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ABSTRACT: The important notions of Riemannian geometry are based on Manifolds. The calculus of manifold 

just as topology is based on continuity, so the theory of manifolds is based on smoothness. According to the 

theory, the universe is smooth manifold equipped with Pseudo–Riemannian geometry which described the 

curvature of space time understanding this curvature is essential for the positioning of satellites into orbit 

around the earth. In generally Manifolds are simplifications of our familiar ideas about curves and surfaces to 

arbitrary dimensional objects. It is to be a space that, like the surface of the Earth, can be covered by a family of 

local coordinate systems. In this paper we study about the general theorems of manifolds of different functions 

with the connections of various aspects describes possibly with the affine connection, Levi Civita connection 

and Torsion free connection respectively.  
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I. INTRODUCTION 

 Manifold is a generalization of curves and surfaces to higher dimensions. It is locally Euclidean in that 

every point has a neighborhood, called a chart, homeomorphic to an open subset of . The coordinates on a 

chart allow one to carry out computations as though in a Euclidean space, so that many concepts from , such 

as differentiability, point-derivations, tangent spaces, and differential forms, carry over to a manifold. 

Throughout this, all our manifolds are assumed to be smooth, means , or infinitely differentiable. A curve in 

three-dimensional Euclidean space is parameterized locally by a single number t as (x (t), y (t), z (t)) while two 

numbers u and v parameterize a surface as (x (u, v), y(u, v), z(u, v)) where a curve and a surface are considered 

locally homeomorphism. 

 

Fig 1.1: The real projective n space determined by the point on the Line 

 

There are different types of Manifolds given by the following examples on which we will describe the vast 

descriptions of various deepens that becomes more sophisticated.  
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II. BASIC DEFINITIONS OF MANIFOLDS: 

2.1 Topology: Let X be a non-empty set. A system   = {  is called a topology on X, if it 

contains the following three conditions: 

(i) The empty set  and the set X belong to . 

(ii) The union of any number of a finite number of sets  are in the system   

(iii) The Intersection of any finite number of sets  belongs to  

The set of    is called open. The pair (  , ) consisting of a set X, and a topology   on X is called a 

topological space. 

 

2.2 Housdorff Space: A topological space X is called a Housdorff space, if any two distinct Pair’s possesses 

disjoint neighborhoods. Let  and possesses disjoint neighborhoods of  then there exists   = . 

2.3 Homeomorphism: A function f: X Y between two topological spaces X and Y is called a 

homeomorphism if it has the following properties:  

(i)  is bijective. 

(ii) Both and are continuous. 

 

2.4 Diffeomorphism: Let U and V be two open subsets of function f: U  V is 

called diffeomorphism, if it satisfies the following. 

(i) is homeomorphism. 

(ii) If   and  of class  

 

2.5 Diffeomorphism: A function  U is an isomorphism of -class and invertible, then is called a 

diffeomorphism. 

  

 2.6 Local Diffeomorphism 

A map f: U  is a local diffeomorphism if and only if  is smooth and det (   at each point of 

, where U and V be open subset in  . 

 

2.7 Chart: A chart is a pair (  consisting of a topological manifold M and an open subset U of M is called 

the domain of the chart together with a homeomorphism U  V onto an open set V in  

2.8 Atlas: An atlas of class , on a topological manifold M is a set {( ), I} of charts such that, (i) 

The domains  cover M, that is (ii) The homeomorphism  satisfy the following compatibility 

conditions: the maps 
 

(  ) (  )  

open subset in  must be a class of  

 

III. FUNCTIONS OF MANIFOLDS 

3.1 Pull back Function: Let be a smooth map where  is an n-dimensional smooth 

manifold and is a function on , a p-dimensional smooth manifold, then the pull back (or reciprocal image) 

of the function  under the map  is a function on X is    

                                                 
Example: Let M and N be a smooth manifold and 

                f :  is a smooth map 

                       

                  ↦ f (  = . 

Let  be a set of smooth functions at ,  be a set of smooth functions at the image points, then the map 

 f :  implied by 
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                      ↦  

 

3.2 Push Forward Function: Let M and N be two smooth manifolds and the map :  induces a push 

forward map  

                   : ↔     for all . 

                                         

                                 ) 

defined by  

 )  =    , where  be a set of smooth function at . 

3.3 Immersion and embedding: Let f : M→ N be smooth map and let dim M ≤ dim N. 

(a) The map f is called an immersion of M into N if f *: → N is an injection (one to one),that is rank 

f * = dim M. 

 

(b) The map f is called an embedding if f is an injection and an immersion. The image f (M) is called a sub 

manifold of N. [Here, f (M) thus defined is diffeomorphic to M.] 

If f is an immersion, f *maps M is isomorphically to an m-dimensional vector subspace of N since rank 

f* = dim M, we also find Ker f* = {0}. 

 
Fig 3.3 (a) An immersion which is not embedding. (b) An embedding and the submanifold . 

 

 If f is an embedding, M is diffeomorphic to f (M). Consider a map f: → from figure 1.8, It is an 

immersion since a one-dimensional tangent space of  is mapped by f* to a subspace of . The image f 

( ) is not a sub manifold of  since f is not an injection. Clearly, an embedding is an immersion although the 

converse is not necessarily true. Now it is clear that; if is embedded by f: →  then is  

diffeomorphic to f ( ). 

IV. VARIOUS TYPES OF MANIFOLDS 

4.1 Topological Manifold: A topological manifold M of dimension  is a topological space with  

(i) M is Housedorff, that is, for each pair ,  of M, there exist , such that  = .                                     

(ii) Each point p M possesses a neighborhood V homeomorphism to an open subset U of . 

(iii) M satisfies the second count ability axiom that is, M has a countable basis for its topology. 

 

 
Fig 4.1.1: The surface of a circle is a topological manifold (homeomorphism to . 
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Examples 

1 The sphere  = {(X, Y, Z) : = 11} with the subspace topology is a topological 

manifold. 

2 (The circle ) The circle  = {(x, y)  : = 1} with the subspace topology is a topological 

manifold of dimension1.Conditions (i) and (iii) are inherited from the ambient space. 

3 (The torus of revolution) the surface of revolution obtained by revolving   a circle around an axis that does 

not intersect it is a   topological   manifold of dimension 2. 

 

 

4.2 Riemannian Manifold 

 A Riemannian Manifold (M, ) is a real differentiable manifold M in which each tangent space is 

equipped with an inner product , a Riemannian metric which varies smoothly from point to point. It is a pair 

(M, ) with M a manifold and  a metric on M. 

 
Fig 4.2.1: Riemannian Manifold 

Examples 

4. Let M be a smooth manifold. A Riemannian metric  on M is a tensor field  :   

such that for each p ∈ M the restriction of  to ⊗ with  : ( , (X, Y) (p) 

is an inner product on the tangent space . The pair (M, ) is called a Riemannian manifold. 

4.3 Pseudo-Riemannian manifold 

 A pseudo-Riemannian manifold is a differentiable manifold equipped with a non-degenerate, smooth, 

symmetric metric tensor such a metric is called a pseudo-Riemannian metric and its values can be positive, 

negative or zero. The signature of a pseudo-Riemannian metric is (p, q), where both p and q are non-negative. 

 
Fig 4.3.1: Pseudo-Riemannian Manifold 

 

 Some basic theorems of Riemannian geometry can be generalized to the pseudo-Riemannian case. In 

particular, the fundamental theorem of Riemannian geometry is true of pseudo-Riemannian manifolds as well. 

This allows one to speak of the Levi-Civita connection on a pseudo-Riemannian manifold along with the 

associated curvature tensor. On the other hand, it is not true that every smooth manifold admits a pseudo-

Riemannian metric of a given signature; there are certain topological obstructions. Furthermore, a submanifold 

does not always inherit the structure of a pseudo-Riemannian manifold; for example, the metric tensor becomes 

zero on any light-like curve. The Clifton–Pohl torus provides an example of a pseudo-Riemannian manifold that 

is compact but not complete, a combination of properties that the Hopf–Rinow theorem disallows for 

Riemannian manifolds.  

 

4.4 Differentiable Manifold 

If M is an m-dimensional differentiable manifold, it satisfies the following: 

https://en.wikipedia.org/wiki/Differentiable_manifold
https://en.wikipedia.org/wiki/Metric_tensor
https://en.wikipedia.org/wiki/Fundamental_theorem_of_Riemannian_geometry
https://en.wikipedia.org/wiki/Levi-Civita_connection
https://en.wikipedia.org/wiki/Riemann_curvature_tensor
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Submanifold
https://en.wikipedia.org/wiki/Minkowski_space#Causal_structure
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Clifton%E2%80%93Pohl_torus
https://en.wikipedia.org/wiki/Hopf%E2%80%93Rinow_theorem
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(i)  is a topological space; 

(ii)  is provided with a family of pairs {( , )}; 

(iii)  } is a family of open sets which covers M, that is = M   is a   Homeomorphism from   onto 

an open subset  of   . 

 

Fig 4.4.1: A homeomorphism  maps onto an open subset . 

 

 The pair ( ) is called a chart while the whole family {( , )} is called an atlas. The subset is 

called the coordinate neighborhood while is the coordinate function or, simply, the coordinate. The 

homeomorphism  is represented by  functions { …, )}.From (ii) and (iii), M is locally 

Euclidean. In each coordinate neighborhood M looks like an open subset of whose element is 

{ …, }. 

Example 

6. We are living on the earth whose surface is , which does not look ……, like globally. 

However, it looks like an open subset of locally. 

4.5 Smooth Manifold 

A topological manifold M, together with an equivalent class of   atlases is called a structure on M and M 

is called manifold. If k =  then  is said to be a smooth manifold. 

Example 

7. Let be an -dimensional smooth manifold and be an -dimensional smooth manifold, then f : 

 be a map. The map is called smooth at a point   if   is smooth at 

where (U, ) be the coordinate chart at  and (V, ) be the coordinate chart at  

.Such that :  and     .The mapping is    : 

  . 

 

V. CONNECTION 

 A connection which should be thought of as a directional derivative for vector fields. Loosely speaking, 

this structure by itself is different only for developing analysis on the manifold, while doing geometry requires 

in addition some way to relate the tangent spaces at different points, i.e. a notion of parallel transport. A 

connection which should be thought of as a directional derivative for vector fields. The apparatus of vector 

bundles, principal bundles and connections on them plays an extraordinary important role in the modern 

differential geometry. 

 

5.1 Definition: A connection on TM is a bilinear map  (ξ, X)  X 

 such that    ξ  X, Y  and . 

 Hence the three conditions are as follows: 

1.  X  

2.  = (ξ )  X. 

3.  Y = . 
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which also defined by (M)-linear in X and -linear in Y and satisfies the product rule 

(f Y) = (Xf) Y + f   for all (M). 

Consider the following two desirable properties for a connection  on (M, ): 

1. is metric: (Y, Z) =  ( Y, Z) +  (Y, Z). 

2. is torsion free Y - X = [X, Y].          

 

5.2 Connection Co-efficient 

 Take a chart ( , ) with the coordinate X = ) on M, and the functions is called the connection 

coefficients by, ≡ = Where {  = { is the coordinate basis in M. The 

connection coefficients specify how the basis vectors change from point to point. Once the action of on the 

basis vectors is defined, we can calculate the action of n any vectors. Let V = and W =  be 

elements of  (M). Then W =  ) = [ ] +   )=  (   +  

)  the connection coefficient is in agreement with the previous heuristic result of covariant derivative. 

 

5.3 Affine connection 

Let M be a smooth manifold of dimension n, be the set of smooth function and Г(TM) be the vector space 

of vector field. An affine connection on  is a map, denoted by as 

      :  Г(TM)×Г(TM)→ Г(TM), 

                or, (X, Y) → Y 

 

such that,  

( + ) =  +  

Z= Y+ Y.                             

Y = f Y. 

                      4.     (f Y) = X [ f ] Y + f Y 

       where f (M) and X, Y, (TM) 

 

5.4 Torsion Free Connection 

 Let  be an affine connection on manifold M. Torsion T of the connection  is defined by, (X, Y) = 

Y - X – [X, Y] For all X, Y (TM). That is, T (f X, Y) = T (X, f Y) = f T (X, Y). 

If T=0, we call Torsion free connection or a symmetric connection. 

 

5.5 The Levi – Civita Connection 

 We introduce the Levi-Civita connection ∇ of a Riemannian manifold (M, ). This is the most 

important fact of the general notion of a connection in a smooth vector bundle. Let ( ) be a Riemannian 

manifold and let  be an affine connection on M. The covariant derivative of  with respect to  is a multi 

linear map. We say that is compatible with the Riemannian metric . 

if  : Г(TM)×Г(TM)×Г (TM) →  

(Z, X, Y) →  (X, Y) for all X, Y, Z (TM) 

and 

(X, Y) = Z  ( , Y) - ( X, Y) – (X, Y). 



American Journal of Engineering Research (AJER) 2018 
 

                                                                                                      
w w w . a j e r . o r g  

 

Page 212 

 

For all smooth vector fields X, Y and Z on M. The unique torsion-free affine connection on  which preserves 

the   Riemannian metric is known as the Levi - Civita connection on . 

 

VI. GENERAL THEOREMS AND FUNCTIONS OF MANIFOLDS 

Theorem 6.1(Cartan–Hadamard). Suppose M is a complete, connected Riemannian -manifold with all 

sectional curvatures less than or equal to zero. Then the universal covering space of M is diffeomorphic to   

 
 

Fig 6.1.1:  described an -dimensional manifold of . 

 

In Figure 6.1.1 we have drawn a portion of the manifold M. This M is the graph of a function :    

that is, M ={( }.  

When = 1,  is a curve; while if  

 = 2, then it is a surface. 

 

Theorem 6.2: Every manifold can be given a Riemannian metric. 

Proof: If  is a point in a Riemannian manifold (M, ), we define the length or norm of any tangent vector 

X M to be |  |: = . 

If two non- zero vectors X, Y  to be unique then there exists a value ],  

satisfying Cos   

Here X and Y are orthogonal if their angle is   

If (M, ) and are Riemannian manifolds, a diffeomorphism from M to  is called an isometry 

if  = . An isometric  ( ) is an isometry of M. A composition of isometries and the 

inverse of an isometry are again isometries, so it is a group. 

If ( , ) is any local frame for TM and (  in its dual coframe a Riemannian metric can 

be written locally as      

  =                                              (1)                                                             

where is symmetric in  , j depends on p M , in particular in a coordinate frame,  has 

the form                           

 =                                             (2)                                                      

By introducing the two terms of the symmetry of equation (1) and (2) on   , we get  

 = is a Riemannian metric. 

This completes the proof.                                 □                                                                                                                                                                                         

 

Theorem 6.3: Let ( , ) be a Riemannian manifold then there exists a unique torsion-free affine 

connection on M compatible with the Riemannian Metric . This connection is characterized by the 

identity
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For all smooth vector fields X, Y and Z on M. 

Proof: Given smooth vector fields X, Y and Z on M, let A (X, Y, Z) be the smooth function on M defined by, 

 

 
Then  for all smooth vector fields X, Y,  and  

on M. Using this identities  

 

here A (X, Y, f Z) = f A (X, Y, Z) for all smooth real valued functions f and vector fields X, Y and Z on M. On 

applying Lemma to the transformation Z  A (X, Y, Z), we see that there is a unique vector field Y on M 

with the property that A (X, Y, Z) = ( Y, Z) for all smooth vector fields X, Y and Z on .  

Moreover Y = Y +  Y,   ( )       =  +  

after calculations, we show that 

 ( Y, Z) = A (f X, Y, Z) = f A (X, Y, Z) 

 = (f Y, Z), 

 (  (fY), Z) = A (X, f Y, Z) = f A (X, Y, Z) + X[f] (Y, Z) 

= (f Y + X[f] Y, Z) 

for all smooth real-valued functions for M, so that 

 Y = f  Y, and Y) = f Y + X [f] Y 

these properties show that  is indeed an affine connection on .  

Moreover 

A (X, Y, Z) – A (Y, X, Z) = ([X, Y], Z), 

 so that Y − X = [X, Y].  

Thus, the affine connection  is torsion-free. Also 

( Z) + (Y, Z) = A (X, Y, Z) + A (X, Z, Y) = X [  (Y, Z)] 

showing that, the affine connection preserves the Riemannian metric. Finally suppose that is any torsion-

free affine connection on which preserves the Riemannian metric. Then 

X [ (Y, Z)] = ( Y, Z) + (Y, ), 

Y [ (X, Z)] = ( X, Z) + (X,  Z), 

Z [  (X, Y)] = ( X, Y) + (X, Y). 

After calculation (using the fact that   is torsion-free) shows that A (X, Y, Z) = ( Y, Z).  

Therefore Y = Y for all smooth vector fields  and  on  . 

This completes the proof of the theorem.                        □ 

                                                                                         

 

Theorem 6.4: There is a unique torsion-free metric connection on any Riemannian manifold. 

Proof: Assume that  is metric and torsion-free. Then 

              ( Y, Z) =  (Y, Z) -  (Y, Z) 

                  = (Y, Z) – (Y, [X, Z]) - (Y,  X)  

                                           

=  
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eventually by adding these relations we get 

          

 
This formula shows uniqueness and moreover, defines the desired connection.                         □   

Theorem 6.5: For all affine connection  and its curvature  is a tenser of rank (1, 3). 

 

Proof: To show  is a tenser of rank (1, 3), we have to show that 

 

      And    OM 

 

Now by the definition, we get 

 
=  

                                                                                                     

  

 [Since ,      

=  )  =  

 

Again we have, 

Since   

  

                        =   

                         =  

And finally 

   

=  )   )   

=        

  

                        [  

  ] 

 

 

=  ) 

     =   

  Here  is a tenser of rank (1, 3)                   □                                                                                      

                                 

Theorem 6.6:  Let ( be a Riemannian manifold. Then the Levi-Civita connection ∇ is a connection 

on the tangent bundle TM of M. 

Proof: It follows from the fact that is a tensor field that 

( + ), Z) 
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 = λ · ( , Z) + μ · ( , Z) and   

 , Z) = ( , Z) + , Z) 

 

for all   λ, μ ∈  and X, , Z ∈  (TM).  

 Furthermore, we have for all f ∈ (M) 

 

    2 ( f Y, Z) = {X (f · Y, Z)) + f · Y ( (X, Z)) −Z (f · (X, Y)) + ) + 

  

 

=  

 

 

 

 

             
And 

 

   2· (  ,Z)   = {f · X (  

 

                                  

 

 
                                   =   

   So,   is a connection on the tangent bundle on TM of M.                                                  □   

                                          

Theorem 6.7:  Let (M, ) be a Riemannian manifold. Then the Levi- Civita connection is the unique 

metric and torsion-free connection on the tangent bundle ( , π). 

Proof: The difference ( ,Z) − ( ,Z) equals twice the skew-symmetric part with respect to the pair (X, 

Y) of the right-hand side of the equation in the map  

 

: (TM) × ( (TM)) → ( (TM) ) 

Given by              2 ) = { (  + Y ( − ( ( ))+  + 

(  + ( )}. 

is called the Levi - Civita connection on M. 

This is the same as 

 { ]) − )} = ) 

this proves that the Levi-Civita connection is torsion-free. 

The sum (  , Z) + ( , Y) equals twice the symmetric part (with respect to the pair  on the 

right-hand side of is compatible with the Riemannian metric . 

 

if  : Г(TM)×Г(TM)×Г (TM) →  

(Z, X, Y) →  (X, Y) for all X, Y, Z (TM) 

and 

(X, Y) = Z  ( , Y) - ( X, Y) – (X, Y). 
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. This is exactly 

  =  {  

This shows that the Levi-Civita connection is compatible  

with the Riemannian metric  on M.              □                                                                                                                           

 

Theorem 6.8: For all affine connection   and metric , then  is a tensor. 

 

Proof: We need to show that is a tensor, so that  

 =   

                                  =  

                                  =       for all X, Y, Z (TM). 

 

(a)  =    - , Y) - ) 

      =    - , Y) - ) 

     =  - , Y) - ) 

    =  - , Y) - )] 

    =  

(b)   =    - , Y) - ) 

     =    - , Y) - ) 

    =  - , X + f ) - ) 

    = f Z.  (X, Y) – Z (f (X, Y) –   f g ( , Y) - f  (X,  

   =  - , Y) - )] 

     =  

(c) =  

[Due to symmetry of ] 

                  =   [by  

                 = . 

               Hence, is a tensor.                 □ 

Theorem 6.9:  is a torsion free connection if and only if   = for all , ⅄. 

Proof: If  is a torsion free connection then for any v, ⅄ we get 

T ( - ] 

=  -  - 0 

                                                                -  )   

                                                               = 0 

Conversely, let   =  then 

( ) = Y - X – [ ] 

            =  - ] 

            =  -  - 0) 

            =  -  )  

             = 0   = ) 

Since,  0 so that  - or   = . 

Since T is a torsion tensor and T ( ) = 0 for all  

So,  is a torsion free Connection. 

This completes the proof                     □                                                                                                      

 

Theorem 6.10: For all its torsion tensor  is a tensor of rank (1, 2). 

Proof: We need to show that ( , Y) = (X,  =  , Y) for all   
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We know ( , Y) = Y - X – [X, Y]  

( , Y) = Y - X – [ X, Y] 

 

                                             = Y – (Y (f) X + X) – [ X, Y] 

 

                                             = Y – Y (f) X - X – [ X, Y] 

  

Take any  then 

 

[ X, Y  = X Y ( ) – Y ( X ( )) 

 

                                     = X Y ) – Y ( X ( ) – Y X ( ) 

 

                                    = (X Y ( ) – Y X ( )) - Y (f) .X ( ) 

 

                        = [X, Y] ( ) - Y (f) .X ( ) 

 

                            , Y] = [X, Y] - Y (f) .X  

 

( ,Y) = Y – Y (f) X -  X   – [ X, Y] + y (f) X 

 

= Y - X – [X, Y]) = ( , Y) 

 

Again, we know  

(  , Y) = - (Y, X) 

 

(  ,  Y) = - (  )  

 

                     =   - ( ) 

 

                    =   - (-) (   

         = ( ) 

 

So,   is a tensor of rank (1, 2)                       □                                                                        

 

Theorem 6.11: Let dim M = n. Then the dimension of tangent vector on manifold Txo M is also n. 

 

Proof: Let be a coordinate chart at xo in manifold M. Then any  be a smooth function at xo 

and it can be represented by smooth function of n-variables. 

  ( , ………..     

 

Now by using Taylor’s series at xo  

  ( , ………..    =   ( , ………..      

+    + …………..+ ………. 

Then for any tangent vector   =     + 

   + ………….. 

= 0 (derivative of any scalar) +  +   + …. 
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   =  

denote   , they are called coordinates of    in the chart . 

thus  and  ,  is represented in   as a linear combination. 

  =  

 =  

Conclusion: 

Any tangent vector   can be written as a linear combination of the partial derivatives in (i). 

In particular,  are the tangent vectors, we need to show that the set of vectors {  are linearly 

independent. 

We assume that + +…+ = 0 

For some scalars , , ………….  

Let us apply the L.H.S to a function     ,…,   

 

  +   + ………..+  

 

 
Similarly for    

  +   + ………..+  

 
 and   for   

Thus, any tangent vector is a linear combination of     ,    ,….,    and the tangent vectors     ,    

, ……..,   are linearly independent and that form a bans and contains exactly n vectors. 

Therefore dim  (T  , M) = n.                  □                                                      

                                                                                                                                                                                                                                                                                                                                  

VII. CONCLUSIONS: 

 Connections of manifolds are of central importance in modern geometry in large part because they 

allow a comparison between the local geometry at one point to another point. It is a well-known fact that, a 

Riemannian metric on a differentiable manifold induces a Riemannian metric on its submanifold and hence, a 

Riemannian connection on the manifold induces a Riemannian connection on its submanifold. From this paper 

we have come to know that an affine connection is typically given in the form of a covariant derivative, which 

gives a means for taking directional derivatives of vector fields: the infinitesimal transport of a vector field in a 

given direction. A general theorem of manifolds with connections is a great importance in the basic field of 

modern applied geometry. Generally the notion of a connection makes precise the idea of transporting data 

along a curve or family of curves in a parallel and consistent manner.  
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