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ABSTRACT: Reservoir computing (RC) presents efficient approach for creating recurrent neural networks 

(RNN). RC encompasses echo state network (ESN) which has received increased attention owing to its 

effectiveness and relative simplicity due to fact that only connections from a reservoir to an output layer are 

trainable. This paper investigates the ESN-based prediction scheme for single-input single-output (SISO) 

systems in microcellular and picocellular environments using normalized mean squared error (NMSE) as a 

performance indicator. Presented simulation results show that gap between curves representing predicted and 

measured channel states is very small and no more than several neurons in input layer and several hundred 

neurons in reservoir should be used.  
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I. INTRODUCTION  
In wireless communication systems, a state of channel changes very quickly. The system performance 

can be enhanced using channel prediction based on channel states in previous moments rather than using 

channel estimation. Namely, channel state obtained by channel estimation can become outdated due to delay 

caused by processing and feedback phases [1].  

Autoregressive (AR) model, support vector machine (SVM) and discrete wavelet transform (DWT) 

method in combination with AR and linear regression (LR) algorithm (DWT-AR-LR) are widely explored in the 

open technical literature for channel predictions [2]-[4].  

Echo state network (ESN) prediction model is a class of reservoir computing (RC) which is an 

alternative to gradient descent method for training recurrent neural networks (RNN) [5]. Due to its relative 

simplicity and efficiency, ESNs have attracted widespread application in time series prediction, nonlinear 

system modeling, speech and text processing, financial forecasting, localization and bio-medical applications. 

ESN consists of an input layer, a large RNN layer (reservoir) and an output layer. The weights in the input and 

reservoir layers are initialized randomly. The main part of the system is the reservoir of large number of sparsely 

connected neurons ensuring rich and long-term dynamics. The reservoir maps input sequences into high-

dimensional projection. The weights in the nonlinear temporal kernel are not subjected to the training process. 

Learning is reduced to linear regression from the reservoir to the output. The output is linear combination of the 

echo states of the reservoir. Therefore, training procedure which is simplified because only the readout from the 

reservoir is trained, abundant nonlinar echo states and short memory are advantages of the model useful for 

modeling dynamical systems [6].  

A channel prediction strategy based on ESN is proposed in [7]. Data set used for training and testing is 

obtained by simulation of Rician fading channel. It is shown that smaller prediction error can be attained in 

comparison with previous designs. Moreover, complexity of the ESN is less than complexity of the SVM and 
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comparable to the complexities of AR and DWT-AR-LR. Motivated by these facts, in this paper, the 

effectiveness of prediction scheme based on the ESN is explored for microcellular and picocellular 

environments. Data sets used for training and testing contain measured signal-to-noise ratio (SNR) samples for 

scenarios described in details in [8]. Performance metrics used for analysis of the approach proposed is 

normalized mean squared error (NMSE).   

This introduction ends with notational remarks. Vector and matrices are denoted by lower- and upper-

case bold letters, respectively, while scalars are represented with non-bold letters. ()
T

  denotes transpose and   

is  the set of real numbers. 

 

II. APPLICATION OF ESN MODEL FOR WIRELESS CHANNEL PREDICTION 
A. Communication Scenario 

A prediction scheme for a single-input single-output (SISO) channel is proposed and applied for two 

different environments: 

1) B channel model represents a microcell environment where distance between mobile station (MS) and base 

station (BS) is in the order of 30 m. It assumes indoor-to-outdoor propagation with BS located outside and 

indoor environment usually consisted of several small offices. 

2) E channel model represents a picocell environment in modern open office with windows metallically 

shielded. It refers to indoor-to-indoor scenario.  

Data sets used for analysis in this work contain SNR channel values obtained based on measurement 

campaigns described in details in [8]. A series of SNR samples    , 1,s sn nT n N   , from [8], are used for 

network training and testing. Parameter Ts denotes sampling interval and parameter Ns is the total number of 

samples. 

 

B. Prediction Framework 
Having in mind its relative conceptual simplicity and computational inexpensiveness, the ESN model is 

proposed for channel prediction. The architecture of a multiple-input single-output ESN is illustrated through 

Fig. 1. 

 

 
Fig. 1. Architecture of ESN 

 

An input layer, an output layer and a large recurrent layer between them which is called internal 

reservoir form the ESN. Let Nu, Nx and Ny denote the number of neurons in the input layer, the internal reservoir 

and the output layer, respectively. The inputs, the reservoir states and the outputs are marked with u, x and y, 

correspondingly. The weights which describe connections among the neurons in the reservoir are collected into 

an internal matrix x xN N
W  . An input weight matrix 

 1x uN N

in

 
W   describes relation between the input 

layer and the reservoir, while an output weight matrix 
 1y u xN N N

out

  
W   defines optimal mapping of input and 

states of internal neurons into a Ny-dimensional variable. In our case, it is evident that Ny =1 holds.   

At discrete time n, Nu samples of SNR are used as the input variables forming the input training vector 

u(n) uN
 which is expressed as 

        
T

, 1 , , 1un n n n N       u  .  (1) 

The idea is to predict sample based on previous Nu samples 

  ( ) uy n n N  .  (2) 

The vector of reservoir neurons states   xN
n x   at discrete time n is given by  
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T

1 2, ,...,
xNn x n x n x n   x . (3) 

Generally, the ESN involves two phase. The first one assumes mapping of Nu-dimensional inputs into 

Nx-dimensional reservoir state space to obtain the echo states and to capture the dynamics of the inputs. The 

second one is to learn the output weight matrix. The mathematical formulations for the internal state update and 

the output are as follows [9] 

 
          

        

1 1 [1; ] 1

1 1 tanh [1; ] 1

in

in

n n f n n

n n n

 

 

     

     

x x W u Wx

x W u Wx
 , (4) 

           1; ; 1; ;out outy n g n n n n       W u x W u x ,  (5) 

where  f   is the non-linear activation function in reservoir,  g   is the output function and α  denotes the 

leaking rate. According to [10],  f   and  g   are hyperbolic tangent function and identity function, 

respectively. Typical values for leaking rate are (0,1]   and it is used for integrating reservoir states in two 

consecutive time steps.  

 

C. Algorithm for Channel Prediction 

In order to clearly illustrate the channel prediction scheme based on the ESN, a detailed procedure of 

the network initialization, training and testing is given step by step. 

Step 1: The first Ntr samples are used to train the network, while the rest Nte=Ns-Ntr are test samples used to 

evaluate a prediction error.  

Step 2: This step relates to the initialization of the ESN. Important parameters for this phase, known as global 

parameters, are input scaling factor (a) and spectral radius (ρ). The elements of the input weight matrix 
inW  are 

generated randomly from [-a, a]. Initialization of the internal reservoir matrix starts with a matrix 
randW  

generated according to the same type of distribution as 
inW . The procedure ends with scaling which is 

mathematically described as 

                                                     
 max

rand

rand





W

W
W

 ,                                      (6) 

where  max rand W is the largest eigenvalue of matrix 
randW . Meeting the condition ρ<1 usually ensures ESN 

stability. The initial states of the internal neurons are all set as 0, i.e.    
T

0 0, 0, ..., 0x .  

Step 3: Samples from the training set excite the network changing the states of the internal neurons according to 

the state update function (4). From a certain sample Nc  (Nc< Ntr), the states are stored into a matrix 
   1 1x u tr cN N N N    

X   given by 

      , 1 ,...,c c trN N N   X x x x .  (7) 

We use here a single x instead of [1;u;x] for notational brevity. In addition, the states of the output neuron are 

calculated using (5) and collected in vector row 
1tr cN N 

y  given by 

      , 1 ,...,c c try N y N y N   y .  (8) 

Step 4: Minimizing squared error between predicted and target signal value is done using direct ridge 

regression.  The output weight vector is 

  
1

T T

argout t et 


 W y X XX I ,  (9) 

where β is a regularization coefficient, I is the identity matrix and vector row 
1

arg
tr cN N

t et R
 

y contains 

appropriate target values described by (2). The offline training algorithm ends by determining the output weight 

vector.  

Step 5: The trained network is used for prediction and the network performance evaluation using the rest Nte 

labeled data. NMSE is used as a prediction error metrics and it is defined as 

 
 

 

2

arg1

2

arg1

( ) ( )

( )

s

tr

s

tr

N

t eti N

N

t eti N

y i y i
NMSE

y i

 

 






.   (10) 

 

III. III. SIMULATION RESULTS AND ANALYSIS 
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In this section of the paper, the performance of the proposed time-series prediction strategy is evaluated 

using data sets for SISO system obtained by measuring the instantaneous SNR values at the receiver side for the 

case when SNR at the transmitter side is 20 dB. Analysis is carried out using data sets containing Ns=4000 

samples. The data sets are divided into two equal sets for training and testing (Ntr= Nte=2000). The states of 

internal neurons are memorized from Nc =100 sample (the washout length). The leaking rate and the 

regularization coefficient are set as α=0.3 and β=50, respectively. It is determined by simulation that there is no 

need to use more than 3 neurons in the input layer. This means that in the following analysis we use input vector 

which size is Nu=3.  

The influence of the reservoir size Nx, as the main part of the network, is illustrated in Fig. 2 for both B 

and E channels. It is evident that the ESN with larger reservoir has better performance. We can also note that the 

curves enter saturation which implies that it is not rational to increase Nx uncontrolled. Namely, performance 

gain achieved in this way at the expense of computationally and memory efficiency is not justified. For both 

channels, the NMSE of the order of 310  can be expected. Figure also shows that the NMSE for B channel 

prediction is slightly lower.  
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Fig. 2. NMSE versus number of internal neurons 

 

Fig. 3 and Fig. 4 illustrate the target curve  argt ety n  and prediction curve  y n , as well as absolute error 

between the curves 

                       arg ( ) ( )t ety y n y n   .  (11) 

Fig. 3 contains examples for B channel, while Fig. 4 is related to E channel. Simulation results show that the gap 

between curves representing predicted and measured channel states is very small. We can draw indisputable 

conclusion that in microcell and picocell environments the proposed prediction scheme based on the ESN fits 

the chaotic time series very well with small errors. 

 

 
Fig. 3. Prediction curve and absolute error for B channel  
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Fig. 4. Prediction curve and absolute error for E channel 

 

IV. CONCLUSION 
Reservoir computing is an efficient method to construct recurrent networks that model dynamical 

systems. This paper has investigated the ESN-based prediction scheme for SISO systems in microcellular and 

picocellular environments. The effectiveness of the framework has been confirmed using NMSE as a 

performance measure. Simulation results have shown that no more than several neurons in input layer and 

several hundred neurons in reservoir should be used. Further increasing the number of neurons will not result in 

significant prediction accuracy gain. The NMSE of the order of 310  can be expected.  
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