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I. INTRODUCTION 

This paper gives a unified account of a body of work on Hardy-Littlewood  theorem  of functions regular in the 

unit disc, relating Particularly to the fractional derivatives and integrals of such functions. 

Twotypesoffractionalderivativeand integral 

arediscussed.Foreachofthetwotypesoffractionalderivativeconsidered,a function analogous to the Littlewood-

Paley 𝑔-function is defined,and the properties of these two 𝑔-type functions are discussed. The results obtained 

here include Several new inequalities, and, inparticular,an extension (Theorem5)of a theorem of Hirschman for 

indices less than or equalto1. 

 

The remaining contents are as follows.In§ 4the Hardy-LittlewoodMaximal theorem is applied to obtain 

an inequality for fractional derivatives.In§10 an auxiliary theorem equivalent to one of Hardy and Littlewood is 

proved, and this is used to obtain anew proof of a theorem on majorants.In§§11-12 new proofs of the Hardy-

Little wood theorem on fractional integrals and of some related results are given,and in§13a theorem 

ofHardyandLittlewoodontheconvolutionseriesoftwo 

Powerseriesiscompletedandextended.Theresultsobtainedhaveobviousapplicationsintheclassical 

theoryofFourierseries,viaM.Riesz'stheorem on conjugatefunctions, butthesearenotstatedexplicitly. 

2.We assume throughout this paper that 𝜑 is a function regular in the unit disc∆=  𝑧 ∈ C:  𝑧 < 1 , and 

that𝜑 𝑧 =  𝑐1+𝜖𝑧
1+𝜖   𝑧 ∈ ∆ ∞

𝜖=0 . 

We write 

𝑀1+𝜖 𝜑, 1 − 𝜖  
1

2𝜋
  𝜑 1 − 𝜖 𝑒𝑖𝜃  

1+𝜖
𝜋

−𝜋

𝑑𝜃 

1

1+𝜖

 𝜖 ≥ 0  

𝑀 𝜑, 1 − 𝜖 = 𝑀+∞ 𝜑, 1 − 𝜖 = sup
𝜃

 𝜑   1 − 𝜖 𝑒𝑖𝜃   

     It is familiar that if  𝜖 ≥ 0 , then 𝑀1+𝜖 𝜑, 1 − 𝜖  increases with (1 − 𝜖), and therefore tends to a finite limit 

or +∞  as 𝜖 → 2. We define 

𝜇(1 + 𝜖) 𝜑 = lim
𝜖→2

𝑀1+𝜖 𝜑, 1 − 𝜖  𝜖 ≥ 0                                    (2.1) 

the value+∞ being allowed. The class of 𝜑  for which the limit in (2.1) is finite is, of course, the class 𝐻1+𝜖 . It 

is familiar that if 𝜑 ∈ 𝐻1+𝜖 then𝜑has a radial limit𝜑  𝑒𝑖𝜃 = lim𝜖→2   1 − 𝜖 𝑒𝑖𝜃   for almost all𝜃, and that  

𝜇1+𝜖 𝜑 =  
1

2𝜋
   𝜑 𝑒𝑖𝜃   

1+𝜖
𝑑𝜃 

𝜋

−𝜋

 

1

1+𝜖

 𝜖 ≥ 0  

     For any real or complex – valued function 𝑓measurable in the interval −𝜋, 𝜋   we write 

𝜇1+𝜖 𝑓 =  
1

2𝜋
  𝑓 𝜑  1+𝜖𝑑𝜃

𝜋

−𝜋

 

1

1+𝜖

 𝜖 ≥ 0  

𝑁1+𝜖 𝜑 = 𝜇+∞ 𝑓 = 𝑒𝑠𝑠 sup
𝜃

 𝑓  

the value+∞ being allowed. The class of𝑓 for which𝑁1+𝜖 𝑓  is finite (where𝜖 ≥ 0) is the class𝐿1+𝜖 −𝜋, 𝜋 . For 

any number1 + 𝜖used as an index (exponent) and such that 𝜖 ≥ 0, we write𝜖 = 0, so that 1 + 𝜖and 
1+𝜖

𝜖
 are 

conjugate indices in the sense of Ho lder’s inequality we extend this notation to include 𝜖 = 0and 𝜖 = +∞. 
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Any inequality𝐿 ≤ 𝑅 quoted or proved is to be interpreted as meaning if 𝑅 is finite, the 𝐿is finite, and𝐿 ≤ 𝑅. We 

use𝐴 𝑏, 𝑐, …    to denote a positive constant depending only on𝑏, 𝑐, …, not necessarily the same on any two 

occurrences,𝐴 by itself will denote a positive absolute constant. We also sometimes write𝐵 for constant of the 

form 𝐴 𝑏, 𝑐, … , these too are not necessarily the same on any two occurrences. We need the known theorems. 

Theorem A.Let0 ≤ 𝜀 ≤ ∞,Let  𝑓, 𝑔be real-or complex – valued functions measurable on −𝜋, 𝜋 , and let 

 𝜃 =
1

2𝜋
 𝑓 𝜃 − 𝑡 𝑔 𝑡 

𝜋

−𝜋

 𝑑𝑡 

Then 

𝑁1+𝜖

1−𝜖

  ≤ 𝑁1+𝜖 𝑓 𝑁1+𝜖 𝑔  

This is a well – known inequality ofW-H Young.(see for example,[22,i.p.37]. 

Theorem B. Let𝑓 be a function measurable on the interval 0, +∞ , let 𝑓 𝑥 ≥ 0 for 𝑥 > 0 and let 𝐹𝛿 𝑥  be the 

Riemann – Liouville integral of𝑓 of order𝛿 with origin𝑜, 𝑖. 𝑒. 

𝐹𝛿 𝑥 =
1

Γ 𝛿 
  𝑥 − 𝑦 𝛿−1𝑓 𝑦  𝑑𝑦

𝑥

0

 

If 𝜖 > 0 and either  

𝜖 ≥ 0, 𝛿 >
1 + 2𝜖

𝜖
, or 𝜖 > 0, 𝛿 =

1 + 𝜖

𝜖
 

Then 

  𝑥−(1+𝜖 1+2𝜖 𝛿)𝐹𝛿
1+2𝜖(𝑥)𝑑𝑥

+∞

0

 ≤ 𝐴 1 + 2𝜖; 1 + 𝜖, 𝛿, 𝜖 − 1   𝑥𝜖2
𝑓 1+𝜖  𝑥 𝑑𝑥

+∞

0

 

1

1+𝜖

 

     For 𝛿 >
𝜖

(1+2𝜖)(1+𝜖)
  this is essentially an elementary application of H𝑜 lder’s inequality, for 

𝛿 >
𝜖

(1+2𝜖)(1+𝜖)
, then result lies deeper, the case  𝜖 = 0 being the Hardy-Littlewood theorem on functional 

integrals of real function (see  [5,Th.2]). 

Theorem C. If 𝜑 ∈ 𝐻1+𝜖 , where 𝜖 ≥ 0, then 𝜑 can be expressed in the form 𝜑 = 𝜑1 + 𝜑2 where 𝜑1and 𝜑2are 

regular and have no zeros in  ∆, and  

𝜇1+𝜖 𝜑𝑖 ≤ 2𝑁1+𝜖 𝜑       (𝑖 = 1,2) 

This is a familiar theorem of Hardy and Littlewood ( [8,p.207]). 

Theorem D. If 𝜖 ≥ 0and 𝜇 = max[0,
1

𝜖
], then 

 1 + 𝜖 −𝜇  𝐶1+𝜖  ≤ 𝐴 1 + 𝜖 𝑁1+𝜖 𝜑  

This also is due to Hardy and Littlewood ([12,Theorem28]). 

Theorem E. Let 0 < 𝜖 < 1, and let𝑆 𝜃 = 𝑆1−𝜖(𝜃)be the open subset of ∆ bounded by the two tangents from 

the point𝑒𝑖𝜃  to the circle with center 𝑜and radius1 − 𝜖, together with the longer arc of this circle between the 

points of contact. Let also 𝜑be regular in ∆ and let  

Φ 𝜃 = sup
𝑧∈𝑆 𝜃 

 𝜑 𝑧   

then for𝜖 ≥ 0 𝜇1+𝜖 Φ ≤ 𝐴 1 − 𝜖, 1 − 𝜖 𝜇1+𝜖 𝜑  This is the Hardy – Littlewood complex Max' theorem (see, 

forexample,[22,i,p.278]). 

Theorem F. Let 𝜑be regular in ∆ and let  

𝑇1+2𝜖 ,𝜍 𝜃 =    𝜖 𝜍+2𝜖−1 𝑑1 − 𝜖
1

0

 
 𝜑′ 1 − 𝜖 𝑒𝑖𝜃−𝑖𝑡𝑑𝑡 

1+2𝜖

 1 − 𝜖𝑒𝑖𝑡  𝜍

𝜋

−𝜋

 

1

1+2𝜖

 

If𝜖 > −1, 𝜍 > max  1,
1+2𝜖

1+𝜖
  then  

𝜇1+𝜖 𝑇1+2𝜖 ,𝜍 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝜍 𝜇1+𝜖 𝜑 . 

This is one of the consequences of the Littlewood – Paley g- theorem. (see[3,Th.15]). 

Theorem G. Let 𝑓 ∈ 𝐿1+𝜖 −𝜋, 𝜋 , where𝜖 > 0, let the complex Fourier series of 𝑓 be 𝛾 𝑒𝑛𝑖𝜃∞
−∞ , and let 

𝜓 𝑧 =  𝛾1+𝜖

∞

𝜖=0

𝑧1+𝜖 𝑧 ∈ ∆ . 

Then 

𝜇1+𝜖 𝜓 ≤ 𝐴 1 + 𝜖 𝑁1+𝜖 𝑓  

This is equivalent to𝑀. Riesz’s theorem on conjugate functions. (see Hardy and Littlewood[9] for futher 

explations). 

      In addition to these theorems we also make extensive use of H𝑜 lder’s inequality, and of Minkowski’s 

inequality in the form  
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 g 𝑥 𝑑𝑥   𝑓 𝑥, 𝑦  𝑦 𝑑𝑦 
1+2𝜖

 

1

1+2𝜖

≤   𝑦 𝑑𝑦   𝑓1+2𝜖 𝑥, 𝑦 . g 𝑥  𝑑𝑥 

1

1+2𝜖

 

Where𝜖 ≥ 0 and 𝑓, 𝑔, are nonnegative. We use also the analogous result for 𝜖 = +∞, namely  

sup
𝑥

  𝑓 𝑥, 𝑦  𝑦   𝑑𝑦 ≤   sup
𝑥

 𝑓 𝑥, 𝑦    𝑦  𝑑𝑦 

3.Fractional derivatives and integrals:The definition 𝑓 fractionalderivativeandintegralwhichisusedin§§3-13 is 

asfollows. 

Let𝜑 is regular in ∆, and 

𝜑 𝑧 =  𝑐1+𝜖𝑧
1+𝜖     (𝑧 ∈ ∆)

∞

𝜖=−1

 

    Then for any 𝜖 ≥ −1 the fractional derivative 𝑣1+𝜖𝜑 of 𝜑 of order1 + 𝜖 is given by  

𝑣1+𝜖𝜑 𝑧 =   1 + 𝜖 1+𝜖𝑐1+𝜖𝑧
1+𝜖 𝑧 ∈ ∆ 

∞

𝜖=−1

                                                      (3.1) 

Clearly𝑣1+𝜖𝜑 is regular in ∆, and 

𝑣1+𝜖 𝑣𝛾𝜑 = 𝑣1+𝜖+𝛾𝜑                                                                                                      (3.2) 

For all nonnegative 1 + 𝜖, 𝛾 

     The corresponding definition of the fractional integral applies only to functions vanishing at the origin. Thus 

if𝜑 0 = 𝑐0 = 0, then for any 𝜖 ≥ −1the fractional integral 𝑣1+𝜖𝜑 of 𝜑 of order 1 + 𝜖is given by  

𝑣1+𝜖𝜑 𝑧 =   1 + 𝜖 − 1+𝜖 𝑐1+𝜖𝑧
1+𝜖 𝑧 ∈ ∆ 

∞

𝜖=0

                                                                       (3.3) 

     As for fractional derivative, the fractional integral fractional 𝑣1+𝜖𝜑 is regular in ∆ and 

𝑣1+𝜖 𝑣𝛾𝜑 = 𝑣1+𝜖+𝛾𝜑                                                                                       (3.4) 

For all nonnegative 1 + 𝜖, 𝛾 

     When 𝜑 0 = 0  (3.1) and (3.3) can be used to define 𝑣1+𝜖𝜑 and 𝑣1+𝜖𝜑for all real1 + 𝜖(so that 𝑣1+𝜖𝜑 =
𝑣−(1+𝜖)𝜑 for all real 1 + 𝜖) and then (3.2) and (3.4) hold for all real 1 + 𝜖, 𝛾. 

     The functions 𝑣1+𝜖𝜑 and 𝑣1+𝜖𝜑    defined above seem to have been first studied by Hadamord  7 . For 

𝜖 > −1, 𝑖− 1+𝜖 𝑣1+𝜖𝜑   1 + 𝜖 𝑒𝑖𝜃   is the Welyl fractional integral of order 𝜖of the function 𝜃 → 𝜑   1 +

𝜖𝑒𝑖𝜃, and for any positive integer 𝑚 

𝑖𝑚𝑣𝑚   1 + 𝜖 𝑒𝑖𝜃 =
𝜕𝑚

𝜕𝜃𝑚
𝜑   1 + 𝜖 𝑒𝑖𝜃   

    Thus the definitions (3.3) and (3.4) correspond roughly to differentiation and integration with respect to 𝜃. 

We note also that if 𝑚is apositive integer then 

𝑣𝑚𝜑 𝑧 =  𝑧
𝑑

𝑑𝑧
 

𝑚

𝜑 𝑧                                                                                                        (3.5) 

So that 𝑣1has its traditional meaning of 𝑧
𝑑

𝑑𝑧
. 

For 𝜖 > −1the fractional integer 𝑣1+𝜖𝜑is connected with 𝜑by the relation 

𝑣1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃 =
1

Γ 1 + 𝜖 
  log

1 − 𝜖

𝜍
 

𝜖

 𝜍 𝑒𝑖𝜃 
𝑑𝜍

𝜍

1+𝜖

0

(3.6) 

Where   0 < 𝜖 < 1this relation is easily obtained by term integration, using the formulae 

 1 + 𝜖 − 1+𝜖   log
1 + 𝜖

𝜍
 

𝜖

𝜍𝜖𝑑 𝜍
1+𝜖

0

  log
1

𝛿
 

𝜖

𝛿𝜖𝑑𝛿
1

0

=  𝑡𝜖𝑒− 1+𝜖 𝑑𝑡
∞

0

=  1 + 𝜖 − 1+𝜖 Γ 1 + 𝜖                                                                                                      (3.7) 

where 𝜖 > −1 

     The formula (3.6) was obtained by Hadamard [7,p.157],but does not seem to have been used by subsequent 

writers on fractional derivatives and integrals. In§§4-12 wedevelopthetheory ofthe functions 𝑣1+𝜖𝜑 and𝑣1+𝜖𝜑, 

making systematic use of the formula (3.5). 

4.Application of Hadamard's formula (3.6), we prove : 

Theorem 1. Let𝑆1−𝜖 𝜃  be the Kit – shaped region defined on Theorem E where0 < 𝜖 < 1 let Φ 𝜃 =
sup𝑧∈𝑆1−𝜖  𝜃  𝜑 𝑧  , and let 𝜖 > −1. Then for  0 ≤ 𝜖 < 1. 

 𝑣1+𝜖𝜑 1 − 𝜖 𝑒𝑖𝜃  ≤ 𝐴 1 + 𝜖, 1 − 𝜖  1 − 𝜖  𝜖 − 1+𝜖 Φ 𝜃        (4.1) 
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Asimilar result for a different type of fractional derivative isProved by Hardy and Littlewood [17,Th.5] (see also 

Hirschman  [18,Lemma4.1],and Flett [6,Th.8]).Suppose first that 1 + 𝜖is positive integer,𝑚 say and let 𝐺by the 

circle with centre 𝑧 =  1 − 𝜖 𝑒𝑖𝜃  and radius 
1

2
 1 − 𝜖  𝜖 . By (3.5), for 𝑧 ≠ 0we have 

𝑧−1𝑣𝑚𝜑 𝑧 = 𝑧−1 𝑧
𝑑

𝑑𝑧
 
𝑚

=
1

2𝜋𝑖
 

𝑃 ζ, 𝑧 𝜑(ζ)

 ζ − 𝑧 𝑚+1
𝑐

 

where 𝑃is polynomial of degree 𝑚 − 1in ζ, 𝑧depending only on  𝑚. Since𝐺 ⊂ 𝑆1−𝜖 𝜃 , it follows that  

 1 + 𝜖 −1  𝑣𝑚𝜑   1 − 𝜖 𝑒𝑖𝜃   ≤ 𝐴 1 + 𝜖, 1 − 𝜖  𝜖 −𝑚Φ 𝜃             (4.2) 

and this implies (4.1), since𝑣𝑚𝜑 0 = 0.  

Nextlet1 + 𝜖 be nonintegral, and let 𝑚 1 + 𝜖 + 1(where  1 + 𝜖 denotes as usual, the integral part of 1 + 𝜖). 

Since𝑣1+𝜖𝜑 = 𝑣𝑚− 1+𝜖  𝑣
𝑚𝜑 . (4.1) gives 

𝑣1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃 =
1

Γ 𝑚 −  1 + 𝜖  
  log

1 − 𝜖

𝜍
 

𝑚−𝜖1+𝜖

0

𝑣𝑚𝜑 𝜍𝑒𝑖𝜃  
𝑑𝜍

𝜍
(4.3) 

and since log
1

𝑥
≥ 1 − 𝑥for𝑥 > 0, and 𝑚 − 𝜖 ≤ 2, we obtain from (4.3)and (4.2)that  

 𝑣1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃   

≤ 𝐴 1 + 𝜖, 1 − 𝜖 Φ 𝜃  1 − 𝜖 −𝑚+𝜖+2   1 − 𝜖 − 𝜍 𝑚+𝜖 1 − 𝜍 −𝑚  𝑑𝜍
1+𝜖

0

                  (4.4) 

     On substituting  𝜍 = 1 − 𝜖 𝑥, we see that the integral -*on the right is equal to  

 𝜖 −(1+𝜖)   𝑥 − 2 𝑚−𝜖−2𝑥−𝑚  𝑑𝑥

1

−𝜖

1

≤  𝜖 − 1+𝜖  𝐴 1 + 𝜖  𝜖 − 1+𝜖 
∞

1

     (4.5) 

and (4.4)and (4.5)together imply (4.1)for 
1

2
≤ 𝜌 < 1. On the other hand, if 0 < 𝜌 <

1

2
, then the integral on the 

right of (4.4)does notexceed  

2𝑚   1 − 𝜖 − 𝜍 𝑚−𝜖−2𝑑𝜍
1+𝜖

0

= 2𝑚  1 − 𝜖 𝑚−1−𝜖 𝑚 1 + 𝜖  ≤ 𝐴 1 + 𝜖  1 − 𝜖 𝑚−1−𝜖 𝜖 −1−𝜖  

and again the inequality (4.1) follows. 

THEOREM 1.COROLLARY 1.If −1 < 𝜖 ≤ ∞,, then for0 ≤ 𝜖 < 1,  

𝑀1+𝜖 𝑣
1+𝜖𝜑, 1 − 𝜖 ≤  1 + 𝜖, 1 + 𝜖  1 − 𝜖  𝜖 − 1+𝜖 𝑁1+𝜖(𝜑) 

     This follows from the main theorem and theorem E, with𝜖 =
1

2
, 𝜂 =

1

2
 (say). Applying this Corollary to the 

function 𝑧 → 𝜑   1 − 𝜖 
1

2𝑧 , we deduce also  

THEOREM 1.COROLLARY 2. Let 0  and let  

𝑀1+𝜖 𝜑, 1 − 𝜖 ≤ 𝑐 1 − 𝜖  0 ≤ 𝜖 < 1  

Then for𝜖 > −1 

𝑀1+𝜖 𝑣
1+𝜖𝜑, 1 − 𝜖 ≤ 𝐴 1 + 𝜖, 1 + 𝜖  1 − 𝜖 12 𝜖 − 1+𝜖 𝑐   1 − 𝜖 

1

2 ,  𝜖 ≥ 0  

5.Theorems of Littlewood –Paley type: We consider next aGroup of three theorems closely related to results 

of Littlewood and Paley,Hirschman,and the [23]. 

     For any 𝜑 regular in the unit disc ∆, and for any positive 1 + 𝜖, let 

𝐺1+2𝜖 ,1+𝜖 𝜃 =    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

 𝑣1+𝜖 𝜑 1 − 𝜖 𝑒𝑖𝜃  
1+2𝜖 𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

 

Theorem 2. If 𝜖 > −1, and either𝜖 ≥ 0, 𝛿 >
𝜖

(1+𝜖)(1+2𝜖)
 or 𝜖 > 0, 𝛿 =

𝜖

(1+𝜖)(1+2𝜖)
 then for each 𝜃. 

𝐺1+2𝜖 ,1+𝜖 𝜃 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖, 𝛿 𝐺 1 + 𝜖 , 1 + 𝜖 + 𝛿 𝜃                    (5.1) 

In particular, if 𝜖 ≥ 0and 𝛾 > 1 + 𝜖 > 0, then for each  𝜃 

𝐺1+2𝜖 ,1+𝜖 𝜃 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛾 𝐺1+2𝜖 ,𝛾 𝜃  (5.2) 

Theorem 3. If 𝜖 > −1, then 

𝜇1+𝜖 𝐺1+2𝜖 ,1+𝜖 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛾 𝜇1+𝜖 𝜑                         (5.3) 

Theorem 4.0 < 𝜖 ≤
1

2
 and 𝜑 0 = 0 then  

𝜇1+𝜖 𝜑 ≤ 𝐴 1 + 2𝜖, 𝜖 + 1,1 + 𝜖 𝜇1+𝜖 𝐺1+2𝜖 ,1+𝜖  

The results of Theorems 3and 4 with 𝐺 1+2𝜖  1+𝜖  replaced  by the function𝑔 1+2𝜖  1+𝜖 given by 

𝑔 1+2𝜖  1+𝜖 =    𝜖  1+2𝜖  1+𝜖 −1 1 − 𝜖 − 1+2𝜖  𝑣 1+𝜖 𝜑   1 − 𝜖 𝑒𝑖𝜃   
 1+2𝜖 

𝑑(1 − 𝜖)
1

0

 

1

1+2𝜖

                   (5.5) 
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Are already known. The cases 𝜖 = 0, of these results for𝑔 1+2𝜖  1+𝜖 were proved by Littlewoodand Paley 

[19],the function𝑔2,1being the well-known Littlewood- Paley 𝑔-function. The remaining cases where 𝜖 = 0are 

due to Marcinkiewicz and Zygmund [20],and the cases where 𝜖 ≠ 0are due to Hirschman [18]and 

theAuthor[4,6].Thecrucialresultforthesetheoremsfor𝑔 1+2𝜖  1+𝜖  is that 

 for 𝑔2,1correspondingtoTheorem3(i.e.the Littlewoods-Paley(g-theorem),all the other results being obtainable 

from this.It is easy to pass from(5.3)to the corresponding inequality for 𝑔 1+2𝜖  1+𝜖  .And vice-versa,for it is 

obvious that if𝜖 > 0, 

𝐺 1+2𝜖  1+𝜖  𝜃 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖 𝑔 1+2𝜖  1+𝜖  𝜃 ,                   (5.6) 

and in virtue of Theorem 1,we have also 

𝑔 1+2𝜖  1+𝜖 
 1+2𝜖  𝜃 =  

1

2

0

+  
1

1

2

≤ 𝐴 1 + 2𝜖, 1 + 𝜖 Φ1+2𝜖 𝜃 + 𝐴 1 + 2𝜖, 1 + 𝜖 𝐺 1+2𝜖  1+𝜖 
 1+2𝜖  𝜃           (5.7) 

for 𝜖 > −
1

2
. ItisalsonotdifficulttodeduceTheorem4fromtheresultfor𝑔 1+2𝜖  1+𝜖 corresponding to Theorem 3. 

 However,the arguments involved in the proofs of these various results,at least for𝜖 ≠ 0,apply much more 

naturally to𝐺(1+2𝜖)(1+𝜖) than to𝑔 1+2𝜖  1+𝜖 and it seems worth while to give independent proofs of Theorems 3 

and4.The inequality (5.1)is new.It  shows in particular that the  cases  𝜖 ≠
1

2
, 𝜖 ≠ 0 ofTheorems 3and 4are 

implied by the cases  𝜖 =
1

2
 of  these results, and thus provides a new proof of theresultsof  

Marcinkiewicz.Theimple specialcase(5.2)alsoenablesustoreducetheproofof Theorem3tothecasewhere1 +
𝜖 isapositiveinteger,andthisinturn simplifiesone oftheestimatesinvolved. 

6. We prove Theorem 2:If 𝜖 > −1, 𝛿 > 0 then 𝑣1+𝜖𝜑 = 𝑣𝛿 𝑣1+𝜖+𝛿𝜑 , so that by (3.6) 

 𝑣1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃  ≤
1

Γ 𝛿 
  log

1 − 𝜖

𝜍
 

𝛿−1

 𝑣1+𝜖+𝛿𝜑 𝑒𝑖𝜃  
𝑑𝜍

𝜍

1+𝜖

0

 

The required inequality (5.1) is therefore a consequence of the following Lemma  

Lemma 1. Let be a function measurable on the interval (0.1), let   1 − 𝜖 ≥ 0  for0 < 𝜖 < 1 and let  

𝛿 1 − 𝜖 =
1

Γ 𝛿 
  log

1 − 𝜖

𝜍
 

𝛿−1

 𝜍 
𝑑𝜍

𝜍

1+𝜖

0

 

If 𝜖 > −1, andeither𝜖 ≥ 0, 𝛿 >
𝜖

(1+2𝜖)(1+𝜖)
or𝜖 > 0, 𝛿 =

𝜖

 1+2𝜖  1+𝜖 
 

Then 

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −1

𝛿
1+2𝜖 1 − 𝜖 

𝑑(1 − 𝜖)

1 − 𝜖

1

0

 

1

1+2𝜖

 

≤ 𝐴 1 + 2𝜖, 1 + 𝜖,  1 + 𝜖 , 𝛿    log
1

1 − 𝜖
 

 1+𝜖 (2+𝜖)𝛿−11

0

1+𝜖 1 − 𝜖 
𝑑(1 − 𝜖)

1 − 𝜖
  

  This follows easily from Theorem B by transformation.  
1

𝑥
= log

1

1 − 𝜖
,
1

𝑦
= log

1

𝜍
, 𝑓 𝑥 = 𝑥−𝛿−1  𝑒−

1

𝑥 . 

The lemma  may also be proved independently of Theorem B. InOur arguments we make essential use only of 

the case 𝜖 = 0 (thisGives the inequality (5.2)), and since the direct proof of this case ofThe lemma 

isparticularlysimple,wegiveithereforthesake ofcompleteness.   

Let𝜖 ≥ 0, 𝛿 > 0, and choose 𝜇 depending on 1 + 2𝜖, 1 + 𝜖, 𝛿such that 
𝛿

𝑘 ′ < 𝜈 < 1 + 𝜖 +
𝛿

𝑘 ′ . For 𝜖 > 0 we have, 

by Holder’s inequality (6.1) 

 Γ 𝛿 𝛿 1 − 𝜖   1+2𝜖  

≤    log
1

𝜍
 

 1+2𝜖 𝜇

 log
1 − 𝜖

𝜍
 

𝛿−1

1+2𝜖 𝜍 
𝑑𝜍

𝜍

1+𝜖

0

    log
1

𝜍
 

𝑘 ′ 𝜇

 log
1 − 𝜖

𝜍
 

𝛿−1 𝑑𝜍

𝜍

1+𝜖

0

 

1+2𝜖

𝑘′

 

= 𝐴  1 + 2𝜖 ,  1 + 𝜖 , 𝛿  
1

0

(log〖1/(1 − 𝜖)〗 )^((1 + 2𝜖)𝛿 − (1 + 2𝜖)𝜇)   
1+𝜖

0

(log〖1/𝜍〗 )^(1

+ 2𝜖)𝜇   log
1 − 𝜖

𝜍
 

𝛿−1

 1+2𝜖  𝜍 𝑑𝜍/𝜍,             (6.1) 
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    The second factor on the right of the first line of (6.1) being evaluated by means of the substitution
1

𝑥
=

log
1

 1−𝜖 
,

1

𝑦
= log

1

𝜍
.If 𝜖 = 0, the final inequality (6.1) holds trivially (where

1

𝑘 ′  is interpreted as 0).Writing 

𝑐 =
 1+2𝜖  1+𝜖 𝛿

𝑘 ′ −  1 + 2𝜖 𝜇, we therefore have for 𝜖 ≥ 0, 

  log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −1

𝛿
 1+2𝜖  1 − 𝜖 

𝑑 1 − 𝜖 

1 − 𝜖

1

0

≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛿 

∙   log
1

1 − 𝜖
 

𝑐−1 𝑑𝜖

1 − 𝜖
  log

1

𝜍
 

 1+2𝜖 𝜇

 log
 1 − 𝜖 

𝜍
 

𝛿−1

1+2𝜖 𝜍 
𝑑𝜍

𝜍

1+𝜖

0

1

0

= 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛿 

∙   log
1

𝜍
 

 1+2𝜖 𝜇

1+2𝜖 𝜍 
𝑑𝜍

𝜍

1

0

  log
1

1 − 𝜖
 

𝑐−1

 log
1 − 𝜖

𝜍
 

𝛿−1 𝑑(1 − 𝜖)

1 − 𝜖
  (6.2)

1

0

 

On substituting 𝛿 =
1

1−𝜖
, 𝑡 = log

1

𝜍
 we see that the inner integral on the right of (6.2) is equal to𝐴 1 + 2𝜖, 1 +

𝜖,𝛿log1𝜍𝑐+𝛿−1.and the result now follows. 

7.We take next the proof of Theorem 3, and here we useTheorem F (so that the proof,like that 

for𝒈𝟏+𝟐𝝐,𝟏+𝝐 depends ultimately on the Littlewoods– Paleyg-theorem): 

As remarked above,it is enough to prove(5.3) when 𝜀 + 1 is a largeInteger.We note now that if 𝐸 =
1

𝑧−1
 then  

𝑣1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃  =
1

2𝜋
  1 − 𝜖 𝑒𝑖𝜃−𝑖𝑡𝜑′   1 − 𝜖 𝑒𝑖𝜃−𝑖𝑡 𝑣𝜖𝐸   1 − 𝜖 𝑒𝑖𝑡 𝑑𝑡.

𝜋

−𝜋

 

It is immediate from(3.5)that for positive integral 1 + 𝜖 2 

 𝑣𝜖𝐸 1 − 𝜖 𝑒𝑖𝑡  ≤ 𝐴 1 + 𝜖  1 − 𝜖  1 −  1 − 𝜖 𝑒𝑖𝑡  
− 1−𝜖 

,                    (7.1) 

And thereforealso 

 1 − 𝜖 −2 1+2𝜖  𝑣1+𝜖 𝜑 1 − 𝜖 2𝑒𝑖𝜃   ≤ 𝐴 1 + 𝜖   
𝜋

−𝜋

 𝜑′ 𝑖 1 − 𝜖 𝑒𝑖𝜃−𝑖𝑡  

 1 −  1 − 𝜖 𝑒𝑖𝑡  1+𝜖
 

1+2𝜖

 

≤ 𝐴 1 + 𝜖   
𝜋

−𝜋

 𝜑′ 𝑙 1 − 𝜖 𝑒𝑖𝜃−𝑖𝑡    𝑑𝑡

 1 −  1 − 𝜖 𝑒𝑖𝑡   1+2𝜖 (𝜖−1)+2
   

𝜋

−𝜋

𝑑𝑡

 1 −  1 − 𝜖 𝑒𝑖𝑡  2
 

2𝜖

 

= 𝐴 1 + 2𝜖, 1 + 𝜖  1 −  1 − 𝜖 2 −2𝜖  
 𝜑′   1 − 𝜖 𝑒𝑖𝜃−𝑖𝑡  

1+2𝜖

  𝑑𝑡

 1 −  1 − 𝜖 𝑒𝑖𝑡   1+2𝜖 (𝜖−1)+2

𝜋

−𝜋

 

8.For the proof ofTheorems 4. We useanargumentof atypefirstemployedby Littlewoods 

andPaleyforthecase𝝐 = 𝟎of the 𝒈𝟏+𝟐𝝐,𝟏+𝝐-theorems,and subsequently extended by Hirschman[18]and the 

author [6] to the case𝝐 ≠ 𝟎.For𝑮𝟏+𝟐𝝐,𝟏+𝝐the argument takes a verysymmetrical form: 

To prove Theorem 4,it is enough to show that if if 0 < 𝜖 ≤
1

2
, then 

𝑀1+𝜖 𝜑, 𝑅 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 𝑁1+𝜖 𝐺1+2𝜖 ,1+𝜖               (8.1) 

For 0 < 𝑅 < 1, since the expression on the left of (34) is equal to  

sup  
1

2𝜋
  𝜑 𝑅𝑒𝑖𝜃 𝑉 𝜃  𝑑𝜃

𝜋

−𝜋

  

Where the supremum is taken over all complex – valued trigonometric polynomials𝑉 satisfying 𝜇1+𝜖

𝜖

 𝑉 = 1, it 

is therefore enough to prove that for any such𝑉 

 
1

2𝜋
  𝜑 𝑅𝑒𝑖𝜃 𝑉 𝜃  𝑑𝜃

𝜋

−𝜋

 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 𝜇1+𝜖 𝐺1+2𝜖 ,1+𝜖              (8.2) 

When 0 < 𝑅 < 1.Let 

𝑉 𝜃 =  𝑘1+𝜖𝑒
 1+𝜖 𝑖𝜃 ,

𝑁

𝜖=𝑁−1

let  𝜉 𝑧 =  𝑘− 1+𝜖 𝑧
1+𝜖

𝑁

𝜖=0

 

and for any 𝛾 > 0 and 0 < 𝑅 < 1 let 

𝐻𝑘 ′ ,𝛾 𝜃 =    log
1

1 − 𝜖
 

𝑘 ′ 𝛾−1

 𝑣𝛾  𝜉   1 − 𝜖 𝑒𝑖𝜃  
𝑘 ′ 𝑑(1 − 𝜖)

1 − 𝜖

1

0

 

1

𝑘′

 

By Theorem 3 and Theorem G 
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𝜇1+𝜖

𝜖

 𝐻𝑘 ′ ,𝛾 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛾 𝑀1+𝜖

𝜖

 𝜉, 𝑅 ≤ 𝐴 1 + 𝜖, 1 + 𝜖, 𝛾 𝜇1+𝜖

𝜖

 𝑉 = 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛾    (8.3) 

We note now that 

  𝜑 𝑅𝑒𝑖𝜃 𝑉 𝜃  𝑑𝜃 = 2𝜋  𝑐1+𝜖𝑘−(1+𝜖)𝑅
1+𝜖

𝑁

𝜖=0

𝜋

−𝜋

 

And hence, by the (19) for any positive 1 + 𝜖, 𝛾, 

  𝜑 𝑅𝑒𝑖𝜃  𝑉 𝜃  𝑑𝜃
𝜋

−𝜋

=
21+𝜖

Γ(1 + 𝜖 + 𝛾)
  log

1

1 − 𝜖
 

𝜖+𝛾 𝑑𝜖

1 − 𝜖

1

0

 𝑣1+𝜖  𝜑   1 − 𝜖 𝑒𝑖𝜃 𝑣𝛾  𝜉 𝑅 1 − 𝜖 𝑒𝑖𝜃 
𝜋

−𝜋

 𝑑𝜃  

=
21+𝜖

Γ 1 + 𝜖 + 𝛾 
 𝑑𝜃

𝜋

−𝜋

  log
1

1 − 𝜖
 

𝜖+𝛾

𝑣1+𝜖  𝜑   1 − 𝜖 𝑒𝑖𝜃 𝑣𝛾  𝜉 𝑅 1 − 𝜖 𝑒𝑖𝜃  
𝑑(1 − 𝜖)

1 − 𝜖

1

0

(8.4)  

By Holder’s inequality with indices1 + 2𝜖, 𝑘′  the absolute value of the inner integral on the right of (8.4)does 

not exceed 𝐺1+2𝜖 ,1+𝜖 𝜃 𝐻𝑘 ′ ,𝛾 −𝜃 and there exceed fore, by Holder’s inequality with indices1 + 𝜖,
1+𝜖

𝜖
 

 
1

2𝜋
  𝜑 𝑅𝑒𝑖𝜃  𝑉 𝜃  𝑑𝜃

𝜋

−𝜋

 ≤
21+𝜖+𝛾

2πΓ(1 + 𝜖 + 𝛾)
 𝐺1+2𝜖 ,1+𝜖 𝜃 𝐻𝑘 ′ ,𝛾 −𝜃 

𝜋

−𝜋

 

≤
𝑍1+𝜖+𝛾

Γ 1 + 𝜖 + 𝛾 
𝑁1+𝜖 𝐺1+2𝜖 ,1+𝜖 𝜇1+𝜖

𝜖

 𝐻𝑘 ′ ,𝛾                          (8.5) 

    Taking 𝛾 = 1(say), we obtain from (8.5)and (8.4)the inequality (8.2)and this completes the proof when 

𝜖 = +∞, the inequality (33) is false for all 𝜖 > −1. To prove thisLet 𝜑 𝑧 =   1 + 𝜖  log 1 + 𝜖  −1𝑧1+𝜖∞
𝜖=1 , 

so that 𝜑 is unbounded in ∆. Then for 𝜖 > −1we have 

 𝑣1+𝜖  𝜑   1 − 𝜖 𝑒𝑖𝜃     1 + 𝜖  log 1 + 𝜖  −1 1 − 𝜖 1+𝜖 ≤ 𝐴 1 + 𝜖  1 + 𝜖 2 𝜖 − 1+𝜖  log
𝑒

𝜖
 

−1
∞

𝜖=1

 

      Whence 𝐺1+2𝜖 ,1+𝜖 𝜃 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖  for all 𝜃(since𝜖 > 0), and this prove the statement. 

We note in passing that the results for the function𝑔1+2𝜖 ,1+𝜖definedin(5.5)correspondingtoTheorems3and 

4arenowimmediateconsequences of(5.6)and(5.7).When𝜖 > 0we have also an inequality 

for𝑔1+𝜖2,1+𝜖corresponding to(5.2),but we postpone the proof of this until §16. 

9-It is probable that the inequality of Theorem 4 holds for 
𝟏

𝟐
< 𝜖 ≤ 1.We are unable to prove this in full 

generality, but we can deal with the case−
𝟏

𝟐
< 𝜖 ≤ 1for certain values of  𝟏 + 𝝐 𝟑.In 

contrasttoTheorem4,thecase 𝝐 = +∞  is true here. 

Theorem 5. If 𝜑 0 = 0and either (i) 𝜖(ii)0 < 𝜖 ≤∞, Then 

𝜇1+𝜖 𝜑 = 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 𝑁1+𝜖 𝐺1+2𝜖 ,1+𝜖                                                      (9.1) 

We consider first the case where 𝜑 is regular in the closed disc ∆, and we show that in this case the inequality 

(9.1)holds for 𝜖 ≥ 0, −
1

2
≤ 𝜖 ≤ 0, the limitations on 𝜖 + 1 in (i) and (ii) arise only in the reduction of the 

general case to this special one. Suppose then that 𝜑 is regular in ∆ and that𝜖 ≥ 0, −
1

2
< 𝜖 ≤ 0. It is enough to 

show that 

𝑀1+𝜖 𝜑, 1 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 𝜇1+𝜖 𝐺1+2𝜖 ,1+𝜖                   (9.2) 

Since 𝜑 is regular I n ∆, the formulae (3.7) give  

𝜑 𝑒𝑖𝜃 =
1

Γ 1 + 𝜖 
  log

1

1 − 𝜖
 

𝜖1

0

𝑣1+𝜖  𝜑   1 − 𝜖 𝑒𝑖𝜃 
𝑑𝜖

1 − 𝜖
, 

and therefore 

 𝜑 𝑒𝑖𝜃   ≤
1

Γ 1 + 𝜖 
  log

1

1 − 𝜖
 

𝜖1

0

 𝑣1+𝜖  𝜑   1 − 𝜖 𝑒𝑖𝜃   
𝑑(1 − 𝜖)

1 − 𝜖
      (9.3) 

     This trivially implies (9.2)for𝜖 = 0,. Let 𝜙 be defined as in Theorem 1 with 𝜖 =
1

2
 (say). Then 

 𝑣1+𝜖  𝜑   1 − 𝜖 𝑒𝑖𝜃   ≤ 𝐴 𝜖 + 1  1 − 𝜖  𝜖 − 𝜖+1 Φ 𝜃 ≤ 𝐴 1 + 𝜖  log
1

1 − 𝜖
 

− 𝜖+1 

Φ(𝜃), 

Whence, by (9.3) 

 𝜑 𝑒𝑖𝜃  ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 Φ−2𝜖 𝜃   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −1

 𝑣1+𝜖  𝜑   1 − 𝜖 𝑒𝑖𝜃  
2𝜖+1

 𝑑(1     
1

0

− 𝜖) 

= 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 Φ−2𝜖 𝜃 𝐺1+2𝜖 ,1+𝜖
1+2𝜖  𝜃                           (9.4) 

If𝜖 < ∞, then (9.4) gives 
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𝑀1+𝜖 𝜑, 1 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖   Φ2𝜖 1+𝜖  𝜃 𝐺1+2𝜖 ,1+𝜖
 1+2𝜖  1+𝜖  𝜃  𝑑𝜃

𝜋

−𝜋

 

1

1+𝜖

 

Applying Holder’s inequality with indices 
1

1−𝑘
,

1

𝑘
 and then Theorem E, we obtain 

𝑀1+𝜖 𝜑, 1 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 𝜇1+𝜖
2𝜖  Φ 𝜇1+𝜖

2𝜖+1 𝐺1+2𝜖 ,1+𝜖 𝐴 1 + 2𝜖, 1 + 𝜖, 1

+ 𝜖 𝑀1+𝜖
2𝜖  𝜑, 1 𝜇1+𝜖

2𝜖+1 𝐺1+2𝜖 ,1+𝜖                                                                                       (9.5) 

And since 𝑀1+𝜖(𝜑, 1)isfinite, this implies (40). If   𝜖 = +∞, then (9.2)follows immediately from (9.5), and 

again we obtain (9.4). 

Suppose now that𝜑 is regular in∆, and let 0 < 𝑅 < 1. Aplying the special case to the function𝑧 → 𝜑 𝑅𝑧 , we 

get 

𝑀1+𝜖
1+𝜖 𝜑, 𝑅 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1

+ 𝜖   𝑑𝜃
𝜋

−𝜋

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

 𝑣1+𝜖  𝜑 𝑅 1 − 𝜖 𝑒𝑖𝜃   
𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

        (9.6) 

If  𝜖 ≥ 0, then  

  log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

 𝑣1+𝜖  𝜑 𝑅 1 − 𝜖 𝑒𝑖𝜃  
1+2𝜖 𝑑𝜖

1 − 𝜖

=   log
1

𝜍
 

 1+2𝜖  1+𝜖 −1𝑅

0

 𝑣1+𝜖  𝜑 𝑅 1 − 𝜖 𝑒𝑖𝜃   
1+2𝜖 𝑑𝜍

𝜍
 

≤   log
1

𝜍
 

 1+2𝜖  1+𝜖 −1𝑅

0

 𝑣1+𝜖  𝜑 𝑅 1 − 𝜖 𝑒𝑖𝜃  
1+2𝜖 𝑑𝜍

𝜍
≤ 𝐺1+2𝜖 ,1+𝜖

1+2𝜖  𝜃  

Hence 

𝑀1+𝜖
1+2𝜖 𝜑, 1 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 𝜇1+𝜖

1+𝜖 𝐺1+2𝜖 ,1+𝜖  

and this implies (9.1). If 𝜖 > −1, then (9.6)gives 

𝑀1+𝜖
1+2𝜖 𝜑, 1 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖   log

1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −1 𝑑𝜖

1 − 𝜖

𝑅

0

  𝑣1+𝜖  𝜑 𝑅 1 − 𝜖 𝑒𝑖𝜃  
1+2𝜖

𝑑𝜃
𝜋

−𝜋

 

    Since the inner integral on the right increases with R , we may replace R  on the right by 1, and this again 

implies (9.1).  

    We note explicitly the case 𝜖 = 0 of Theorem 4) and 5, viz 

Theorem 6. If𝜑 0 = 0, and −
1

2
< 𝜖 ≤ 1, then 

𝜇1+2𝜖 𝜑 ≤ 𝐴 1 + 2𝜖, 1

+ 𝜖   
𝜋

−𝜋

  log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

 𝑣1+𝜖  𝜑 𝑅 1 − 𝜖 𝑒𝑖𝜃   
1+2𝜖

 1 − 𝜖 −1𝑑𝜃𝑑(1

− 𝜖) 

1

1+2𝜖

. 

10.Atheoremonthe means𝑴𝝐+𝟏 𝝋 ∙ 𝟏 − 𝝐 .We prove next  

Theorem 7. Let 𝜑 0 = 0, let 0 < 𝜖 ≤ +∞, and let 

𝐽 =    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑀1+𝜖
1+2𝜖 𝜑, 1 − ϵ 

𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

 

Then 

𝐽 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 1 + 𝜖 𝑁1+𝜖 𝜑                                     (10.1) 

This is equivalent to a result of  Hardy and Littlewood [12,Th.31;17,Th.II].The theorem can be proved in 

various ways, and we give here a variant of the proof in[17]which makes the least demands on the theory of 

the𝐻𝜖+1classes. 

Suppose first −1 ≤ 𝜖 ≤ 1, and let 𝐶 = 𝑁2 𝜑 . 

Then 

𝑀 𝜑, 1 − 𝜖 ≤   𝑐1+𝜖   1 + 𝜖 1+𝜖 ≤    𝑐1+𝜖  
2

∞

𝜖=0

 1 − 𝜖 1+𝜖 

1

2∞

𝜖=0

≤ 𝐶  
1 − 𝜖

𝜖
 

1

2

≤ 𝐶  log
1

1 − 𝜖
 

−
1

2

, 

And therefore for −∞ ≤ 𝜖 ≤ 1 

𝑀1+𝜖 𝜑, 1 − 𝜖 ≤ 𝑀
1−𝜖

𝜖+1 𝜑, 1 − 𝜖 𝑀2

2

𝜖+1 ≤ 𝐶  log
1

1 − 𝜖
 

− 1+𝜖 

    (10.2) 
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Hence 

𝐽𝑘 ≤ 𝐶2𝜖−1   log
1

1 − 𝜖
 

2𝜖+11

𝑀𝜖+1
2  𝜑, 1 − 𝜖 

𝑑(1 − 𝜖)

1 − 𝜖
                     (10.3)  

Next, since 

𝜑   1 − 𝜖 𝑒𝑖𝜃 =  𝑣1  𝜑 𝜍𝑒𝑖𝜃 
1+𝜖

0

𝑑𝜍

𝜍
, 

Minkowski’s inequality gives  

𝑀1+𝜖 𝜑, 1 − 𝜖 =  𝑀1+𝜖 𝑣
1  𝜑, 𝜍 

1+𝜖

0

𝑑𝜍

𝜍
 

(the case 𝜖 = +∞ being included and hence, by (10.3)and the case 𝜖 = 0, 𝛿 = 1of Lemma 1. 

𝐽1+2𝜖 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖 𝐶2𝜖−1   log
1

1 − 𝜖
 

2𝜖+31

0

𝑀𝜖+1
2  𝑣1𝜑, 1 − 𝜖 

𝑑𝜖

1 − 𝜖
 

= 𝐴 1 + 2𝜖, 1 + 𝜖 𝐶2𝜖−1   log
1

1 − 𝜖
 

2𝜖+31

0

𝑀𝜖+1
2  𝑣1𝜑,  1 − 𝜖 2 

𝑑(1 − 𝜖)

1 − 𝜖
    (10.4) 

 

By (10.2) applied to the function 𝑧 → 𝑣1𝜑  1 − 𝜖 𝑧  

𝑀𝜖+1
2  𝑣1𝜑,  1 − 𝜖 2 ≤  log

1

1 − 𝜖
 

−2 𝜖+1 

𝑀2
2 𝑣1𝜑, 1 − 𝜖  

and hence, by (10.4)and (3.7) 

𝐽1+2𝜖 ≤ 𝐴 1 + 2𝜖, 𝜖 + 1 𝐶2𝜖−1   log
1

1 − 𝜖
 

1

0

𝑀2
2 𝑣1𝜑, 1 − 𝜖 

𝑑 1 − 𝜖 

1 − 𝜖
 

= 𝐴 1 + 2𝜖, 𝜖 + 1 𝐶2𝜖−1   log
1

1 − 𝜖
 

1

0

  1 + 𝜖 2 𝑐1+𝜖  
2 1 + 𝜖 2(1+𝜖)

∞

𝜖=0

𝑑(1 − 𝜖)

1 − 𝜖
 

= 𝐴 1 + 2𝜖, 𝜖 + 1 𝐶2𝜖−1   𝑐1+𝜖  
2

∞

𝜖=0

 1 + 2𝜖, 𝜖 𝐶2𝜖−1
𝑑(1 − 𝜖)

1 − 𝜖
 

    And this is (10.1) with 𝜖 = 1. In this case it is enough to prove hat if 𝜓  is regular in ∆, and 0 < 𝜖 ≤ +∞,, 
then  

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑀1+𝜖
1+2𝜖 𝜓, 1 − 𝜖  1 − 𝜖 2𝜖𝑑 1 − 𝜖  

1

1+2𝜖

≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝜖 + 1 𝑁1+𝜖 𝜓                                                      (10.5) 

     For the inequality (10.1) follows from this with 𝜓 𝑧 = 𝑧−1𝜑(𝑧). Further by Theorem C, it is enough to 

prove (10.5) when 𝜓 has no zeros in ∆. Let 𝜓 be such a function, let 𝜒 = 𝜓
1+𝜖

2 ,𝑠 = 2, 𝜖 = −1. Then 𝛿 > 2,𝜖 =
0 and𝑁1+𝜖

1+𝜖 𝜓 = 𝑁2
2 𝜒 , so that for this 𝜓 the inequality (10.5) is equivalent to  

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑀𝑠
1 𝜒, 1 − 𝜖  1 − 𝜖 2𝜖𝑑(1 − 𝜖) 

1

1+𝜖

≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝜖 + 1 𝑁2 𝜒                                                                    (10.6) 

But, by the case 𝜖 = 1 of (10.1) applied to 𝜑 𝑧 = 𝑧𝜒(𝑧) 

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑀𝑠
1 𝜒, 1 − 𝜖  1 − 𝜖 2𝜖𝑑(1 − 𝜖) 

1

1+𝜖

≤ 𝐴 1 + 2𝜖, 𝜖 + 1 𝑁2 𝜒                                                                                  (10.7) 

    If 𝑘 ≥ 𝑙, (10.7) implies (10.6) immediately. If 𝜖 > 0, then on putting  1 − 𝜖 1+𝜖 = 𝜍1+2𝜖 in the integral on the 

left of (10.7) and note that𝑀𝑠 𝜒, 1 − 𝜖 ≥ 𝑀𝑠 𝜒, 𝜍  

(since 1 − 𝜖 = 𝜍
1+2𝜖

1+𝜖 > 𝜍), we see that the left side of (10.6) does not exceed  
1+𝜖

1+2𝜖
 

1+𝜖

times that of (10.7), 

whence again (10.6) follows, and this completes the proof. 

For certain 1 + 𝜖 we have a stronger result  

Theorem 8. Let 𝜑 0 = 0, let 𝑤 =  𝑤1+𝜖  be  a sequence of numbers such that  𝑤1+𝜖  ≤ 1 for all 𝜖 + 1, and let  

𝜑𝑤 𝑧 =  𝑐1+𝜖𝑤1+𝜖𝑧
1+𝜖

∞

𝑧=0

 𝑧 ∈ ∆                (10.8) 

If −1 < 𝜖 ≤ ∞, then  
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   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −1

𝑀𝜖+1
1+2𝜖 𝜑𝑤 , 1 − 𝜖 

𝑑(1 − 𝜖)

1 − 𝜖

1

0

 

1

1+2𝜖

≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝜖 + 1 𝑁1+𝜖 𝜑                                                       (10.9) 

If 𝜖 = 1, this follows from the trivial 𝑁2 𝜑𝑤 ≤ 𝜇2 𝜑 , and inequality (10.1) applied to 𝜑𝑤 . 
If 𝜖 < 1, then by (10.1) with 𝜖 = 1 we have  

   log
1

1 − 𝜖
 

− 2𝜖2+𝜖+1 1

0

𝑀2
1+2𝜖 𝜑, 1 − 𝜖 

𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

≤ 𝐴 1 + 2𝜖, 1 + 𝜖 𝜇1+𝜖 𝜑            (10.10) 

Further, by (10.2) applied to 𝜑𝑤 , we have  

 log
1

1 − 𝜖
 

1+2𝜖

1+𝜖

𝑀𝜖+1 𝜑, 1 − 𝜖 ≤ 𝑀2 𝜑𝑤 , 1 − 𝜖 ≤ 𝑀2 𝜑, 1 − 𝜖           (10.11) 

For 1 ≤ 𝜖 ≤ +∞, and (10.10) and (10.11) together give (10.11)) choosing 𝑤 in Theorem 8 so that 𝑐1+𝜖𝑤1+𝜖 =
 𝑐1+𝜖   for all 1 + 𝜖, we deduce the following result.  

𝜑∗ 𝑧 =   𝑐1+𝜖  𝑧
1+𝜖

∞

𝜖=0

 𝑧 ∈ ∆                        (10.12) 

If −1 ≤ 𝜖 ≤ +∞, then 1 

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑀𝜖
1+2𝜖 𝜑∗, 1 − 𝜖∗ 

𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

≤ 𝐴 1 + 3𝜖, 𝜖 + 1, 𝜖 + 1 𝑁1+𝜖 𝜑  

In particular, if −1 < 𝜖 ≤ 1 then  

   log
1

1 − 𝜖
 

1+
2𝜖

𝜖

𝜑∗
1+2𝜖

1

0

 1 − 𝜖 
𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

≤ 𝐴 1 + 2𝜖, 𝜖 + 1 𝑁1+𝜖 𝜑 (10.13) 

And if 0 < 𝜖 ≤ 1, then  

  𝜑∗
1+2𝜖 1 − 𝜖 

𝑑(1 − 𝜖)

1 − 𝜖

1

0

 

1

1+𝜖

≤ 𝐴 1 + 𝜖 𝑁1+𝜖 𝜑                                    (10.14) 

The inequality (10.14)is equivalent to a theorem of Hardy and Littlewood [8,Th.15],and(10.13) can be deduced 

from two results  Of the same authors[10,Th.3;8,Th.5].The proofs of these results given by Hardy and 

Littlewood make use of the inequality  

   1 + 𝜖 𝜖−1 𝑐1+𝜖  
1+𝜖

∞  

𝜖=0

 

1

1+𝜖

≤ 𝐴 1 + 𝜖 𝑁1+𝜖 𝜑  (10.15) 

Where 0 < 𝜖 ≤ 1, and are a good deal less elementary then proof above. 

It has been shown by Hardy and Littlewood [8] that for 0 < 𝜖 the inequality (10.14) implies (10.15), the 

argument here being relatively simple. We thus obtain effectively a new proof of (10.15) for −1 < 𝜖 < 0 It is 

natural here to ask whether  

𝑁1+𝜖 𝜑 ≤ 𝐴 1 + 𝜖 𝑁1+𝜖 𝜑  𝜖 > −1 𝑚 𝜖 ≠ 1                                 (10.16) 

For every sequence 𝑤 =  𝑤1+𝜖  such that  𝑤1+𝜖  ≤ 1. As might be expected the answer is negative. If (10.16) 

were true for 𝜖 > 1, and this is known to be false a counter - example being 

𝜑 𝑧 =   𝜖 + 1 −
1

2
−𝛿 𝑒𝑖 1+𝜖 log  1+𝜖 𝑧1+𝜖 𝛿 > 0  

(Hardy and Littlewood [8,p.206]).This argument show also that the inequality  

𝑁1+𝜖 𝜑∗ ≤ 𝐴 1 + 𝜖 𝑁1+𝜖 𝜑  (10.17) 

is false for 𝜖 > 1. 

To disprove (10.16) for 𝜖 < 1, we may take  𝜑 𝑧 =   1 + 𝜖 −
1

2𝑧1+𝜖 , 𝑤1+𝜖 = 𝑒𝐼 1+𝜖 log  1+𝜖 . 

Here 𝜑 ∈ 𝐻1+𝜖  for 𝜖 < 1.  On the other hand 𝜑𝑛  has nowhere a radial limit so that 𝑁1+𝜖 𝜑𝑤 = +∞ for all 

1 + 𝜖 (see [22,i,p.186] and [21]). The question whether (10.17) holds for 𝜖 < 1 seems to be open  (see[15]).  

11.The Hardy-Littlewood theorem on fractional  integrals: The preceding results enable us to give a succinct 

proof of the Hardy Littlewood theorem on fractional integrals ([12,17];see also [22,ii,p.140]). 

Theorem 9. If 𝜑 0 = 0 an 𝜖 > −1 then  

𝜇𝜖+1 𝑣1+𝜖𝜑 ≤  1 + 𝜖, 𝜖 + 1 𝜇1+𝜖 𝜑                  (11.1) 

Suppose first that 𝜖 ≤ 1, and let 1 + 2𝜖 = min 𝜖 + 1,2 . Then by Theorem 6 and the case 𝜖 =
1

2
 of Theorem 4, 

we have  
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𝜇𝜖 𝜑 ≤  𝜖, 1 + 𝜖

+ 1   𝑑𝜃
𝜋

−𝜋

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

 𝑣𝜖+1𝜑   1

− 𝜖 𝑒𝑖𝜃  
1+2𝜖 𝑑(1 − 𝜖)

1 − 𝜖
 

𝜖+1

1+2𝜖
 

1

𝜖+1

(11.2) 

Since 𝑣1+𝜖 𝑣1+𝜖𝜑 = 𝜑, applying successively (11.2) with𝜑 replaced by 𝑣1+𝜖𝜑, Minkowski’s inequality, and 

Theorem 7, we obtain. 

𝜇𝜖 𝑣1+𝜖𝜑 ≤ 𝐴 1 + 𝜖, 𝜖 + 1   𝑑𝜃
𝜋

−𝜋

   log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

 𝜑   1 − 𝜖 𝑒−𝜃  
1+2𝜖 𝑑(1 − 𝜖)

1 − 𝜖
 

1+𝜖

1+2𝜖

 

1

1+𝜖

 

≤ 𝐴 1 + 𝜖, 1 + 𝜖    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑀1+𝜖
1+2𝜖 𝜑,  1 − 𝜖  

𝑑(1 − 𝜖)

1 − 𝜖
 ≤ 𝐴 1 + 𝜖, 1 + 𝜖 𝑁1+𝜖 𝜑  

As required. 

This leaves only the case𝜖 > 1. To deal with this, we can use a simple conjunct argument which enables us to 

deduce the required result from the case 1 < 𝜖 already proved. Since the argument is a particular case. 

  If𝜖 ≥ 0, the result of Theorem 9 continues to hold for 𝜖 = +∞. To prove this we use the case 𝜖 = +∞ of 

Theorem 5 (i) and Theorem 7. We thus obtain 

𝜇  𝑣 1

1+𝜖

𝜑 ≤ 𝐴 1 + 𝜖 sup
𝜃

   log
1

1 − 𝜖
 

1

𝜖1

0

 𝜑   1 − 𝜖 𝑒1𝜃  
𝑑𝜃

1 − 𝜖
  

≤ 𝐴 1 − 𝜖   log
1

1 − 𝜖
 

1

𝜖

𝑀 𝜃, 1 − 𝜖 
𝑑𝜖

1 − 𝜖
≤ 𝐴 𝜖 𝜇1+𝜖 𝜑                              (11.3)

1

0

 

This can be strengthened slightly, as can also the case 𝜖 ≤ 1 of Theorem 9. Let 𝑤 =  𝑤1+𝜖  be a sequence of 

numbers such that  𝑤1+𝜖  ≤ 1, and let 𝜑𝑤  be defined as in (10.8). Since 

𝑣1+𝜖𝜑𝑤 = 𝑣0𝜑𝑤 = 𝑣1

2
−

1

𝜖

 𝑣1

𝜖

𝜑𝑤 , 

We have  

𝜇𝜖+1 𝑣1+𝜖𝜑𝑤 ≤ 𝐴 1 + 𝜖 𝜇2  𝑣 1

𝜖+1
−

1

2

𝜑 ≤ 𝐴 1 + 𝜖 𝜇2  𝑣 1

𝜖+1
−

1

2

𝜑 ≤ 𝐴 1 + 𝜖, 1 + 𝜖 𝜇+𝜖 𝜑  

By a double application of Theorem 9.In particular, if 𝜑∗ is the majorant of 𝜑 defined in (10.12) then  

𝜇+𝜖 𝑣1+𝜖𝜑∗ ≤ 𝐴 1 + 𝜖, +𝜖 𝜇1+𝜖 𝜑                             (11.4) 

It follows from a theorem of  Hardy and Littlewood on majorants [11] that (11.4) is stronger then (11.1) when 𝜖 

is an even integer, and it is probably stronger for all 𝜖 ≥ 1. 

If0 < 𝜖 ≤ +∞, then the argument above can be combined with that of (11.3) and (with 𝜑𝑤 = 𝜑∗) gives the 

inequality. 

  1 + 𝜖 −
1

1+𝜖  𝑐1+𝜖  ≤ 𝐴 1 + 𝜖 𝜇1+𝜖 𝜑 

∞

𝜖=0

 −1 < 𝜖 < 0  

This, however,is weaker than the case𝜖 < 0of (10.15) (see Hardy and Littlewood [12,p.421]). 

12.Theorem 6 enables us also to give simplified proof of the following theorem of Hardy and Littlewood 

[12,Th.46]: 

Theorem 10. Let  −1 < 𝜖 ≤ +∞, 0 < 1 + 𝜖 < 𝛾, let 𝜑 0 = 0, and let  

𝑀1+𝜖 𝜑, 1 − 𝜖 ≤  log
1

1 + 𝜖
 

−𝛾

 −1 < 𝜖 < 0  

Then  

𝑀1+𝜖 𝑣1+𝜖𝜑, 1 − 𝜖 ≤ 𝐴 1 + 𝜖, 1 + 𝜖, 𝛾  log
1

1 + 𝜖
 

1+𝜖−𝛾

 −1 < 𝜖 < 0  

Suppose first that 1 ≤ 𝜖 ≤ +∞. By (3.6),  

𝑣1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃  =
1

Γ 1 + 𝜖 
  

1 − 𝜖

𝜍
 

𝜖1+𝜖

0

𝜑 𝜍𝑒𝑖𝜃  
𝑑𝜍

𝜍
 

Whence, by Minkowski’s inequality, 

𝑀1+𝜖 𝑣1+𝜖 , 1 − 𝜖 ≤
1

Γ +𝜖 
  log

1 − 𝜖

𝜍
 

𝜖1+𝜖

0

𝑀1+𝜖 1 + 𝜖, 𝜍 
𝑑𝜍

𝜍
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≤
1

Γ 1 + 𝜖 
  log

1 − 𝜖

𝜍
 

𝜖1+𝜖

0

 log
1

𝜍
 

−𝛾 𝑑𝜍

𝜍
=

Γ 𝛾 −  1 + 𝜖  

Γ 𝛾 
 log

1

1 − 𝜖
 

1+𝜖−𝛾

(12.1) 

The last integral in (12.1) being evaluated by the substitution 
1

𝑦
log

1

𝜍
,

1

𝜒
= log

1

1−𝜖
 

Suppose next that −1 < 𝜖 < 0, By Theorem 6with 𝜖 = 0, applied to the function 𝑧 → 𝑣1+𝜖𝜑  1 − 𝜖 𝑧 , we 

have  

𝑀1+𝜖
1+𝜖 𝑣1+𝜖𝜑, 1 − 𝜖 ≤ 𝐴 1 + 𝜖, 1 + 𝜖   log

1

𝑡
 

 1+𝜖  1+𝜖 −11

0

𝑀1+𝜖
1+𝜖 𝜑,  1 − 𝜖 𝑡 

𝑑𝑡

𝑡
 

≤ 𝐴 1 + 𝜖, 1 + 𝜖   log
1

𝑡
 

 1+𝜖  1+𝜖 −11

0

 log
1

 1 + 𝜖 𝑡
 

− 1+𝜖 𝛾 𝑑𝑡

𝑡
 

= 𝐴 1 + 𝜖, 1 + 𝜖   log
1 − 𝜖

𝜍
 

 1+𝜖  1+𝜖 −11+𝜖

0

 log
1

𝜍
 

− 1+𝜖 𝛾 𝑑𝜍

𝜍
 

= 𝐴 1 + 𝜖, 1 + 𝜖, 𝛾  log
1

1 − 𝜖
 

 1+𝜖  1+𝜖−𝛾 

 

(by the same substitution as before),and this completes the proof.Combining Theorem 10 with Theorem 1, 

Corollary 2, we obtain The  following result (cf.[12,Th.46]). 

Theorem 11. Let −1 < 𝜖 ≤ +∞, 𝛾 > 0, 𝛾 < 1 + 𝜖, let 𝜑 0 = 0 and let  

𝑀1+𝜖 𝜑, 1 − 𝜖 ≤  log
1

1 − 𝜖
 

−𝛾

 −1 < 𝜑 < 0  

Then  

𝑀1+𝜖 𝑣1+𝜖𝜑, 1 − 𝜖 ≤ 𝐴 1 + 𝜖, 1 + 𝜖, 𝛾  log
1

1 − 𝜖
 

1+𝜖−𝛾

 −1 < 𝜖 < 0  

13.The convolution series of two power series: We suppose Throughout this section that 𝜑, 𝜓 are regular in ∆, 
and that  

𝜑 𝑧 =  𝑐𝑛

∞

𝜖=0

𝑧𝑛 ,    𝜓 𝑧 =  𝑑1+𝜖𝑧
1+𝜖

∞

𝑛=1

, 𝜒 𝑧 =  𝑐1+𝜖𝑑1+𝜖𝑧
1+𝜖

∞

𝜖=0

 

It is easily verified that 𝜒 is regular in ∆, and that  

𝜒  1 − 𝜖 2𝑒𝑖𝜃  =
1

2𝜋
 𝜑   1 − 𝜖 𝑒𝑖𝜃−𝑖𝑡 𝜓   1 − 𝜖 𝑒𝑖𝑡 𝑑𝑡

𝜋

−𝜋

 

It follows immediately from Theorem A that if 𝜖 ≥ 0, (so that max 1 + 𝜖,  ≤
1−𝜖

1+𝜖
≤ +∞), and 𝜑 ∈ 𝐻1+𝜖 , 𝜓1 ∈

𝐻𝜖+1, then 𝜒 ∈ 𝐻
1−𝜖

1+𝜖 . 
Hardy and Littlewood [16,17]have given generalization of this result in which the condition that  

𝑀1+𝜖 𝜓
1 , 1 − 𝜖 ≤ 𝐾 −𝜖 2𝜖                                                                (13.1) 

For some 𝜙, if 𝜖 = −
1

2
,, then (13.1) is weaker than the condition that 𝜓 ∈ 𝐻1+𝜖  (cf. Theorem 1, Corollary1), 

however, the conclusion that 𝜒 ∈ 𝐻
1−𝜖

1+𝜖  remains valid. If −
1

2
< 𝜖 < 0, then (13.1) is equivalent to the condition 

that 𝜓 ∈ 𝐿𝑖𝑝 1 + 2𝜖, 1 + 𝜖 , and is stronger than the condition that 𝜓 ∈ 𝐻1+𝜖 . In this case the conclusion that 

𝜒 ∈ 𝐻
1−𝜖

1+𝜖  remains valid when 𝜑 ∈ 𝐻𝑠 for 𝑠 < 1 + 𝜖. 

In this section we generalize these theorems by replacing(13.1) by a similar condition involving 

𝑀1+𝜖 𝑣
1+𝜖𝜓, 1 − 𝜖  where 𝜖 > −1. Such results were stated by Hardy and Littlewood [16] for the case where 

1 + 𝜖 is a positive integer 𝑚,but no proof for 𝑚 > 1has been published. We find in fact that there are three 

distinct theorems  

Theorem 12. Suppose that 

𝜖 > −1, 𝜖 ≤ 1 ≤
1 − 𝜖

1 + 𝜖
 

That 𝜑 ∈ 𝐻1+𝜖 , and that  

𝑀1+𝜖 𝑣
1+𝜖𝜓, 1 − 𝜖 ≤ 𝐾  log

1

1 − 𝜖
 

− 1+𝜖 

 

Then  

𝜇1+𝜖

1−𝜖

 𝜒 ≤ 𝐴𝐾 1 + 𝜖, 1 + 𝜖, 1 + 𝜖 𝜇1+𝜖 𝜑  

In the remaining two theorems we regard 𝜖, 1 + 𝜖, 𝜆 as given, and define 𝑟, 𝑠 in terms of them. 

Theorem 13. Suppose that 𝜖 ≥ 0 
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0 ≤ 𝜆 < 1 + 𝜖,
1

𝑠
=

1 +  1 + 𝜖 2

1 + 𝜖
− 𝜆 

(So that 0 < 𝑠 < 1 + 𝜖) that 𝜑 ∈ 𝐻𝑠 , and that  

𝑀1+𝜖 𝑣
1+𝜖𝜓, 1 − 𝜖 ≤ 𝐾  log

1

1 − 𝜖
 

−𝜆

 

If 𝜖 < +∞ (so that 𝜖 > 1), then  

𝜇1+𝜖

1−𝜖

 𝜒 ≤ 𝐾𝐴 1 + 𝜖, 1 + 𝜖, 1 + 𝜖, 𝜆 𝜇1+𝜖 𝜑                  (13.2) 

If 𝜖 < +∞ (so that 𝜖 = 1), and 𝑠 ≤ 1, then 𝜒 is continuous in ∆ , and for each 𝜃 

 𝜒 𝑒𝑖𝜃  ≤
1

Γ 1 + 𝜖 
  log

1

1 − 𝜖
 

𝜖1

0

 𝑣1+𝜖𝜒   1 + 𝜖 𝑒𝑖𝜃  𝑑𝜖

1 − 𝜖
 

≤ 𝐴 1 + 𝜖, 𝜖 + 1,1 + 𝜖, 𝜆 𝑀𝑠 𝜑                                     (13.3) 

Theorem 14. Suppose that the hypotheses of Theorem 13 hold and that in addition 𝑠 ≤ 2 ≤ 1 + 𝜖. Suppose also 

that 𝑤 =  𝑤1+𝜖  is a sequence of numbers such that  𝑤1+𝜖  ≤ 1 for all 𝜖 + 1 and let  

𝜒𝑤 𝑧 =  𝑐1+𝜖

∞

𝜖=0

𝑑1+𝜖𝑤1+𝜖𝑧
1+𝜖 𝑧 ∈ ∆  

If 𝜖 < +∞ (so that 𝜖 = 1).Then  

𝜇1+𝜖

1−𝜖

 𝜒𝑤 ≤ 𝐾𝐴 1 + 𝜖, 1 + 𝜖, 1 + 𝜖, 𝜆 𝜇𝑠 𝜑  

And, in particular if  

𝜒∗ 𝑧 =   𝑐1+𝜖𝑑1+𝜖  𝑧
1+𝜖

∞

𝜖=0

 𝑧 ∈ ∆  

Then  

𝜇1+𝜖

1−𝜖

 𝜒∗ ≤ 𝐾𝐴 1 + 𝜖, 1 + 𝜖, 1 + 𝜖, 𝜆 𝜇𝑠 𝜑                      (13.4) 

If 𝜖 = +∞ (so that  𝜖 = 1) and 𝑠 ≤ 1, 
Then  

  𝑐1+𝜖𝑑1+𝜖  

∞

𝜖=0

≤ 𝐾𝐴 1 + 𝜖, 1 + 𝜖, 1 + 𝜖, 𝜆 𝜇𝑠 𝜑  (13.5) 

Proofs of the cases 𝜖 = −1, 𝜖 < ∞ of Theorems 12 and 13 are given by Hardy and Littlewood in [16,17].They 

have also proved in[13, 14] the cases 𝜖 = 0 of the inequalities (13.3) and (13.5).The proofs of  Theorems 

12and13given here are similar in principle to those of the cases 𝜖 = 0 in [17], but we have made some 

simplications.In the proofs of Theorems 12-14we may assume that 𝜖 = 0, and in Theorem12 we may assume. 

𝜖 = −1 we let that 𝜖 > 0, 0 ≤ 𝜆 ≤ 1 + 𝜖, and  

𝑀1+𝜖 𝑣
1+𝜖𝜓, 1 − 𝜖 ≤  log

1

1 − 𝜖
 

−𝜆

 

We observe now that, by Parseval’s theorem for any real 𝛾 we have  

𝑣1+𝜖+𝛾𝜒  1 − 𝜖 2𝑒𝑖𝜃 =
1

𝜋
   1 − 𝜖 𝑒 𝑖𝜃−𝑖𝑡  𝑣1+𝜖𝜓   1 − 𝜖 𝑒𝑖𝑡 

𝜋

−𝜋

𝑑𝑡 

And hence, by Theorem (6.2.1) 

𝑀𝛾 𝑣1+𝜖+𝛾𝜒,  1 − 𝜖 2 ≤ 𝑀1+𝜖 𝑣
𝛾𝜑, 1 − 𝜖 𝑀1+𝜖 𝑣

1+𝜖𝜓, 1 − 𝜖  

≤  log
1

1 − 𝜖
 

−𝛾

𝑀𝜖+1 𝑣
𝛾𝜑, 1 − 𝜖 (13.6) 

Consider first the proof of Theorem 12.Here  𝜖 ≤ +∞ and 𝜆 = 1 + 𝜖, and we choose 𝛾 in (13.6) to the fixed 

positive number (e ∙ g ∙ 𝛾 = 1). Applying successively Theorem 4 with 𝜖 =
1

2
 and 1 + 𝜖 replaced by 1 + 𝜖 + 𝛾. 

Minkowski’s inequality, the inequality (13.6) Minkowski’s inequality again and Theorem 3 we obtain  

𝜇1+𝜖

1−𝜖

 𝑥 ≤ 𝐵   𝑑𝜃
𝜋

𝜋

   log
1

1 − 𝜖
 

2 1+𝜖 +𝛾−11

0

 𝑣1+𝜖𝜒   1 − 𝜖 𝑒𝑖𝜃  
2

 
𝑑(1 − 𝜖)

1 − 𝜖
  

2(1+𝜖

1−𝜖

 

1−𝜖

1+𝜖

 

≤ 𝐵    log
1

1 − 𝜖
 

2 1+𝜖 +2𝛾−1

𝑀1+𝜖

1−𝜖

2  𝑣1+𝜖+𝛾𝜒, 1 − 𝜖 
𝑑(1 − 𝜖)

1 − 𝜖

1

0

 

1

2

 

= 𝐵    log
1

1 − 𝜖
 

2 1+𝜖 +2𝛾−1

𝑀1+𝜖

1−𝜖

2
1

0

 𝑣1+𝜖+𝛾𝜒,  1 − 𝜖 2 
𝑑(1 − 𝜖)

1 − 𝜖
 

1

2
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≤ 𝐵    log
1

1 − 𝜖
 

2𝛾+11

0

𝑀1+𝜖
2  𝑣𝛾𝜑, 1 − 𝜖 

𝑑(1 − 𝜖)

1 − 𝜖
 

1

2

 

≤ 𝐵   𝑑𝜃    log
1

1 − 𝜖
 

2𝛾+1

 𝑣𝛾𝜑   1 − 𝜖 𝑒𝑖𝜃   
2 𝑑(1 − 𝜖)

1 − 𝜖

1

0

 

1+𝜖

2𝜋

−𝜋

 

1

1+𝜖

≤ 𝐵𝜇1+𝜖 𝜑  

And this is the required result. We prove next the case 𝛿 > 2, 𝜖 < +∞ of Theorem13. Let 1 + 2𝜖 =

min  
1+𝜖

1−𝜖
, 2 . Then by theorem 6 and case 𝜖 =

1

2
 of Theorem 4 

𝜇1+𝜖

1−𝜖

 𝜒 = 𝐵   𝑑𝜃
𝜋

−𝜋

    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

  𝑣1+𝜖𝜒   1 − 𝜖 𝑒𝑖𝜃   
1+2𝜖 𝑑(1 − 𝜖)

1 − 𝜖
 

(1+2𝜖)(1+𝜖)

1−𝜖

 

1−𝜖

1+𝜖

 

Applying successively Minkowski's inequality,the inequality(13.6) with 𝛾 = 0, and Theorem7,we obtain  

𝜇1+𝜖

1−𝜖

 𝜒 ≤ 𝐵    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑀1+𝜖

1−𝜖

1+2𝜖 𝑣1+𝜖𝜒, 1 − 𝜖 
𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

 

= 𝐵    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −1

𝑀1+𝜖

1−𝜖

1+2𝜖 𝑣1+𝜖𝜒,  1 − 𝜖 2 
𝑑(1 − 𝜖)

1 − 𝜖

1

0

 

1

1+2𝜖

 

≤ 𝐵    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 − 1+2𝜖 𝜆−11

0

𝑀𝜖+1
1+2𝜖 𝜑, 1 − 𝜖 

𝑑(1 − 𝜖)

1 − 𝜖
 

1

1+2𝜖

≤ 𝐵𝜇𝑠 𝜑 , 

Since 0 < 𝑠 < 1 + 2𝜖, 1 + 𝜖 − 𝜆 =
1

𝑠
−

1

1+𝜖
. This proves the appropriate part of Theorem 13. Similarly, by 

applying (13,7) to 𝜒𝑤  and using Theorem 8 in place of Theorem 7, we obtain the case 𝑠 ≤ 1, 𝜖 < +∞ of 

Theorem 13,we note that if 0 ≤ 𝑅 < 1, then  

𝜒 𝑅𝑒𝑖𝜃  =
1

Γ 1 + 𝜖 
  log

1

1 − 𝜖
 

𝜖1

0

𝑣1+𝜖𝜒 𝑅 1 − 𝜖 𝑒𝑖𝜃 
𝑑(1 − 𝜖)

1 − 𝜖
                                               (13.8) 

Let 0 < 𝑠 < 1. Then by the increasing property of M  and the inequality (13.6) with 𝛾 = 0 

 = 21+𝜖   log
1

𝜖
 

𝜖

𝑀 𝑣1+𝜖𝜒,  1 − 𝜖 2 
𝑑(1 − 𝜖)

𝜖

1

 𝛿

≤ 𝐵   log
1

1 − 𝜖
 

𝛿−𝜆

𝑀1+𝜖 𝜑, 1 − 𝜖 
𝑑(1 − 𝜖)

𝜖

1

 𝛿

 

Further, by Theorem 7  

 

  log
1

1 − 𝜖
 

𝜖−𝜆

𝑀1+𝜖 𝜑, 1 − 𝜖 
𝑑(1 − 𝜖)

𝜖

1

0

≤ 𝐵𝑁𝑠 𝜑  

It follows that the integral on the right of (13.8) is convergent, uniformly in  𝑅, 𝜃 , and this implies that 𝜒 is 

continuous in ∆ , and that (13.3) holds. A similar argument, using Theorem 8 in place of Theorem 7, gives the 

corresponding case of Theorem 14. The reremains the case 𝑠 > 2 of Theorem 13,which is deduced by a 

conjugacy argument from the case already proved.The argument here is identical to that used by Hardy and 

Littlewood in their proof for the case 𝜖 = 0 but since the proof is short, we give it for the sake of completeness. 

Let 𝑠 > 2, so that also 
1+𝜖

1−𝜖
≥ 1 + 𝜖 > 𝑠 > 2. As in the proof of Theorem 4, it is enough to prove that if 𝑉 is a 

trigonometric polynomial satisfying 𝑁1−𝜖

1+𝜖

 𝑉 = 1, then for  0 < 𝑅 < 1.  

 
1

𝜋
 𝜒 𝑅2𝑒𝑖𝜃 𝑉 𝜃 𝑑𝜃

𝜋

−𝜋

 ≤ 𝐵𝑁𝑠 𝜑                                                                                            (13.9) 

Let 𝑉 𝜃 =  𝜅1+𝜖𝑒
 1+𝜖 𝜃𝑁

1+𝜖=𝑁 , and let 𝜉 𝑧 =  𝜅− 1+𝜖 𝑧
1+𝜖𝑁

𝜖=0 . Then  

1

2𝜋
 𝜒 𝑅2𝑒𝑖𝜃 𝑉 𝜃 𝑑𝜃

𝜋

−𝜋

=
1

4𝜋2
 𝑉 𝜃 𝑑𝜃

𝜋

−𝜋

 𝜑 𝑅𝑒𝑖𝑡 𝜓 𝑅𝑒𝑖𝜃−𝑖𝑡 
𝜋

−𝜋

𝑑𝑡 

=
1

2𝜋
 𝜑

𝜋

−𝜋

 𝑅𝑒𝑖𝑡 𝜉 𝑅𝑒−𝑖𝑡 𝑑𝑡                                                         (13.10) 

Where  

𝜉 𝑅𝑒𝑖𝑡 =
1

2𝜋
 𝑉 𝜃 

𝜋

−𝜋

𝜓 𝑅𝑒𝑖𝜃+𝑖𝑡 𝑑𝑡 =  𝜅− 1+𝜖 𝑑1+𝜖

𝑁

𝜖=0

𝑒 1+𝜖 𝑖𝑡  

Hence 𝜁, 𝜓, 𝜉 are related as 𝜑, 𝜓, 𝜒. Since also 1 <
1−𝜖

1+𝜖
< 𝑠′ < 2 and 

1−𝜖

1+𝜖
−

1

𝑠′ =
1

𝑠
−

1+𝜖

1−𝜖
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We may apply the case of Theorem 13 already proved to 𝜉, 𝜓, 𝜖 with 
1−𝜖

1+𝜖
, 𝑠′  in place of 

1+𝜖

1−𝜖
, 𝑠. Using also 

Theorem G we thus obtain  

𝜇𝑠′  𝜉 ≤ 𝐵𝑁1−𝜖

1+𝜖

 𝜉 ≤ 𝐵𝑁1−𝜖

1+𝜖

 𝑉 = 𝐵                                (13.11) 

Applying Holder’s inequality with indices 𝑠, 𝑠′ to integral on the right of (13.10) and using (13.11), we obtain 

(13.9), and this completes the proof.  

14. An alternative definition of fractional integral and derivative: An alternative definition of fractional 

integral which has been used by a number of authors is as follows.As before, let 𝜑 be regular in Δ, and let  

𝜑 𝑧 =  𝑐1+𝜖𝑧
1+𝜖

∞

𝜖=−1

 𝑧 ∈ ∆  

Then for any 𝜖 ≥ −1 we define the fractional integral 𝐷1+𝜖𝜑 of 𝜑 of order 𝜑 by  

𝐷1+𝜖𝜑 𝑧 = 𝑍1+𝜖  
Γ 𝜖 + 2 

Γ 2𝜖 + 3 
𝑐1+𝜖𝑧

1+𝜖

∞

𝜖=−1

=  
Γ 𝜖 + 2 

Γ 2𝜖 + 3 

∞

𝜖=−1

𝑐1+𝜖𝑧
2𝜖+2,                         (14.1) 

Where 𝑍1+𝜖  has its principal value.i.e  

𝑍1+𝜖 = exp 1 + 𝜖 log 𝑧 + 𝑖 arg 𝑧  , −𝜋 < arg 𝑧 ≤ 𝜋 

This definition is also due to Hadamard [7].By term-by-term integration, we have 

𝐷1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃 =
𝑒 1+𝜖 𝑖𝜃

Γ 1 + 𝜖 
   1 − 𝜖 − 𝜍 

𝜖
𝜑

1+𝜖

0

 𝜍𝑒𝑖𝜃 𝑑𝜍, 

Where 𝑒 1+𝜖 𝑖𝜃   has its principal value  

The definition of the fractional derivative 𝐷1+𝜖𝜑 if order 𝜖 ≥ −1 normally associated with the definition (14.1) 

is that  

𝐷1+𝜖𝜑 𝑧 =  
𝑑

𝑑𝑧
 

𝑚

𝐷𝑚− 1+𝜖 𝜑 𝑧 ,                                                           (14.2) 

Where 𝑚 =  1 + 𝜖 + 1 (see Hadamard [7, p.156]).With this definition we have the series expansion 

𝐷1+𝜖𝜑 𝑧 =  
Γ 𝜖 + 2 

Γ 1 

∞

𝜖=−1

𝐶1+𝜖 ,                                                                 (14.3) 

Where 𝑍− 1+𝜖  has its principal value, and 
1

Γ 1 
  is interpreted as 0 when 1 + 𝜖 is an integer 𝑣 ≥ 𝜖 + 2. When 

1 + 𝜖 is appositive integer,. 𝐷1+𝜖𝜑 is the 1 + 𝜖 the derivative of 𝜑 in the ordinary sense the definition (14.2) is 

satisfactory for −1 < 𝜖 < 0 but is less Satisfactory for non integral 𝜖 > 0. In particular, the function 𝐷1+𝜖𝜑 

defined above is,for some purposes,too large in the  neighborhood of the origin when. 𝜖 > 0.In the  sequel we 

use another definition which avoids these  difficulties. For −1 ≤ 𝜖 < 0 we define 𝐷1+𝜖𝜑 by the  series (14.3), 

and then for 𝜖 ≥ 0 we define 𝐷1+𝜖𝜑 by the relation. 

𝐷1+𝜖𝜑 𝑧 = 𝐷1+𝜖− 1+𝜖  
𝑑

𝑑𝑧
 

 1+𝜖 

𝜑 𝑧 .                                                          (14.4) 

With this definition,we have the  series expansion 

𝐷1+𝜖𝜑 𝑧 =  
Γ 𝜖 + 2 

Γ 1 

∞

1+𝜖= 1+𝜖 

𝐶1+𝜖  

For any 𝜖 ≥ −1, where 𝑍− 1+𝜖  has its principal value. Further, if  𝑍 =  1 − 𝜖 𝑒𝑖𝜃  and 𝛾 > 1 + 𝜖 ≥ 0 then  

𝐷1+𝜖𝜑 𝑧 =  
Γ 𝜖 + 2 

Γ 1 

 𝛾 −1

1+𝜖= 1+𝜖 

𝐶1+𝜖 +
𝑒 𝛾− 1+𝜖  𝑖𝜃

Γ 𝛾 −  1 + 𝜖  
  1 − 𝜖 − 𝜍 𝛾−𝜖−2

1+𝜖

0

𝐷𝛾𝜑 𝜍𝑒𝑖𝜃 𝑑𝜍, (14.5) 

Where 𝑒 𝛾−𝜖−1   has its principal value. When β is appositive integer, 𝐷1+𝜖𝜑 is the 𝛽𝑡 derivative of 𝜑 in the 

ordinary sense, so that in this case the definitions (14.2) and (14.4) agree. The analogue of Theorem 1for the 

derivative 𝐷1+𝜖𝜑 is as follows. 

THEOREM 15. If Φ is defined as  in Theorem 1, then for 𝜖 > 0. 

 𝐷1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃  ≤ 𝐴 1 + 𝜖, 𝜂  1 − 𝜖  1+𝜖 −1+𝜖 𝜖 − 1+𝜖 Φ 𝜃 ,  −1 < 𝜖 < 0  

The proof is similar to that of Theorem1,and we omit it. 

15. The function associated with the derivative 𝑫𝟏+𝝐 corresponding to the  function  𝑮𝟏+𝟐𝝐,𝟏+𝝐 is defined 

by  

𝐺1+2𝜖 ,1+𝜖 𝜃 =    𝜖  1+2𝜖  1+𝜖 −1 1 − 𝜖  2𝜖  1+𝜖− 1+𝜖  
1

0

 𝐷1+𝜖𝜑 1 − 𝜖 𝑒𝑖𝜃  
1+2𝜖

𝑑(1 − 𝜖) 

1

1+2𝜖
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Here it  is necessary to  insert  some power of   1 − 𝜖 in the integral to ensure the convergence of the integral at 

0 when 1 + 𝜖 −  1 + 𝜖 ≥
1

1+2𝜖
. The particular choice of the power made here enables us to carry over to 

𝐺1+2𝜖 ,1+𝜖  the   argument of Theorem 5, using Theorem15 in place of Theorem1.The function 𝐺1,2 is precisely 

the Littlewood- Paley g-function.  

The analogue of Theorem 2 for 𝐺1+2𝜖 ,1+𝜖  is more difficult than Theorem 2 itself, and we confine our selves here 

to the case𝜖 = 0. 

THEOREM 16.𝜖 ≥ 0 and 𝛾 > 𝜖 + 1 > 0 then for each 𝜃 

𝐺1+2𝜖 ,1+𝜖 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛾    𝐶1+𝜖  + 𝐺1+2𝜖 𝜃 

 𝛾 −1

𝜖+1= 𝜖+1 

                                   (15.1) 

The proof of Theorem 16 depends on the following lemma.  

 Lemma 2. Let 𝜖 > 0, 𝑦 > 0, and let  

𝐼 =   𝑥 + 𝑦 − 𝑐+2𝜖 𝑥𝑐+𝜖−1
1

0

 1 − 𝑥 𝑐−1𝑑𝑥 

Then  

𝐼 ≤ 𝐴 𝑐 + 2𝜖, 𝑐 + 𝜖, 𝑐 𝑦−𝜖 1 + 𝑦 − 𝑐+𝜖                             (15.2) 

Let 𝐵denote a constant depending on some or all of a, b, c.If 𝑦 >
1

2
, and 𝑦 ≤ 𝑥 + 𝑦 ≤ 3𝑦, whence  

𝐼 ≤ 𝐵𝑦− 𝑐+2𝜖  𝑥𝑐+𝜖−1 1 − 𝑥 𝑐−1
1

0

𝑑𝑥 = 𝐵𝑦− 𝑐+2𝜖 , 

And this  trivially implies (15.2).We may therefore suppose that 0 < 𝑦 ≤
1

2
 and here it is enough to prove that 

𝐼 ≤ 𝐵𝑦− 𝑐+𝜖 . Write  

𝐼 =  +
𝑦

0

 +

1

2

𝑦

 =
1

1

2

𝐼1 + 𝐼2 + 𝐼3. 

In 𝐼1,𝑥≤𝑥+𝑦≤2𝑦  and  1 − 𝑥 𝑐−1 ≤ 𝐵, whence  

𝐼1 ≤ 𝐵𝑦− 𝑐+2𝜖  𝑥𝑐+𝜖−1
1

0

𝑑𝑥 ≤ 𝐵𝑦−𝜖 . 

In 𝐼2,𝑥≤𝑥+𝑦≤2𝑥  and  1 − 𝑥 𝑐−1 ≤ 𝐵, whence  

𝐼2 ≤ 𝐵  𝑥−𝜖−1

1

2

𝑦

𝑑𝑥 ≤ 𝐵𝑦−𝜖 . 

In 𝐼
3,

1

2
≤𝑥+𝑦≤2𝑥

 and  1 − 𝑥 𝑐−1 ≤ 𝐵, whence  

𝐼3 ≤ 𝐵   1 − 𝑥 𝜖−1
1

1

2

𝑑𝑥 = 𝐵. 

Hence  𝐼 ≤ 𝐵𝑦−𝜖 + 𝐵 ≤ 𝐵𝑦−𝜖 , as required when 𝜖 = 0, the integral I can be evalued explicitly, viz 

𝐼 =
Γ 𝑐 + 2𝜖 Γ 𝑐 

Γ 𝜖 + 2𝑐 
𝑦−𝜖 1 + 𝑦 − 𝑐+𝜖  

(see,for  example, [1,i,p.10, formula(11)]). 

We actually use two in equalities derived from Lemma 2 by simple changes of the variable,namely that if 𝜖 >
0,, then for −1 < 𝜖 < 0 

  1 − 𝜍 − 𝑐+2𝜖  1 − 𝜖 − 𝜍 𝑐+𝜖−1
1

0

 𝜍 𝑐−1𝑑𝜍 ≤ 𝐴 𝑐 + 2𝜖, 𝑐 + 𝜖, 𝑐  1 − 𝜖 𝜖+2𝑐−1 𝜖    (15.3) 

And for 0 < 𝜍 < 1 

  1 − 𝜖 − 𝑐+𝜖  1 − 𝜖 − 𝜍 𝑐+𝜖−1
1

0

 𝜖 𝑐−1𝑑𝜖 ≤ 𝐴 𝑐 + +2𝜖, 𝑐 + 𝜖, 𝑐  1 − 𝜍 𝜖+2𝑐−1𝜍−𝜖   (15.4) 

The next lemma   is essentially an extension  of the case 𝜖 = 0Theorem  𝐵. 

Lemma 3: Let  𝜖 − 1 > 0 for   0 < 𝜖 < 1, and let  

𝐻𝛿 1 − 𝜖 =
1

Γ 𝛿 
  1 − 𝜖 − 𝜍 𝛿 𝜍 𝑑𝜍

1+𝜖

0

. 

If 𝜖 ≥ 0, 𝛿 > 0,1 − 𝜖 <
1

𝑘 ′ , then 

  𝜖  1+2𝜖  1+𝜖 −1
1

0

 𝑐 + 2𝜖, 𝑐 + 𝜖, 𝑐  1+2𝜖  1−𝜖 − 1+2𝜖 𝛿𝐻𝛿
 1+2𝜖  1 − 𝜖 𝑑𝜖 
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≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛿, 1 − 𝜖   𝜖  1+2𝜖  1−𝜖 + 1+2𝜖 𝛿−1 1 − 𝜖  1+2𝜖  1−𝜖  1+2𝜖  1 − 𝜖 𝑑𝜖
1

0

  (15.5) 

Choose 𝜇, 𝑤 depending on 1 + 2𝜖, 𝛿, 1 − 𝜖, such that  
𝛿

𝑘′
< 𝜇 < 1 + 𝜖 +

𝛿

𝑘′
, 1 − 𝜖 < 𝑤 <

1

𝑘′
. 

Writing B for a constant depending on some or all of 1 + 2𝜖, 𝛿, 1 − 𝜖,obtain from Holder's inequality and (15.3) 

that for 𝜖 > 0 

 Γ 𝛿 𝐻𝛿  1 − 𝜖  1+2𝜖  

≤    1 − 𝜍  1+𝜖 𝜇
1+𝜖

0

 1 − 𝜖 − 𝜍 𝛿−1𝜍 1+2𝜖 𝜔1+2𝜖 𝜍 𝑑𝜍    1 − 𝜍 −𝑘 ′ 𝜇  1 − 𝜖 − 𝜍 𝛿−1𝜍−𝑘 ′ 𝜔𝑑𝜍
1−𝜖

0

 

1+2𝜖

𝑘′

 

≤ 𝐵 1 − 𝜖 
 1+2𝜖 𝛿

𝑘′ − 1+2𝜖 𝜔  𝜖 
 1+𝜖 𝛿

𝑘′ − 1+2𝜖 𝜇   1 − 𝜍  1+2𝜖 𝜇
1

0

 1 − 𝜖 − 𝜍 𝛿−1𝜍 1+2𝜖 𝜔 1+2𝜖  𝜍 𝑑𝜍,   (15.6) 

Since 𝜇 >
𝛿

𝑘 ′ , 𝛿 > 0 and 𝜔 <
1

𝑘 ′ . If 𝜖 = 0 the final inequality in (15.6) holds trivially (where 
1

𝑘 ′  interpreted as 0). 

Writing  

𝑐 + 2 = 𝛿 +  1 + 2𝜖 𝜔 −  1 + 2𝜖  1 − 𝜖 , 𝑐 =  1 + 2𝜖  1 + 𝜖 +
 1 + 2𝜖 𝛿

𝑘′ −  1 + 2𝜖 𝜇
 

We therefore  obtain from(15.6)and(15.4)that  for 𝜖 ≥ 0 

  𝜖  1+2𝜖  1+𝜖 −1
1

0

 1 − 𝜖  1+2𝜖 𝜂− 1+2𝜖 𝛿𝐻𝛿
 1+2𝜖  1 − 𝜖 𝑑(1 − 𝜖) 

≤ 𝐵   𝜖 𝜖−1
1

0

 1 − 𝜖 − 𝑐+𝜖 𝑑𝜖   1 − 𝜍  1+2𝜖 𝜇
1−𝜖

0

 1 − 𝜖 − 𝜍 𝛿−11+2𝜖 𝜍 𝑑𝜍 

≤ 𝐵   1 − 𝜍  1+2𝜖 𝜇
1

0

𝜍 1+2𝜖 𝜔1+2𝜖 𝜍 𝑑𝜍   1 − 𝜖 − 𝑐+𝜖  1 − 𝜖 − 𝜍 
1

0

𝛿−1

𝜖𝜖−1𝑑(1 − 𝜖) 

≤ 𝐵   1 − 𝜍  1+2𝜖 𝜇 +𝛿+𝑐−1
1

0

𝜍 1+2𝜖 𝜔+𝛿−𝑐−2𝜖1+2𝜖 𝜍 𝑑𝜍, 

Since 𝜖 > 0, 𝛿 > 0, 𝑐 > 0, and this is the required inequality.The relation of Lemma 3to the case 𝜖 = 0 of 

Theorem B can be seen by substituting  

𝑓 𝑥 =  1 + 𝑥 −1−𝛿  
𝑥

 1 + 𝑥 
 ,  1 + 2𝜖 𝜂 = −1 −  1 + 2𝜖 𝜆,  1 + 2𝜖 𝜉 = − 1 + 2𝜖  𝜖 − 𝜆 − 1. 

We thus obtain  

  1 + 𝑥  1+𝜖 𝑥−1 1+𝜖  𝜆+𝛿 𝐹𝛿
1+2𝜖 𝑥 

+∞

0

𝑑𝑥 

≤ 𝐴 1 + 2𝜖, 𝛿, 𝜆, 𝛿   1 + 𝑥  1+2𝜖 𝜉
+∞

0

𝑥−1− 1+2𝜖 𝜆𝑓1+2𝜖 𝑥 𝑑𝑥,     (15.7) 

Where 𝜖 ≥ 0, 𝛿 > 0, 𝜆 > −1, 𝜉 < 1 + 𝜆 and 𝐹𝛿  is defined as in Theorem B. For 𝜉 ≤ 0 this is an immediate 

consequence of Theorem B with 𝑓 𝑥  replaced by  1 + 𝑥 𝜉𝑓 𝑥  but for 0 < 𝜉 < 1 + 𝜆 it requires.An 

independent proof.There is presumably an extension of (15.7) with index 𝜖 ≤ 0 on the requires an independent 

proof. There is presumably an extension of (15.7) with  index 𝜖 = 0 on the  right,but we do not pursue this 

point. 

Lemma 3 does not apply if 𝜖 = 0, 𝜖 = 1 and here we have an  Almost trivial result, namely. 

LEMMA4. Let , 𝐻𝛿  be as in Lemma 3and let   𝜖 > −1, 𝛿 > 0. Then  

  𝜖 𝜖
1

0

𝐻𝛿 1 − 𝜖 𝑑𝜖 ≤ 𝐴 1 + 𝜖, 𝛿   𝜖 𝜖+𝛿
1

0

 1 − 𝜖 𝑑𝜖. 

Consider now the proof of Theorem 16.In view of the definition (14.4),it is enough to prove the inequality 

(15.1) when 𝜖 ≥ 0 and  1 + 𝜖 ≤ 1 + 𝜖 ≤ 𝛾 ≤  1 + 𝜖 + 1. It is therefore enough to prove it when  𝛾 = 1 + 𝜖 

and when 𝛾 =  1 + 𝜖 + 1. 
If 𝛾 =  1 + 𝜖 , then, by (14.5), 

 𝐷1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃  ≤
1

Γ 𝛾 − 1 − 𝜖 
  1 − 𝜖 − 𝜍 𝛾−1−𝜖−1

1−𝜖

0

 𝐷𝛾𝜑 𝜍𝑒𝑖𝜃  𝑑𝜍. 

For 𝜖 = 0 we have only to apply Lemma 4 with 𝛿 = 𝛾 − 1 − 𝜖, 𝜂 =  𝛾 −  𝛾   1 −
1

1+2𝜖
 , this gives  

  𝜖  1+2𝜖  1+𝜖 −1 1 − 𝜖  2𝜖  1+𝜖− 1+𝜖  −𝛿
1

0

 𝐷1+𝜖𝜑   1 − 𝜖 𝑒𝑖𝜃  
1+2𝜖

𝑑(1 − 𝜖) 
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≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛾   𝜖  1+2𝜖 𝛾−1
1

0

 1 − 𝜖  2𝜖  𝛾− 𝛾   𝐷𝛾𝜑   1 − 𝜖 𝑒𝑖𝜃   
1+2𝜖

𝑑𝜖 

And this obviously implies(15.1)for this case. If 𝛾 =  1 + 𝜖 + 1. Then (14.5) gives  

 𝐷1+𝜖𝜑(0 1 − 𝜖 𝑒𝑖𝜃  

≤ 𝐴 1 + 𝜖  𝑐 1+𝜖   1 + 𝜖 − 1+𝜖− 1+𝜖  

+
1

Γ 𝛾 −  1 + 𝜖  
  1 − 𝜖 − 𝜍 𝛾−1−𝜖−1

1−𝜖

0

 𝐷𝛾𝜑 𝜍𝑒𝑖𝜃   𝑑𝜍. 

Here we have only to apply Lemma 3 with 𝜖 = 1 and again we obtain the required result.  

16. Lemma 3 enables us also to prove a theorem similar to Theorem16 for the  function 𝒈𝟏+𝟐𝝐,𝟏+𝝐 defined 

by (5.5) 

THEOREM 17. If 𝜖 > 0, 𝛾 > 𝜖 + 1, then for each  𝜃. 

𝑔1+2𝜖 ,1+𝜖 𝜃 ≤ 𝐴 1 + 2𝜖, 1 + 𝜖, 𝛾 𝑔1+2𝜖 ,𝛾 𝜃              (16.1) 

Let 𝛿 = 𝛾 − 1 − 𝜖, It is clearly enough  to prove (16.1) when 𝛿 ≥ 1. Since𝑉1+𝜖𝜑 = 𝑉𝛿 𝑉𝛾𝜑 , we then have 

(exactly as in the proof of Theorem 1)  

 1 − 𝜖 𝛿−1 𝑣1+𝜖𝜑 1 − 𝜖 𝑒𝑖𝜃  ≤
1

Γ 𝛿 
  1 − 𝜖 − 𝜍 𝛿𝜍−1

1−𝜖

0

 𝑣𝛾𝜑 𝜍𝑒𝑖𝜃  𝑑𝜍. 

Applying now Lemma 3 with 𝜖 = 1, we obtain (16.1).  

17-In view of Theorem 16, the argument of § 7can be applied to 𝑮𝟏+𝟐𝝐,𝟏+𝝐 and gives a result 

corresponding to Theorem 3.However,we can cover a number of such cases by using Theorem 3 

directly,and we conclude with a proof of this. There are similar analogues of Theorems 4,9 and 10. 

THEOREM 18. Let 𝜖 > 0, 𝜖 > −1, 𝜇 = max  0,
1

𝜖
− 1 , and let  𝑑1+𝜖 be a sequence of numbers such that, as 

𝜖 → ∞ 

𝑑1+𝜖 =  1 + 𝜖 1+𝜖  𝛼𝑣 1 + 𝜖 −𝑣

𝑚

𝑣=0

+ 𝜊  1 + 𝜖 1+𝜖−𝑚−1 ,        (17.1) 

Where 𝑚 is affixed integer such that 𝑚 > 𝜇 and 𝛼0, … , 𝛼𝑚  are fixed numbers.Let also 𝜑 be defined as usual, let  

𝜒 𝑧 =  𝑐1+𝜖𝑑1+𝜖𝑧
1+𝜖∞

𝜖=0  and let  

Γ1+2𝜖 ,1+𝜖 𝜃 =    log
1

1 − 𝜖
 

 1+2𝜖  1+𝜖 −11

0

𝑐 1 − 𝜖  𝜒   1 − 𝜖 𝑒𝑖𝜃  
1+2𝜖 𝑑(1 − 𝜖)

𝜖
 

1

1+2𝜖

, (17.2) 

Where 𝑐 is bounded on the interval  𝛿, 1  for 0 < 𝛿 < 1 and the integral in (17.2) is convergent at 0.Then for 

𝜖 ≥
1

2
 

𝜇𝜖+1 Γ1+2𝜖 ,1+𝜖 ≤ 𝐴 1 + 2𝜖, 𝜖 + 1,1 + 𝜖 𝜇𝜖+1 𝜑  

We may obviously suppose that 𝜑 0 = 𝐶0 = 0. Let 𝐶 = 𝜇𝜖+1 𝜑 , let B denote a constant depending on some 

or all of 1 + 2𝜖, 𝜖 + 1, and write  

Γ1+2𝜖 ,1+𝜖
 1+2𝜖 

=  +

1

2

1

2

 =
1

1

2

𝐽1 + 𝐽2 

By Theorem 𝐷,  𝐶1+𝜖  ≤ 𝐵𝐶 1+𝜖 𝜇 , and since  𝑑1+𝜖  ≤ 𝐴 1 + 𝜖 1+𝜖 , it follows that  𝜒   1 − 𝜖 𝑒𝑖𝜃  ≤

𝐵𝐶 1 − 𝜖  for 
1

2
≤ 𝜖 ≤ 1, whence also 𝐽1 ≤ 𝐵𝐶1+2𝜖 . 

Next, by (17.1), we can write  

𝜒 =   1 + 𝜖 𝑣

𝑚

𝑣=0

𝜗1+𝜖 𝜗𝑣 + 𝜉 

Here 

 𝜉   1 − 𝜖 𝑒𝑖𝜃   ≤ 𝐴   1 + 𝜖 1+2𝜖−𝑚−1

∞

𝜖=0

 𝐶1+𝜖   1 − 𝜖 1+𝜖 ≤ 𝐵𝐶   1 + 𝜖 𝜖+𝜇−𝑚

∞

𝜖=0

 1 − 𝜖 𝑐+𝜇−𝑚  1 − 𝜖 1+𝜖

≤ 𝐵𝐶 𝜖 −1 
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