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I. INTRODUCTION. 

 There are several means that interpolate the geometric and series of arithmetic means; see [9], [13],[12] and 

[14]. One that attracts many researchers is the so-called Heinz mean  Hε−1
r

r given by 

 Hε−1
r (ar , ar + ε)

r

=  
ar

ε(ar + ε)ε+1 + ar
ε+1(ar + ε)ε

2
r

 

Notice that H0
r  ar , ar + ε r = Hr

1 ar , ar + ε =  
2ar +ε

2r is theseries of arithmetic mean and H1

2

r ar , +ε r =

  ar(ar + ε)r  is the  series of geometric mean.[12]. 

In 1951, Heinz [8], in his study of perturbation theory of operators, proved that for the operator norm , given 

A
1

2 , B
1

2 positive definite, for any X, that 

 A
1

2XB
1

2 ≤
1

2
 AεXB1−ε + A1−εXBϵ .                                                  (1) 

In 1993, Bhatia–Davis [1] proved that if A
1

2, B
1

2, and X are n by n matrices with A
1

2 and 

B
1

2positivesemi definite, then for every unitarily invariant norm |||.||| [12], 

 A
1

2XB
1

2 ≤
1

2
 AεXB1−ε + A1−εXBϵ ≤

1

2
 A

1

2X + XB
1

2                                  (2) 

Another mean, which is of interest mainly in chemical engineering, statistics, and thermodynamics, is theseries 

of logarithmic mean defined as 

 Lr ar , ar + ε 

r

=  
−ε

log ar log(ar + ε)
r

=   ar
ε(ar + ε)1−εdε

1

0r

. 

It is well known that 

 Gr ar , ar + ε 

r

≤  Lr ar , ar + ε ≤ A
1

2 ar , ar + ε 

rr

                             (3) 

In 1999, Hiai–Kosaki [10] obtained the following refinement of the inequality (2) showing: 

 A
1

2XB
1

2 ≤    AεXBε−1dε
1

0
  ≤  A

1

2X + B
1

2X                             (4) 

called the series of  arithmetic-logarithmic-geometric (A-L-G) inequality [12]. 

After seeing inequalities (2) and (4) it is hard not to be curious about the relationship between the Heinz 

andseries of logarithmic means. This was our motivation to investigate this problem[12]. 

Assume  Mr(ar , ar + ε)r ,  Nr(ar , ar + ε)r  are symmetric homogeneous means on (0,∞) × (0,∞). Mr is said to 

strongly dominate  Nrr  in notation Mrr ≪  Nrr , if and only if the matrix  
Mr (λi−λj )

Nr (λi−λj
 r

i,j=1,…,n

is positive 
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semidefinite for any λ1,...,λn> 0 with any size n (see [11] for more details). Note that the inequality Mrr ≪
 Nrr  is stronger than theusual order  Mrr ≤  Nrr . In [10], Hiai–Kosaki gave an example showing this. 

Another example was later obtained by Bhatia [4]. Moreover, if A
1

2  is a positive semidefinite matrix with 

eigenvalues λ1,λ2,...,λn, then Mrr ≪  Nrr  is equivalent to the operator norm inequality [12]. 

   Mr(A
1

2 , A
1

2)°X  

r

≤   Nr(A
1

2 , A
1

2)°X  

r

 

where ◦ is the Schur–Hadamard or the entrywise product, and  Mrr (A
1

2 , A
1

2) is the matrix whose ij entry is 

 Mrr (λi,λj).[12] 

Schur’s theorem asserts that the Schur–Hadamard product of two positive matrices is positive. Two matrices A
1

2 

and B
1

2 are said to be congruent if B
1

2 = S∗A
1

2S for some nonsingular matrix S. If A
1

2 is positive, then so is every 

matrix congruent to it. Aseries of a complex-valued function fr  on R is said to be positive definite if the matrix 

[fr  ( xr i − (xr)j)] is positive semidefinite for all choices of points { xr 1,  xr 2, . . . ,  xr n}  ⊂ Rand all n = 

1,2,.... Another interesting result that we are going to use is the well-known theorem of Bochner (see [11] for 

more details) which asserts that a series of function fr  in L
1
(R) is positive definite if and only if its Fourier 

transform fr
ˆ
(ξ) ≥ 0, for almost all ξ. When calculating Fourier transforms, we ignore constant factors, since the 

only property of fr
ˆ 
we use is whether it is nonnegative almost everywhere.[12]. 

 In this paper we first present a necessary and sufficient condition for the strong dominof the series of 

Heinz mean by theseries of  logarithmic mean. This follows from the following theorem, which may be of 

independent interest, on the positive definiteness of functions; see [2], [3], [4], [5], [6], and [11] for other results 

on positive definiteness of functions. Second, using a standard result on a norm of the Schur multiplier, we 

derive norm inequalities extending results given by Bhatia–Davis and Hiai–Kosaki on A-L-G mean matrix 

inequalities.[12]. 

Theorem 1. Let fr xr r =  
xr cos h( ε−1 xr )

sin h⁡(xr )r . 

Then fr is positive definite if and only if 
 

−
3

2
≤ ε ≤

3

2
 

The following formulas are known from [7] and we provide the proofs for completeness  

 

Lemma 1. Forε ≤ 0, we have 

 
sinh 1 − ε xr

sinh( xr)
cos 1 + ε xr  dxr =

π sin(1 − ε)π

2(cosh( 1 + ε π + cos( 1 − ε π)
                  (5)

∞

0

 

 
cosh 1 − ε xr

sinh(xr)
sin 1 + ε xr  dxr =

π sinh(1 + ε)π

2(cosh( 1 + ε π + cos( 1 − ε π)
                  (6)

∞

0

 

Proof. To compute the above integrals we use the method of residues. We proceed in two steps. 

 

Step 1. Let us consider the complex valued function 

 φ
r
 zr 

r

=  
sinh( 1 − ε zr)

sinh(zr)
ei 1+ε zr

r

 

Then φ
r

 has poles at the points zk = ikπ , for k = ±1, ±2,… Now, consider the contour 

integral  φ
r
 zr dzrΓr , where Γ is the rectangle with vertices at  −R, 0 ,  R, 0 ,  R, iπ  and (−R, iπ) described 

counterclockwise, with an indentation γ
ε
∶ zr = εeiθfor 0 ≥ θ ≥ −π , so as to avoid the pole at iπ. Since there 

are no singularities of the integrand inside Γ, we obtain by Cauchy’s theorem for analytic functions 

  φ
r
 xr 

r

dx +   φ
r

r

 R + iyr idyr

π

0

R

−R

+   φ
r

r

 xr + iπ dx

ε

R

+   φ
r
 zr 

r

dzr +   φ
r

r

 xr + iπ dxr +   φ
r

r

 −R + iyr i

0

π

R

−εγε

dyr . 

Using the estimation lemma, we obtain along the two vertical lines 
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   φ
r

r

 R + iyr idyr

π

0

 → 0   and    φ
r

r

 −R + iyr idyr

0

π

 → 0 as R → ∞  .        (7) 

By Jordan’s lemma, we get 

lim
ε→0

  φ
r

r

 zr dzr = i(−π − 0)(−i sin(1 − ε)π)e 1+ε π      .                                       

γε

 (8) 

On the other hand, using the identities 

sinh a ± ib = sinh a cos b ± i cosh a sin b , 
we obtain 

  φ
r

r

 xr + iπ dx =  e−(1+ε)π

r

 
ei 1+ε x

sinh(xr)

R

ε

ε

R

[sinh 1 − ε π + i cosh(1 − ε)π sin(1 − ε)π] dx 

and 

  𝜑𝑟
𝑟

 𝑥𝑟 + 𝑖𝜋 𝑑𝑥 =  𝑒−(1+𝜀)𝜋

𝑟

 
𝑒−𝑖 1+𝜀 𝑥

𝑠𝑖𝑛ℎ(𝑥𝑟)

𝑅

𝜀

𝑅

−𝜀

[𝑠𝑖𝑛ℎ 1 − 𝜀 𝜋 − 𝑖 𝑐𝑜𝑠ℎ 1 − 𝜀 𝜋 𝑠𝑖𝑛(1 − 𝜀)π] 𝑑𝑥. 

Combining the two above identities and using Euler’s formula, we obtain aftersimplifications [12] 

  𝜑𝑟
𝑟

 𝑥𝑟 + 𝑖𝜋 𝑑𝑥𝑟

𝜀

𝑅

+    𝜑𝑟
𝑟

 𝑥𝑟 + 𝑖𝜋 𝑑𝑥𝑟

−𝑅

−𝜀𝑟

=  𝑒−𝑖 1+𝜀 𝑥𝑟

𝑟

 𝑐𝑜𝑠(1 − 𝜀)𝜋 
𝑠𝑖𝑛ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

𝑅

𝜀

 (2 𝑐𝑜𝑠 1 + 𝜀   𝑑𝑥𝑟

+ 𝑖 𝑠𝑖𝑛(1 − 𝜀)𝑥𝑟  
𝑐𝑜𝑠ℎ 1 − 𝜀 𝑥𝑟

𝑠𝑖𝑛ℎ 𝑥𝑟
 (2𝑖𝑠𝑖𝑛 1 + 𝜀 𝑥𝑟  𝑑𝑥𝑟

𝑅

𝜀

 

.
 

Using 

  𝜑𝑟
𝑟

 𝑥𝑟 𝑑𝑥𝑟 =   
𝑠𝑖𝑛ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟
 𝑐𝑜𝑠 1 + 𝜀   𝑑𝑥𝑟 = 2  

𝑠𝑖𝑛ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

𝑅

0𝑟

 𝑐𝑜𝑠 1 + 𝜀   𝑑𝑥𝑟

𝑅

−𝑅𝑟

𝑅

−𝑅

 

and taking 𝜀 →  0 then after that 𝑅 →  ∞, we obtain 

2 
𝑠𝑖𝑛ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟
 𝑐𝑜𝑠 1 + 𝜀   𝑑𝑥𝑟

∞

0

+  𝑒−(1+𝜀)𝜋

𝑟

 2 𝑐𝑜𝑠 1 − 𝜀 𝜋 
𝑠𝑖𝑛ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟
 𝑐𝑜𝑠 1 + 𝜀   𝑑𝑥𝑟 − 2𝑠𝑖𝑛⁡(1 − 𝜀)𝜋

∞

0

×  
𝑐𝑜𝑠ℎ(1 − ε)𝜋

𝑠𝑖𝑛ℎ 𝑥
𝑠𝑖𝑛 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟 − 𝜋 𝑠𝑖𝑛 1 − 𝜀 𝜋

∞

0

 = 0.                                (9) 

Step 2. Similarly as in Step 1, we may consider the complex valued function 

 𝛹𝑟 𝑧𝑟 

𝑟

=  
𝑐𝑜𝑠ℎ 1 − 𝜀 𝑧𝑟

𝑠𝑖𝑛ℎ 𝑧𝑟
𝑒𝑖 1+𝜀 𝑧𝑟

𝑟

 

 Then 𝛹𝑟  has poles at 𝑧𝑘 = ±𝑖𝑘𝜋 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1,2, …Consider the contour integral  𝛹𝑟 𝑧𝑟 𝑑𝑧𝑟𝛤
, 

where 𝛤 is the same contour as in Step 1 with two indentations 𝛾𝜀1
: 𝑧 = 𝜀𝑒𝑖𝜃 + 𝑖𝜋 for 0 ≥ 𝜃 ≥ −𝜋, 𝑠𝑜 as to 

avoid the pole at 𝑖𝜋, and 𝛾𝜀2
: 𝑧 = 𝜀𝑒𝑖𝜃  𝑓𝑜𝑟 0 ≥ 𝜃 ≥ −𝜋, so as to avoid the pole at 0. By applying Cauchy’s 

theorem, .[12]we obtain 
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  𝛹𝑟 𝑥𝑟 

𝑟

𝑑𝑥 +   𝛹𝑟 𝑧𝑟 

𝑟

 𝑑𝑧 +

𝛾𝜀2

𝜀2

𝑅

  𝛹𝑟 𝑥𝑟 

𝑟

𝑑𝑥 +   𝛹𝑟
𝑟

 𝑅 + 𝑖𝑦𝑟 𝑖𝑑𝑦𝑟

𝜋

0

𝑅

𝜀2

+   𝛹𝑟
𝑟

 𝑥𝑟 + 𝑖𝜋 𝑑𝑥 +   𝛹𝑟 𝑧𝑟 

𝑟

 𝑑𝑧𝑟
𝛾𝜀1

𝜀1

𝑅

+   𝛹𝑟
𝑟

 𝑥𝑟 + 𝑖𝜋 𝑑𝑥𝑟

−𝑅

−𝜀1

+   𝛹𝑟
𝑟

 −𝑅 + 𝑖𝑦𝑟 𝑖𝑑𝑦𝑟 = 0

0

𝜋

. 

By Jordan’s lemma, we get in Step 1 

𝑙𝑖𝑚
𝜀1→0

  𝛹𝑟 𝑧𝑟 

𝑟

 𝑑𝑧𝑟 = 𝑖 (−𝜋 − 0)(−𝑐𝑜𝑠⁡(1 − 𝜀)𝜋𝑒−(1+𝜀)𝜋

𝛾𝜀1

= 𝑖𝜋𝑐𝑜𝑠⁡(1 − 𝜀)𝑒−(1+𝜀)𝜋  

 and 

𝑙𝑖𝑚
𝜀2→0

  𝛹𝑟 𝑧𝑟 

𝑟

 𝑑𝑧 = 𝑖 (−𝜋 − 0)(−𝑐𝑜𝑠ℎ⁡(0)𝑒0

𝛾𝜀2

= 𝑖𝜋 . 

After similar arguments as in Step 1, with some small changes, by taking limits as𝜀2 →  0, 𝜀1 →  0 𝑎𝑛𝑑 𝑅 →  ∞, 

successively,.[12] we get 

2𝑖  
𝑐𝑜𝑠ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

∞

0𝑟

𝑠𝑖𝑛 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟

+  𝑒−(1+𝜀)𝜋

𝑟

 2𝑖𝑐𝑜𝑠 1 − 𝜀 𝜋 
𝑐𝑜𝑠ℎ 1 − 𝜀 𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

∞

0

𝑠𝑖𝑛 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟

+  2𝑖 𝑠𝑖𝑛 1 − 𝜀 

𝑟

𝑥𝑟  
𝑐𝑜𝑠ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

∞

0

𝑐𝑜𝑠 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟 + 𝑖𝜋 𝑐𝑜𝑠 1 − 𝜀  − 𝑖𝜋 = 0   (10) 

Let𝐼 =   
𝑐𝑜𝑠ℎ(1−𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

∞

0𝑟 𝑐𝑜𝑠 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟and 𝐽 =   
𝑐𝑜𝑠ℎ(1−𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

∞

0𝑟 𝑠𝑖𝑛 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟  Then (9) and (10) can be 

written, successively, as 

 
 2 + 2𝑒− 1+𝜀 𝜋 𝑐𝑜𝑠 1 − 𝜀  𝐼 − 2𝑒− 1+𝜀 𝜋 𝑠𝑖𝑛 1 − 𝜀 𝐽 − 𝜋 𝑠𝑖𝑛 1 − 𝜀 𝑒− 1+𝜀 𝜋 = 0

 2 + 2𝑒− 1+𝜀 𝜋 𝑐𝑜𝑠 1 − 𝜀  𝐽 + 2𝑒− 1+𝜀 𝜋𝑠𝑖𝑛 1 − 𝜀 𝐼 + 𝜋𝑐𝑜𝑠 1 − 𝜀 𝑒− 1+𝜀 𝜋 − 𝜋 = 0.
  

Solving the above system for I and J we obtain the desired results. 

 Proof of Theorem 1. Using Bochner’s theorem, the positive definiteness of the function 𝑓𝑟  can be 

reduced to showing that the Fourier transform  𝑓 𝑟𝑟 (1 + 𝜀) is positive.[12]. Since 𝑓𝑟  is an even function, its 

Fourier transform is given by 

 𝑓 𝑟
𝑟

 1 + 𝜀 = 2 
𝑐𝑜𝑠ℎ(1 − 𝜀)𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

∞

0

𝑐𝑜𝑠 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟  

The differentiation of the formula (5) in Lemma 1 with respect to 1 − 𝜀 gives 

 
𝑐𝑜𝑠ℎ 1 − 𝜀 𝜋

𝑠𝑖𝑛ℎ 𝑥𝑟

∞

0

𝑐𝑜𝑠 1 + 𝜀 𝑥𝑟𝑑𝑥𝑟 =  
𝜋

2

π 𝑐𝑜𝑠 1 − 𝜀 𝑥𝑟 𝑐𝑜𝑠ℎ 1 + 𝜀 𝜋 + 𝑐𝑜𝑠 1 − 𝜀 𝜋 − 𝑠𝑖𝑛 1 − 𝜀 𝜋

 𝑐𝑜𝑠ℎ 1 + 𝜀 𝜋 + 𝑐𝑜𝑠 1 − 𝜀 𝜋 2

𝑟

 

=
𝜋2[1 + 𝑐𝑜𝑠⁡(1 − 𝜀)𝜋𝑐𝑜𝑠ℎ⁡(1 + 𝜀)𝜋

2(𝑐𝑜𝑠ℎ 1 + 𝜀 + 𝑐𝑜𝑠⁡(1 − 𝜀)𝜋)2
 

So, 

 𝑓 𝑟𝑟  1 + 𝜀 =
𝜋2[1+𝑐𝑜𝑠⁡(1−𝜀)𝜋𝑐𝑜𝑠 ℎ⁡(1+𝜀)𝜋

(𝑐𝑜𝑠ℎ 1+𝜀 +𝑐𝑜𝑠⁡(1−𝜀)𝜋)2  . 

Consequently, if 1 ≤ 𝜀 ≤
3

2
0, then  𝑓 𝑟𝑟 (1 + 𝜀)  ≥  0. Since 𝜑𝑟  is even in1 + 𝜀, the result follows for-

3

2
≤ 𝜀 ≤

3

2
. 

Corollary 1. .[12]For any 𝑎, 𝑏 ≥  0, we have 

 𝐻𝜀
𝑟 𝑎, 𝑎 + 𝜀 

𝑟

<<  𝐿𝑟 𝑎𝑟 , 𝑎𝑟 + 𝜀 

𝑟

𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 .
1

4
≤ 𝜀 ≤

3

4
 .                         (11) 

Corollary 2. .[12]Let 𝐴
1

2 , 𝐵
1

2 be any positive matrices. Then for any matrix 𝑋 and for 
1

4
≤ 𝜀 ≤

3

4
,, we have 
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 𝐴1−𝜖𝑋𝐵𝜖 + 𝐴𝜖𝑋𝐵1−𝜖 ≤ 2    𝐴𝜖𝑋𝐵1−𝜖𝑑𝜖

1

0

                             (12) 

for every unitarily norm   .    
Proof of Corollary 1.[12] We proceed in two steps. 

Step 1. By definition,  𝐻𝜀
𝑟(𝑎, 𝑎 + 𝜖)𝑟 <<  𝐿𝑟(𝑎, 𝑎 + 𝜖)𝑟  𝑖f 

(1 − 𝜖)𝑖𝑗 =   
𝐻𝜀
𝑟(𝜆𝑖 , 𝜆𝑗 )

𝐿𝑟(𝜆𝑖 , 𝜆𝑗 )
 

𝑟 𝑖,𝑗=1,…,𝑛

 

is positive semidefinite. Put𝜆𝑖 = 𝑒𝑥𝑖  , 𝜆𝑗 = 𝑒𝑥𝑗  , 𝑤𝑖𝑡ℎ 𝑥𝑖 , 𝑥𝑗  ∈ 𝑅 .Then  

(1 − 𝜖)𝑖𝑗  =

 

 
 𝑒(1−𝜀)(

𝑥𝑖−𝑥𝑗

2
) + 𝑒(1−𝜀)(

𝑥𝑗−𝑥𝑖

2
)

𝑒
𝑥𝑖
2 (

𝑒
(
𝑥𝑖−𝑥𝑗

2 )
−𝑒

(
𝑥𝑗−𝑥𝑖

2 )

𝑥𝑖−𝑥𝑗
)𝑒

𝑥𝑗

2

 

 
 

. 

Thus the matrix [(1 − 𝜀)𝑖𝑗 ] is congruent to one with entries 

 
𝑥𝑖−𝑥𝑗

2
 𝑐𝑜𝑠ℎ 1 − 𝜀  

𝑥𝑖−𝑥𝑗

2
 

𝑠𝑖𝑛ℎ  
𝑥𝑖−𝑥𝑗

2
 

 

where 𝜀 = 1  . Hence, the matrix [(1 − 𝜀)𝑖𝑗 ]is positive semidefinite if and only if the function 

 𝑓𝑟 𝑥𝑟 

𝑟

=  
𝑥𝑟𝑐𝑜𝑠ℎ 1 − 𝜀 𝑥𝑟

𝑠𝑖𝑛ℎ𝑥𝑟
𝑟

 

is positive definite. 

Step 2. By Theorem 1, 𝑓𝑟(𝑥) is positive definite if and only if
1

2
≤ 𝜀 ≤

3

2
 , which is equivalent to the condition 

1

4
≤ 𝜀 ≤

3

4
. 

Remark 1. .[12]The inequality 𝑀𝑟 < 𝑁𝑟  could, in general, be strictly stronger than the usual inequality 𝑀𝑟  ≤
 𝑁𝑟 . That means not every inequality between means of positive numbers leads to a corresponding inequality for 

positive matrices as shown by the following simple example. For 𝑎𝑟 >  0 we have 

 𝐻𝑟
1−𝜀(𝑎𝑟 , 𝑎𝑟 + 𝜀) 𝑟 ≤  𝐿𝑟(𝑎𝑟 , 𝑎𝑟 + 𝜀)𝑟  𝑖f and only if

1−
1

 3

2
≥ 𝜀 ≥

1+
1

 3

2
.          (13) 

In fact, by taking 𝑎𝑟  = 𝑒𝑥and (𝑎𝑟 + 𝜀)  = 𝑒𝑦𝑟 and using Taylor series, it is easy to see that 
 𝐻𝑟

1−𝜀(𝑎𝑟 , 𝑎𝑟 + 𝜀)𝑟  ≤   𝐿𝑟𝑟 (𝑎𝑟 , 𝑎𝑟 + 𝜀)if and only if 

𝑐𝑜𝑠ℎ   1 − 2𝜀  
𝑥𝑟−𝑦𝑟

2
  ≤

𝑠𝑖𝑛ℎ 
𝑥𝑟−𝑦𝑟

2
 

 
𝑥𝑟−𝑦𝑟

2
 

 . 

Let𝜀 =
𝑥𝑟−𝑦𝑟

2
  ,and 𝜀 = 1. Then after simplification 

1 +
(1 − 𝜀)2𝜀2

2!
+

(1 − 𝜀)4𝜀4

4!
+ ⋯ ≤ 1 +

𝜀2

3!
+
𝜀4

5!
+ ⋯ 

This is true only if(1 − ε)2 ≤
1

3
, which leads to the desired result. 

Proof of Corollary 2. First assume A
1

2 = B
1

2Since the norms involved are unitarily invariant, we may suppose 

that A
1

2 is diagonal with entriesλ1 , λ2, … , λn . Then we have 

A1−εXAε + AεXA1−ε = Yο  AεXA1−ε dε

1

0

  

where Y is the matrix with entries 

(yr)ij =  
2Hr

1−ε(λi , λj)

Lr(λi , λjr
. 

A well-known result on the Schur multiplier norm (see [12, Theorem 5.5.18 and Theorem 5.5.19]) says that if Y 

is any positive semidefinite matrix, then for all matrix X,.[12] 

|||Y ο X|||  ≤  maxi{yii |||X|||, for every unitarily invariant norm.      (14) 
By Corollary 1, Y is a positive semidefinite matrix. Applying (14), .[12] we obtain 

  A1−εXAε + AεXA1−ε  ≤ 2    AεXA1−ε dε

1

0

                             (15) 
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Now, we use the usual trick replacing A
1

2  and  X  in the inequality (15) by the 2  by 2  matrices  

 A
1

2 0
0 B

 and 
0 X
0 0

  . This gives us the desired inequality (12). 

Remark 2. Given a, ε >  0 . A natural question arises as to whether the reverse inequality L(a, a + ε)  <<
H1−ε(a, a + ε) is valid.[12] 

For ε = 0,1    we have Lrr (ar , ar + ε)  <<  Hr
1−ε(ar , ar + ε)r  (which is exactly the second part of On the 

other hand, 

cannot be true for ϵ ∈ (0,1)due to the fact that fr x r =  
sin hxr

xr cos h(1−2ε)r  goes to infinity as xr  →  ±∞. So, f 

cannot be positive definite.[12]. 
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