), rather
than},,>1 (E,), because sets of measure zero could greatly affect the left — hand side.

The results in this paper (see [11]) appear with the Fourier transform on the right - hand side, though
it is more usual to have it on the left. It makes little difference whene = 1 , at least in the periodic
case, or when & = 0, but for dimensions in between it matters, because Fourier inversion is not clear.
Also, in the case e = 1 it matters for almost —periodic functions. Each of these functions defines a
unique Fourier series, but that series does not converge to unique function in the B¢ a.p.
.pseudonorm [3] .

The fundamental case ise =1 . TheM.P.S result is the important subcase in which the Fourier
transform of the zero — dimensional measure is periodic.The immediate corollary is a proof of the
celebrated Littlewood conjecture for trigonometric polynomials. In the same way, an immediate
corollary ofg. h.i. is an(e + 1) -dimensional version of Littlewood'sconjecture.

The right —hand side of (1.2) is a natural substitute for the L! norm of the Fourier transform of an
(e + 1) - dimensional measure . It resembles terms studied in [3,10] , for example . However, it is
usually impossible to compute exactly, and difficult even to determine whether it is finite. For asimple
application of g.h.i., let f" = yg , where E, is an(1 + ¢)- coherent or quasi — regular set , for
example , a cantor set contained in the unit interval of dimension € + 1 . Then (1.2)show that (see

[11])
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Jlim infoz f|)(Erdu€_1| dx = +o0 (1.5)
o r=>1 —p,
This result is non-trivial, the liminf can converge to 0if E,. is not coherent.
see (4.3). However, it may not be best-possible in the sense thata smaller exponent ofLon the left-hand
side might produce the same result. The question of sharpness seems to be more complicated in this
context than in the L?setting (see [10]).
The results of this paper (see [11]) are organized in the following manner. Section 2is devoted to
establishing g.h.i. for the integer dimensions & = 0and e = 1which are Theorems 1 and 2,
respectively. It should be noted that lim inf can be replaced by lim in these dimensions. Section 3
discuses g. h.i for themore difficultcase 0 <e < 1.
The extensions of Plancherel’s theorem by Strichartz [10] involve smoothing out the distribution,
applying the classical Plancherel theoremand approximation arguments. Approximation arguments
are used inTheorems 1 of this paper to handle the 0-dimensional case. Theproofs for the general
cases, Theorems 2 and 3, are from the ground up inthe sense that the M. P.S. machinery is modified
for this setting while theM. P. S. result is not used directly.
2-Thefirst Theorem uses the class B.a.pof almost periodic function discussed in [2]Besicovitch.

These are the almost — periodic functionsu” for which the
pseudonormlim; ., sup L1 f_LL Yr>1lu”| dx is finite. If u” is almost — periodic, then the limit of the
right — hand side exists, so lim sup may be replaced by lim . Every trigonometric polynomial is almost
—periodic and is in B.a.p. The Fourier series of aB.a.p. functionsu”converges to u” in the
pseudonorm above , but may also converge to other B. a.pfunctions — the series does not determine
u’.

Theorem 1: Let),,. 5 f" dugbe a zero - dimensional measure defined by

Y o= zzcl 80— a1

r>1 r=1 =0
whereq; < a,..< and the usual Dirac measure at zero . Assume
Zer fr d[lo = Zer Crl gelal—fx belongs to B. a.p . Then
L
1 —| < LllmL cT flfrduo(x)ldx (2.1)
r>le= € r=1 L

Proof : First assume that [al_g]ls a finite sequence with N terms that f"du, is a polynomial .
Lete > 0. By a lemma of Dirichlet , there are infinitely many integersL; with numbers {a,_.} € Z/L;
suchthat la;_, —a;_.| <e/L;forall1—N <e < 1.

Let %51 uf () = Ty51 X C_oe'%-e* . Then for x € [—L;, L;Ju] (x)

Y1frdug —w @] <Y € Y leillare — il Ixl < ) €7 Y Iefl

r>1 r>1 r>1

Sinceu; is periodic we may apply M.P.S

L;
ZZ f{__gg Zcrr Jlu (x)ldx <Zcrr f|frdllo|deCrZ|cg|

e=0r=1 —L; r=1

Taking limits asi — co and then as € — 0 proves (2.1) in this case .
For the general case , we will approximate using Bohner — Fejer polynomials. [3] Given )5 u" =
Y, s1 frdug(x) € B.a.p. , there exists a sequence of polynomials{c’} of the form

N(n)
Z r(x) — Z Z T(n)elal X
r=1 =l e=
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(' where the frequencieso]_, a, are the same as those of f"du, ) such that

Z”u o llpap = Lllm sup L1 fZIu’”a’”ldx <2 2.2)

r>1 —L r=1
and

lim ¢/ = Z cr_y foreach ¢—1 . (2.3)
r=1 " r=1

We have proven the theorem for suchpolynomials. So using Fatou’sLemma for sums, and the fact that

limits exist for B.a.p.functions
C“’; 1 T r r T
< lim 1nfL11m L1 Cc |[u"| [u" — o)

P o1 m

r>l e= 0 r>1 —L
This proves the theorem .
Givenx eR 0<e<1 ,andasetE. c R, let

D ol = ) e (Ben(—o0,x])

r=1 r=1
whereu,_. is Hausdorff measure . In the last theorem, the index ¢ —1 could be written as

0§ ({a._1},x) . The next theorem provides a one dimensional analog. This result should be compared
fore=0.
Theorem 2 : There is an absolute constant C” such that if %" € L' (R)

lu” ()] .
< r .
f S E Il 24)
WhereE, = supp u” .

Proof :We claim that it is enough to prove (2.4) witho{ (E, ,x) replaced by Y,,.>a{ (E, ,x) +1.To
prove this claim , assume (2.4) with ¥~ o7 (x) + 1 ,in the denominator . Given %" € L' and ¢ < 1,
Zrzl v (x) = Zrzl (1 - 8) ((1 - S)x So,
st V@) =% Wy and 5,5 of (sup v\, (1 — &) — (1 - &)o] (E, ,x)).

By changing variables and applying (2.4) tov"r , we get.

fz [u" (x)|dx <f Z | v"(x)|dx <Z cr ol
o (A= M+ol(Bnx) ) & T+of(sup(l+e)vi,x) — v
R T2 R T2

r=1
=) Il

r=1
and lete — oo to get (2.4) forii” without the+1 in the denominator .

Now the idea of the proof is the same as in M. P. S.we will construct functions F;, on Rsuch that
(1) Y1 Elissupportedin (—oo,N(m)]where N(m) — o asm — oo,

@ Xz Fale=1.

(3) 30.Re Y, > Fm ) =Y W @)|/1+ of (E,, x)forall x € E. n (—oo, N(m)].
Given suchF;, , the theorem follows easily if },,»; suppu” c (—oo, N(m)] for some m then

[Y e
_Z Cr:Refz u" (x)E;, dx

N(n)

r>1 r>1

= e f Y UsE ey dx< Y Il Bl
r>1 r>1 r=1
SZ ad b

r>1
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An approximation argument shows that this inequality holds for allii” € L! .

The construction of EJ, follows M . P .S .But here EJ, is a function on R instead of a sequence. For the
sake of completeness, an outline of the construction follows.

Let so =2, {x€E:0<o0{(x)<1}. Let s;=3%, {x€E:1<0a{(x)<5} .Define
Y1 {S73for i > 1inthis mannersothat |S] | = 4‘andE, =U S] .Let N(m) = sup ¥, Sh,
Define £ € L>(R) by

Z 7 =0 forx ¢S’
r>1
Z Fil=47 forx €SI
r>1
Z ﬁr u"(x) =0 forall x
r>1
Let
Z I =%Z (1+iH")|f7] € 12

r>1 r>1

WhereH"is the Hilbert transform . Notice that ),>; Reh]|f|/4 and Y,> |A]]l, <
Yos1 B/, =3.2773 . Also ,suppih! © (—,0). LetY,~; FT; =0 and form > 0, let

Z Fnrl = Z <F12_1(x). exp(—h;”n (x)) + %n)

r=1 r=1
This is a continuous function in L2(R) . It is supported on the union of the supports of thef; for

0 <i <m, so condition (1) holds . Becauseexp(—x) + x/5 < 1 whenever 0 < x <1 and since
Yos1 fitlle < Xpst ||f,,rl||1 , induction proves condition (2)

Z'W“'S(Z exp(-IFECID + Y. 'fms(")'>51

. r=1 r=1 r=1
Claim . Fori <m < coand for all x € S/

D |Emeo-T sl [Tl 25)
>1
This inequality is provred inM.P.S .in aslightly dlfferent context
Now for x € S; , we have };,~ of (x) > 4i/3 . So (2.5) shows that

<Rez Erum(x) — Z firur(x)/5> < Zﬁrur(x)/lo

r=>1 r>1 r>1

Z R ()2 ) ﬁ(x)/10>Z1 30('17“‘+—(2'm)

r=1

This holds for all x eumo S/ which isE, n (—oo, N(m)] . This proves condition (3) on F, and
complete the proof

(3) .Wegeneralize the previous ones to dimensions between 0 and 1. It requires that the measure is
supported on a coherent set(see[11]).

Theorem 3: Suppose 0 < & < 1,f7 € L'(du;_,) is supported on E,., and E, is

(1 — &)-coherent. Then there is a constant C" independent of f"such that
L

JZ ldm () hmmeSZCr j|fr717£_g|dx (3.1)
o1_ S(Er,x) = J

Proof :The idea of the proof is to construct an auxiliary function E;, as in Theorem 2. This seems

impossible to do on the given fractalset E,..So instead, the given measure is approximated using

convolutionwith a Schwartz function ¢]. Then a sequence ETis constructed for the newsmoothed-out

measure, >,>1 ¢ * fTdus_,,on a dense dilation of the integers. Afterthis modified M.P.S.

and so
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construction, we take the lim inf as L — co. Most ofthe work occurs at this stage, in Lemmas 4 and
5.
Let ¢p"be an even Schwartz function such that

fz ¢ dx =1

and

We can not arrange that ¢" have compact sup_port, but the following lemma is a substitute [11].
Lemma 1: There are constantsC™ andK|, such that for all x and forall € > 1

Zlqﬁr(n +x)| < Z C'/e—1
In+x|>e—1r=>1 r>1
Proof : Since the sum is over a set of integers , we may assume 0 < x < 1 . Also the condition
|1+ x| >&—1.Since ¢” is a Schwartz function ¢ (x) = 0(x?) . So there is €™ and & — 1such
that

[ee)

f Z " (x)| dx <Z C"/e—1 for e>0
e—171r>1 r=1
We may assume the same inequality holds for the Schwartz function ¢" .
Then for any x € [0,1].

n+1
f D IO =@+ DAt < suprccnss ). 1870 =@ ()]
1 r=1 r=>1
n+1
< f Z |7 ()n| dt .
n r>1
So , by the triangle inequality
n+1
> ) WaHnls Y f > (gr@l+érac=2 cr/e-1
n+x>e—1r=1 n>e-1pn r21 r=1
E. U C]

Which proves the lemma .

Since E, is coherent, it is bounded below. Let m = inf },,>; E, . FiXE, > 0. Itis easy to construct
a cantor set with p;_.measure 1 . Such a set is coherent by Theorem 4 . So by dilation and translation
, there is an (1 — €)- coherent set };,>; €7 < [m — 2,m — 1] such that )}, 5 u;_.(C{) = €. Notice
that the constant (1.4) is not affected by dilation of the set . Let E} = E, u CI . This is also coherent
, with a (1.4) constant independent of & . It will replace E, until the very last step of the proof of
Theorem 3, in which € - 0 . We will use the new notation

Y E,=) EnCevmd) o, =) wu.E)

r=1 r=1 r=1 r=1
Suppose a real number M has been chosen such thate <. o]_.(M) < oo . The next lemma

provides a kind of uniformity in the limit in (4.1) that will be useful later [11].
Lemma2: Thereisa dy > 0 suchthatforallx < Mandall0 < § < §j ,

D AED 15165 < ) CE (o) +2)
r=1 r=1

And
D B+ 518> ) 172 (@) = ¢/2)

r=>1 r>1
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Where Cg_is the same constant as in the definition of coherent , it depends only on E, and 1 — ¢ .
Proof : SinceY,sq 1. (E, N (—o0, M) < oo , there is a finite increasing sequence of points{x;} in
(E,)nm such that

o1 ti—e (EF 0 (x5, x141)) < €/4for all i, including the case i = 0 for which we adopt the
convention x, = oo .We set the last term x, = M.

For each x;, 1 < i < N there is by the definition of coherent (1.4), a §; < esuch that whenever§ < §;
. Let Y,>1  Q(6,(E.),) be the minimal number of intervals of lengh exactly & required to cover
(E,.),. Then from the definition of Hausdorff measure

Y By Y lmE QB <2 ) lim ST I(E), + Il
r=>1 r>1 . . r=1
So,4; can be chosen small enough thaté < §; implies .

DBy <2) SEIE), + ] +2/4
r=1 r=1
Let §; < € be the smallest of the §; . Suppose § < §; , and x < M . Then for some i > 0 , we have

xi<xSxi+1.SO

D AE 1165 (B, 1515 ) CElof . Crin) + /4
r=1 r=1 r=1
<D (ol +e/H+ ) Chu (BN [oxial) < ) C o (0 + ]

. i r=1 r>1 r>1
Like wise

DUE = 15185 = ) |(E, — 15|85 > 1/2 ) [0 o(x) — &/4]
r=1 r=1 r=1
>1/2 ) [0 ()~ /2]

. r=1
Which proves the lemma .

Now fix O such that 0 < § <6, . Fix K > K, as defined by Lemmasl . We also assume
Y1 KCip >3, 2C: , where C; andC: are absolute constants that arise in Lemma 4and 5,
respectively . Let L = K/& and let ¢} (x) = ¢"(L,) . Let

ST = [(E, +15)NZ/L] N (—o0, M]

Lemma 3(see[11]) :There is a sequenceF: Z/L — C such that
Re ) [Ba(n/L) @] * frdi_o(n/L)]

r=1
rie <PZ * d#l—e(n/L)
= Z cK L'*“¢(e + o{_.(n/L)) (3.2)

r=>1

foralln/L € S,

Er(n/L) < LS
Z m (/L) _Z L*=¢(o]_,(n/L)) + €’

r=1 r=1
for all n/L>m—1/2 (3.3)

zﬁ,;(n/L) < z cr, foralln (3.4)

r>1 r=>1
IEnllee <1 (3.5)

r=1
Proof : LetY,>; S" ={ny/L,ny/L,...,ni_./L}.Choose iysuch that

470 < g < 47ln (3.6)

We can ensure that S™ has at least 4% terms by choosing §,small enough ( to see this consider Lemma
2 and inequality (3.10) below ) In fact , we can assume that the first 4% terms come from C? , and are
all less thanm . Let SJ be the set of the first 4% terms of S”. Let ST be the set of the next 40+1 terms
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etc, until S™ is exhausted . If there are terms left over when this construction stops , they are included
in the last set ,S7.S0,S™ =U!_, S/ where each Y~ S7,i <t, has 4%/ elements . Then, construct
functions f;” and Fj, as in M.P.S.( using the function },,>; @] * f"du,_, instead of the function
referred to there as@™ ), so that the following inequality holds

Y mem-y Ee

5
r=>1 r=1
The calculations inM. P. S. actually prove something a little more general. Ifn <n;_, and n/L ¢ S™
define i = i(n) by

< (1/10)470o*)  for n/LST (3.7)

n;/L = Z min{h,_,/L € S":ny_, > n}
r=1
Definei = i(n) by the condition n; /L € S; . Then inequality (3.7) also holds for this nand i. However

in this case £ (n/L) = 0, so

Z Er(n/L) < (1/10)4= %+ forn/L € S",n < nqy_,,i > i(n) (3.8)
r=1
from the construction of S™ above , ifn,_./L € n S} with i > 0 then
Z cj4~lotD < ! < Z 54~ Cot+D (3.9)
. . r=1 . e-1 r=1
and sinceY., >1 Ey e, + Is, is made up of intervals of length at least § > 1/L
FA-9 _N pr +1c < ) 3.10
G S n(i-e)L T1Is < Ca—7 (3.10)
. r=1 r=1 r=1
where the ¢/ in (3.9) and (3.10) are absolute constants from M.P.S.
Z| fram/L)| = 4Gt for n/L €7 (3.11)

r>1

Forn/L>m—1/2,Y,5 oi_.(n/L) > ¢, so that the —¢/2 in Lemma 2 may be replaced by
(1+¢).Also,i> 0 forthesen so (3.9) applies . From these, and (3.10) , we get (3.3) forn/L € S™ ,

Fr(n/[)<4 (io i)< < .
E 'm = = = é
e—1 Ill(Er)n/L+I5|

r=1 r=1

1
< Z (3.12)
L (e—DL#(o]_ (n/L)) +¢
where we have omitted absolute constants.

This inequality also applies off S as follows (see [11]), (3.3) is trivial forn > n,_, because £’ is
zero there . For n/L & S"and < nq_, , the first two inequalities of (3.12) holds withi = i(n) and

(e = 1) = i(n) . The third then holds with the subscriptn._; /L . This change is harmless because
z |(Er)n1_£ +I§|_z|(Er)n/L+16| <6

r=1 r=1
So the error in the denominator is at most L& = K which is much smaller than L5 ¢ , we can assume L
is quite large through proper choice of §,.So the error is negligible and we have (3.3) for all
n/L>m—1/2.
Inequality (3.4) follows from (3.11) and (3.7) on S™ , and from (3.8) off S™ . Part of
theM. P. S.construction is that ¥,>;  f" (@] * fTduy_.) = 0 . This together with (3.11) (3.7) and
(3.9) imply that .

> BL/L) 0] * fTdi o (n/L)
r=1 r=1
except that for (n/L) € S§ we must replace ct K by 4% . With (3.10) and Lemma 2 , this shows that
the left side of (3.2) is at least

> z lpL, * fTdus_ (n/L)|

Re
-
Cs

for n/L) € S” (3.13)
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Z |<pZ*frdM1_s(n/L)|>z loL, * frdui_.(n/L)|

i LICE)n + 15| = KL (o] (/L)) + €
forn/L € ¥,» (8" —S5;) .Forn/L €S; , use (3.6) instead . In this case we need the inequality
> 1/K¢L'~¢¢ , which holds for large enough L . This proves (3.2) forall n/L €.
Inequality (3.5) is part of the M. P. S.construction. This proves Lemma 3.
Ermust be slightly modified off S” before proceeding with the proof of the theorem . Forn/L > M
withn/L &€ S" , let

lof * fTdpy—(n/L)]

; 6" /L) o a0/ 1) = e PO (3.14)
Let -
A=) Y GO/ fTdum (/L)
r=1 nez
A+ =Y > (B = 6")(/L) @] * fdpso(n/L)
r=1 nez

SinceG™ may be viewed as a substitute forE, , the term(A4 + £)(L)may be viewed as an error term

L17¢]A| is supposed to approximate the left — hand side of (3.1) or large enoughL . This will be the

content of lemma 4 . The next calculation shows the relation to the right — hand of (3.1) (see [11]).
L'=|A| — L' ¢|A + ¢

<UDy N B /D)

r>1 nez

*frdp—(n/L) = LHZ |Eh (pf * fdus e (n/1))(0))|
r=>1
L

<1y 100G/ T @ <Py 10 e [ |Gl dx.

r=1 r=1 iy

Lemma 4:[11] There is an absolute constant C” such that
M
,
duq_
L-o o ~ e+ o{_.(x)

Lemma 5 :[11] There is an absolute constant CZ such that

M

Ce Tldpq—

lim supL'~¢|A + ¢| < Z = lfl#

L—oo — K e+ o{_.(x)
r= —00

. cr Ccl .
Since K was chosen so that };,>; 75 < Zr2174 , We can combine the lemmas to get

M
Ci "ldu—
z cp — = M < lim inffL!~¢|A| — L'¢ |A + ¢|)
>1 2 €+ Gl—e(x) L=eo
r> —00

L
<> 197Nl Jim infite f |f e dx.
r=1 o —L
Notice that },>;  o0]_.(x) =X,>1 01_(E,, x) + & for all x in the support of f . Then lete —» 0
and letM — supifi: a{_.(x) < oo} toget(3.1).
Proof of lemma 4:let &; be arbitrary 0 < &;<e . Let

L[={x <M:igg <o{_, <(i+ )&} (3.15)
fori = 0,1, ..., Jwhere M € I,. Notice that ¥, u;_.(E, N1;) = & for each 0 < i < J. Then by (3.2)
and (3.4),
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. lpr * f7dpy—(n/L)|
ZZG Z e+o{_.(n/L)

Ll—slAl — L1—£

> D G/ o)+ (/1)

r>1 nez

] T* r e ] i
=) 6 ) ) "”Lgié“ilfl‘f”'g G;ﬁ

r=>1 n<LM

r=1 J=0n/Lel;
the last equation being a definition of 4; . We now claim that , for all J ,

lim infA, zz f Frdu_, (3.16)

L—co
r>1 I;
To proof (3.16) notice that for all J. L ,

Az | D eh s frdu (/D)
r=1 n/LEl;

> D e frdm (/L)

r>1 nez

2= | D el e frdm /)| +

r=>1 n/Lel;

=10 D eh ST A (/1) = —AS + AT - Az
r>1  n/L¢&l;
Now since ¢ € [—1.1] . The Poisson summation formula shows that for all x

SN vm-n=) g@=1

z r=1 r=1

So

Az = =3 [l

r=1 I;

DD /L= £ @
z r=1

So , we must show that A% and A%*2¢ approach zero as L — oo . We will assume

I; = (—0,0), other case being similar .

Since ¢" is a Schwartz function , there is a constant R such that for all realx

> -l <R

nezZ r=1

Lete, > 0. Since f7 € L'(du;_,)and e < 1, thereisa § > 0 such that

[ > framc<esr (3.17)
Is(0)r=1
of course , ifl; has a boundary point at some x, # 0, thenls(0) must be replaced by I5(xg). Sincep”
is a Schwartz function , there is a constant C"such that

CT
Z "’(L(x_"/L)SZ ILx—n)/LZ+ 1

r=1 r=>1

Since f” € L*(dpy_,)

) 2ot Gpeyramoaml <y ) IL(6 - nC)r/L|2 h > cad

rzl n<0 . rzl ns0 r=1
which approaches zero as L approaches infinity . Also
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§

z Z|¢Z*(X[o,8]fr du—)(n/L)| < Z f<Z|<p[(n/L—x)|>deu1_g(x)

r=>1 n<0 r=>1 0

< R(Ez/R) = &

n<0

Which shows that

r=1 n<0
as — oo . Sinces, > 0 was arbitrary , this proves thatlimA¢ = 0 . This proof work because n €

(—=0,0) and x € (0,0) range over disjoint intervals . Soit works for arbitrary intervals I; and for
A%+2¢ a5 well . The claim is proved , but it is not exactly what we need the absolute value should be
inside the integral . We now show that the error is small. Define

ei:Z ffrdﬂl—e =0
r=>1 I;
We will show that )} e; = 0 as &; = 0. This will complete the proof of Lemma 4.

A, A,
lim infL1~¢|A| > lim infz Crz L > Z ‘
e+(J+1) e+ g

r=1
Ai fl fr d-ul—g - ei
2 Z CT Z 2 Z CT L
lim infr>1 u € +]€1 r>1 € +]€1
|f"| dpg - e;
> Z cr % -y 2 (3.18)
= e+o]_.(x £

Letu =), XEpp 1 and for each interval I c R define

Y avg(r) = ﬁ If Z £ dy

r=1
and

Uy Fr@=E s [ DI - avgy ()l du (3.19)

r=>1 ] r=1

Taken over all intervals I containing x such thatu(l) = &; . It is easy to check that U is a sublinear
operator on L (du) and that for x € LU (x) = e;/u(l;) . So

Zei =Zﬁlf e; du S!; Uf(x)du (3.20)

If f7 is continuous with compact support , then the right — hand side of (3.20) goes to zero withe; .
For in that case f7 is uniformly continuous and),,>; |f"(x) — avg;(x)| = 0 uniformly inx and!
as |I| = & — 0. Therefore .Uf"™ — Ouniformly on its support , which is bounded . Since u is finite
on any bounded set ,f Y.~  Uf" — 0 in this case .

Now we show that U is bounded onL!(du)independent of &;. Given any x € E, , there is aJ = J(x)
suchthatx € I; . Letl;" = I,_; U I; U I, .1 ( wherel,_; is the emptyset) Appling the triangle inequality
to (3.19) , Uf" splits naturally into two parts , each of which is at most Y, Vf7(x) =

(g7t fli(x)*Zrzl |f"|du . But VfT (x) is constant on each I;s0 ,
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a2y [ ufredus Zf"fr(")d“— Z va]"(x)du< ZZ flfrldu
r=1 R
—322[|f’"|du—32f|f"|du

r=1 r=1 R
which shows U is bounded on L1
For any f7 € L!(du) , there is a continuous function g” with compact support that is arbitrarily close
to f7 in the L' (du). So ,

> Juredsy  [vgw+uir-gwd

r=1 r=1

<Y vewdn+2) [T - gl du (3.21)

r=1 r=1
The first term of the last expression goes to zero with &; because g” is continuous . The second term

can be made arbitrarily small by proper choice of g" . With (3.20) , this completes the proof that
Y.e; = 0, and also the proof of Lemma 4.

Proof of Lemma 5: Let H"(n/L) =Y,>; ( B, —C")(n/L) , which is zero for n/L € S”. For
n/L>m—1/2LY ¢ |H (n/L)| < ¥rs1 CT((e +0{_s(n/L)) by (3.3) and (3.14) . Also
assumingL is large enough ,|H" (n/L)| < ¢ for all n.

Let {I;} be the partition defined in Lemma 4 except that now &; = ¢ . Similar to proof that A}~¢ - 0 ,
we see that for each i

Using Lemma 1,

|0k * 1,/ du| < Z Z ||||<pZ *Xlifrd‘u““L‘”(Er) ||X1ifr”L1(dll1—£)

r=>1 n/L€El;_gr r=>1 n/L&S”

c” r
SZ 7||X1if ”Ll(dm—s)

r>1

becausen/L ¢ S™ and x € E, implies [n/L — x| > § sothat [n/L — x| > L6 = K . So for each |

limsupy Y gL frdul <y f 7 din

r>1  n/LEl;_gr r>1
Notice that H" is zero above M = sup I; . SO summing over J gives

limsup Ly Y I /DLl fdi < Y C_i Ji 17\ de-
o = n/L>m-1/2 & K Luetof (infly)
3@ [ Ul e
=L K ) evol®

Becausee + a{_.(x) is roughly constant on each I;( except when J =0 , in which case the
numerator is zero ) .
Forn/L <m — 1/2, we use the fact that|(H" (n/L)| < € and that for
x € suppf” ,(x—n/L)>1/2.S0
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D I S (C GV N Ry TN
r>1 n/L<m-1/2

SZ e[l z o} 1(n/L —x) I 1l

r=1 n/LSm—l/Z LOO(Er)

A NG5! I TAd A
|Tl—LX|ZL/2 L® (Er)
which goes to zero as L — oo because
|2 n=rxizL 210" (n — Lx)|||L°° ) < p— CTby Lemma 1 . This proves Lemma 5
Theorem4:[11]There is an absolutemaximal constantC™ such that

"d
lim sup L' ¢|A4 + €| SZCr IM< me1 14|
L—oo i e+ o]{_. (%)

Proof: Appling Theorem 3 and Lemma 4 we show that , forC" = maﬁ%{ﬁ{—g, C1 } with the result given
by the approximated inequality sayL!~¢|A| < C"

The required inequality is obtained after taking the infinium and supremum over all L'~¢whereCt
define Lemma 4, we get from Lemmas 3 and 4

M
Z (c;—cz/Z)IM Jim inf (L'~|A] = 14 + ])

=1 +01 s( )

< > llg" ., Jim inf f Frdu | dx

r=1
Proposition 1:[11]. Given 0 < € < 1, there is a set E, c [0,1] that is a-coherent but not quasi-
regular.
Proof. Given a positive integer k, construct a cantor set, C™(2k,3%), as follows. Remove2k — 1
intervals of equal length from [0, I] leaving 2¥subintervals, each of length 37%. Repeat the excision on
each of the 2¥subintervals leaving 2% subintervals of length 372, Repeat adinfinitum, so that after
stage 1 the setC], has 2*/ subintervals, each of length3=*'. Let " (2*,3%) =n C. For every k, this
set has dimension ¢ = 1 — [n2/In3. Notice that C" (2, 3) is the usual cantor 2/3 set.
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