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ABSTRACT 

Rayleigh waves are acoustic type of waves that are produced naturally through seismic events or artificially in 

labs. They are used in engineering to determine the shear wave velocity which helps predict soil and rock 

properties to sustain large structures. 

Consider a harmonic wave travelling along the x-axis with both longitudinal and shear components. If the 𝑥1, 

𝑥3 represents the ground while 𝑥2 represents the depth into the earth. The displacements 𝑢1, 𝑢2, and 𝑢3 are 

modeled as a wave propagating with a constant speed and with an amplitude that decreases exponentially from 

the ground surface. The ground surface is free and so the stress vector on the ground surface is 0. 

KEY WORDS: Rayleigh waves equations, shear wave velocity, poison ratio. 
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----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

The idea of using Rayleigh wave to determine the shear wave velocity in soils and the rock layers is to 

reduce the cost and get the work done quickly. This technique is cost-effective and very reliable. However, this 

method works very well when the ground is under natural condition. 

In 1885, Lord Rayleigh investigated earthquakes and modeled the study as a linearized problem of 

elasticity. In this paper, we will solve the Rayleigh wave equation in function of the Poisson ratio of the 

medium and study the properties of the roots in order to understand their behavior near the critical Poisson ratio. 

Section 2 is about the mathematics behind the Rayleigh waves equation. 

 

II. RAYLEIGH WAVES 

We recall the main ingredients used in geo-technical: stress and strain tensors, Lame parameters, Young 

modulus and Poisson ratio. Denote by ℝ3the Euclidean 3-dimensional space. A point in ℝ3will be denoted by 

𝑥 =  𝑥1 ,  𝑥2 ,  𝑥3 . 
 

STRESS AND STRAIN 

Hooke’s law for a spring: Force=(Stiffness)(Elongation) extends to most material and can be formulated as 

STRESS=E(STRAIN), where E is the Young modulus of elasticity. Stress measures average force per unit area 

(with units Pa), strain is a geometric measure of deformation, and the Young modulus characterizes the stiffness 

of the material. 

 

Stress tensor 

Stress is defined as the tension or pressure exerted on a material object. 

Stress tensor is the stress (force per unit area) at a point in D. The stress tensor can be written as 

𝜍 = (𝜍𝑖𝑗 ) 

The first index i specifies the direction in which the stress component acts, and the second index j identifies the 

orientation of the surface upon which it is acting.  𝜍𝑖𝑗  is the component in the j-th direction to a surface unit 

normal in the i-direction. 

 

 

 

Figure 1: Stress tensor 
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Strain tensor 

Strain is defined as the change in shape or size of a body due to deforming force applied on it. Strain tensor 

measures how much a given deformation differ from a rigid motion.  It is a dimensionless quantity. If 𝑦 = 𝐹(𝑥) 

is a deformation.  This can also be expressed as 

𝜀 = (𝜀𝑖𝑗 ). 

The Cartesian components of the strain tensor are given by 

𝜀𝑖𝑗 =
1

2
 
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
 , i=1,2,3, j=1,2,3 

u here represents the symmetric matrix. 

  Stress and strain are derived from the Hooke’s law. Using this law, we will have: 

𝜍 = 2𝜇𝜀 + 𝜆𝑇𝑟 𝜀 𝐼                                            (1) 

Where 𝑇𝑟  is the trace of 𝜀 and 𝐼 is the identity. This equation can also be expressed as: 

𝜍𝑖𝑗 = 2𝜇𝜀𝑖𝑗 + 𝜆  𝜀𝑘𝑘

3

𝑘=1

 𝛿𝑖𝑗 . 

𝜆 and 𝜇 are known as lame parameters .These properties of the soil ( 𝜆 𝑎𝑛𝑑 𝜇) are measure directly from the 

uniaxial test. 

 𝜆, 𝜇  Can be expressed in terms of the young modulus E and Poisson ratio ν. 

Young’s modulus (E) relates stress and strain. 

Itis the measure of the stiffness of an elastic material. It is defined as the ratio of stress to strain. This can be 

written as E=
σ

ε
 

𝐸 𝑕𝑒𝑟𝑒 is the constant of proportionality between stress and strain. This is one of the mechanical Properties 

of the soil.  

Poisson ratio (ν): Describes expansion or contraction of material in direction perpendicular to loading. It is also 

one of the properties of the soil. 

𝜈 =
transverse expansion

axial compression
 

𝜈 is dimensionless   and usually; 0 ≤ ν ≤ 0.5.  𝑇𝑕𝑒 Relation between  𝜆, 𝜇  𝑎𝑛𝑑  𝐸, 𝜈  . 
For a string-like object laid out along the x-direction of the coordinate system, Hooke’s law for isotropic and 

homogenous materials leads to proportionality between the tensions in x-direction, 

 

𝜍𝑥𝑥 = 𝑝                                                                      (2) 

And the strains it provokes in directions parallel and orthogonal to it. 

 

𝑈𝑥𝑥 =
𝑝

∈
,            𝑈𝑥𝑥 = 𝑈𝑧𝑧 = −𝑉

𝑝

∈
                        (3)  
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In an isotropic material, there are no internal directions defined which can be used to construct such a relation 

and this means that only tensors at our disposal are strain tensor,  𝜍𝑖𝑗 , itself and the kronecker delta, 𝛿𝑖𝑗 , 

multiplied with the trace  𝑈𝑘𝑘𝑘  which is the only scalar quantity that can be formed from a linear combination 

of strain tensor components. 

The most general linear tensor relation between stress and train in an isotropic material therefore becomes, 

𝜍𝑖𝑗 = 2𝜇𝑈𝑖𝑗 + 𝜆𝛿𝑖𝑗  𝑈𝑘𝑘
𝑘

 

Explicitly, we find for the diagonal elements of the stress tensor; 

𝜍𝑥𝑥 =  2𝜇 + 𝜆 𝑈𝑥𝑥 + 𝜆 𝑈𝑦𝑦 + 𝑈𝑧𝑧  

𝜍𝑦𝑦 =  2𝜇 + 𝜆 𝑈𝑦𝑦 + 𝜆 𝑈𝑧𝑧 + 𝑈𝑥𝑥   

𝜍𝑧𝑧 =  2𝜇 + 𝜆 𝑈𝑧𝑧 + 𝜆 𝑈𝑥𝑥 + 𝑈𝑦𝑦  (4) 

And for the off-diagonal elements, 

𝜍𝑥𝑦 = 𝜍𝑦𝑥 = 2𝜇𝑈𝑥𝑦  

𝜍𝑦𝑧 = 𝜍𝑧𝑦 = 2𝜇𝑈𝑦𝑧  

𝜍𝑧𝑥 = 𝜍𝑥𝑧 = 2𝜇𝑈𝑧𝑥  
 

Since Hooke’s law and Cauchy’s strain are both linear relationships, successive deformations may simply be 

added together. 

The relationship between Young’s modulus, Poisson’s ratio and lame’ coefficients are obtained from  

𝐸𝑞. 1, 𝐸𝑞. 2 and𝐸𝑞. 3 

𝑝 =  2𝜇 + 𝜆 
𝑝

∈
− 2𝜆𝑉

𝑝

∈
 

0 = − 2𝜇 + 𝜆 𝑉
𝑝

∈
+ 𝜆 −𝑉 + 1 

𝑝

∈
 

Solving for ∈ and 𝑉, we obtain, 

∈=
𝜇 3𝜆 + 2𝜇 

𝜆 + 𝜇
 

and 

𝑉 =
𝜆

2 𝜆 + 𝜇 
 

Conversely, we may express the lame’ coefficients in terms of young’s modulus and Poisson’s ratio. 

𝜆 =
∈ 𝑉

 1 − 2𝑉  1 + 𝑉 
 

and 

𝜇 =
∈

2 1 + 𝑉 
 

 

Equations of Motion 

Let 𝑢(𝑥, 𝑡) be the displacement of x at time t.  

𝑢 =  𝑢1, 𝑢2, 𝑢3 
𝑇  

Using Newton’s second law of motion, we will have: 

𝜌
𝜕2𝑢𝑗

𝜕𝑡2 − ∇𝜍𝑗 = 0   ,                                       (5) 

Or 

𝜌
𝜕2𝑢𝑗

𝜕𝑡2
− 

𝜕𝜍𝑗𝑘

𝜕𝑥𝑘

3

𝑘=1

= 0  ,  

𝑤𝑕𝑒𝑟𝑒    𝑗 = 1, 2, 3.  𝜌 𝑕𝑒𝑟𝑒 is the density of the body.The strain tensor isobtained from Hooke’s law; It 

follows from 

𝜍 = 2𝜇𝜀 + 𝜆𝑇𝑟 𝜀 𝐼 .    (6) 

I here represent the identity matrix. We can replace 𝜀  in equation (6). By substitution, we will have:  

𝜍𝑖𝑗 = 𝜆  
𝜕𝑢𝑘
𝜕𝑥𝑘

3

𝑘=1

 𝛿𝑖𝑗 + 𝜇  
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
  

Or  

𝜍𝑖𝑗 = 𝜆 ∇ ∙ 𝑢 𝛿𝑖𝑗 + 𝜇  
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
                             (7) 

By taking the second partial derivative of equation (7), we will have: 
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𝜕𝜍𝑗

𝜕𝑥𝑗

3

𝑗=1

= 𝜆  
𝜕 ∇ ∙ 𝑢 𝜍𝑖𝑗

𝜕𝑥𝑗
 

3

𝑗=1

+ 𝜇  
𝜕2𝑢𝑖
𝜕𝑥2

𝑗

+
𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
 

3

𝑗=1

 

or 

 
𝜕𝜍 𝑖𝑗

𝜕𝑥𝑗

3
𝑗=1 = 𝜆

𝜕 ∇∙𝑢 

𝜕𝑥𝑖
+ 𝜇  ∇2𝑢𝑖 +

𝜕 ∇∙𝑢 

𝜕𝑥𝑖
 (8) 

By using Newton’s second law of motion, that is, 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 −  
𝜕𝜍𝑖𝑗

𝜕𝑥𝑗

3
𝑗=1 = 0, 

We will have; 

𝜌
𝜕2𝑢𝑖
𝜕𝑡2

−  𝜆 + 𝜇 
𝜕 ∇ ∙ 𝑢 

𝜕𝑥𝑖
−𝜇∇2𝑢𝑖 = 0 

Clearly; 

𝜌
𝜕2𝑢

𝜕𝑡2 −  𝜆 + 𝜇  ∇ ∇ ∙ 𝑢 − 𝜇∇2𝑢 = 0                     (9) 

The above equation is Naiver equation for an elastic body.  

 

Helmholtz decomposition 

This theorem states that, “any sufficiently smooth, rapidly decaying vector field in three dimensions 

can be resolved into the sum of an irrotational (curl -free) vector field and a solenoidal (divergence -free) vector 

field”.  

We can use the Helmholtz decomposition to split the vector field u into a sum of an irrotational (curl-free) 

vector field 𝑢𝐿 and a solenoidal (divergence -free) vector field𝑢𝑆. 

𝑢 = 𝑢𝐿 + 𝑢𝑆       (10) 

Infinitesimal Brief Proof based on distributions  

Let 𝛿 𝑥 − 𝑦  be the Dirac-Delta function at in 𝑥 ∈ ℝ3. We have, 

 

𝛿 𝑥 − 𝑦 =
−1

4𝜋
∇2  

1

 𝑥 − 𝑦 
  

and 
 

𝑉 𝑥 =  𝐹 𝑦 , 𝛿(𝑥 − 𝑦    
 

=
−1

4𝜋
𝛻2  𝐹 𝑦 ,

1

 𝑥 − 𝑦 
  

 

Now use the identity: for any vector field 𝑤 𝑥 , we have, 

𝛻2𝑤 = ∇ ∇ ∙ 𝑤 − ∇ ×  ∇ × 𝑤  
So that, 

𝑉 𝑥 = 𝐴 𝑥 + 𝐵(𝑥) 

With, 

𝐴 𝑥 =
−1

4𝜋
∇  ∇ ∙  𝐹 𝑦 ,

1

 𝑥 − 𝑦 
   

 

𝐵 𝑥 =
−1

4𝜋
∇ ×  ∇ ×  𝐹 𝑦 ,

1

 𝑥 − 𝑦 
   

 

A is curl-free since the curl of a solenoidal is always 0.  B is divergence-free since the divergence of a curl is 

always 0. 

 

with 

 
∇ × 𝑢𝐿 = 0      
∇. 𝑢𝑆 = 0

 (11) 

∇ × 𝑢𝐿 = 0 

is the (curl-free condition). 

𝑢𝐿 is the longitudinal motion which gives the primary wave and 𝑢𝑆 is the shear motion which gives the shear 

wave. 

It follows from   (9) ,(11) and  𝑢𝐿 , 𝑢𝑆 = 0 at infinity that gives these equations: 
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𝜌
𝜕2𝑢𝐿
𝜕𝑡2

−  𝜆 + 2𝜇 ∇2𝑢𝐿 = 0 

𝜌
𝜕2𝑢𝑆
𝜕𝑡2

− 𝜇∇2𝑢𝑆 = 0 

Let  

𝐶𝐿 =  
𝜆 + 2𝜇

𝜌
 

 𝑎𝑛𝑑 

𝐶𝑆 =  
𝜇

𝜌
 

So that,  

𝜕2𝑢𝐿
𝜕𝑡2

− 𝐶2
𝐿∇

2𝑢𝐿 = 0       

and 
𝜕2𝑢𝑆

𝜕𝑡2 − 𝐶
2
𝑆∇

2𝑢𝑆 = 0           (12) 

𝐶𝐿  𝑎𝑛𝑑 𝐶𝑆 are the waves speed. 𝜇 here representsthe shear modulus of the soil that can be obtained from the 

direct shear test. 

Since  𝐶𝐿 =  
𝜆+2𝜇

𝜌
 

 𝑎𝑛𝑑 

𝐶𝑆 =  
𝜇

𝜌
 

We can make the substitution in 𝐶𝐿 and 𝐶𝑆. Making this substitution, we will have: 

 

𝐶𝐿 =  
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
,     𝐶𝑆 =  

𝐸

2𝜌(1 + 𝜈)
 

The ratio of two speed is denoted by k; 𝑘 =
𝐶𝐿

𝐶𝑆
. The ratio of the two speed (k) can also be expressed as: 

𝑘 =  
𝜆 + 2𝜇

𝜇
 =  

2(1 − 𝜈)

1 + 2𝜈
                  0 ≤ ν ≤ 0.5 

v here represents the poison’s ratio. It is a soil parameter. It is worth mentioning that, 

𝑘 > 1,  . 
 

𝑡𝑕𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡𝑕𝑎𝑡 𝑡𝑕𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡𝑕𝑎𝑛 𝑡𝑕𝑒 𝑠𝑕𝑒𝑎𝑟 𝑠𝑝𝑒𝑒𝑑 

 

HARMONIC WAVES 

A harmonic wave is a wave with a frequency that is a positive integer multiple of the frequency of the 

original wave, known as the fundamental frequency. 

 Suppose that the longitudinal wave   𝑢𝐿is harmonic wave propagating in the 𝑥1 ,  𝑥2 plane in the direction of 

vector 

 

𝑛  =  
cos ∝
sin ∝

0
  

 

 

Set 

𝑥  =  
𝑥1

𝑥2

0
  

We will have; 

 𝑢𝐿 𝑥, 𝑡 =  𝑢𝐿 𝑛   𝑒
𝑖𝑘𝐿 𝑛  ∙𝑥 − 𝐶𝐿𝑡 =  𝑚𝐿 𝑛  𝑒

𝑖 𝑘𝐿  𝑛    ∙𝑥 −𝑤𝑡   

where 
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 𝑚𝐿: 𝑖𝑠 𝑡𝑕𝑒 complex amplitude 

𝑘𝐿: 𝑖𝑠 𝑡𝑕𝑒 wave number, 

𝑤 = 𝑘𝐿𝐶𝐿is the frequency 

𝐶𝐿: 𝑖𝑠 𝑡𝑕𝑒 wave speed 

 

𝑘𝐿     = 𝑘𝐿 𝑛  :  is the wave vector 

 

 

 

The shear harmonic wave 𝑢𝑆(𝑥, 𝑡) has two components. They are; 

(a) Horizontal component, that is the component along the vector 

 

𝑧   =  
0
0
1
  

 

and (b)Vertical component, which is the component along the vector 

𝑧  × 𝑛   =  
− sin ∝
cos ∝

0
  

So, the shear harmonic wave 

𝑢𝑆 𝑥, 𝑡 = 𝑀𝑉 𝑧  × 𝑛   𝑒𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆 𝑡 + 𝑀𝐻 𝑧  𝑒
𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆𝑡 (13) 

where 𝑀𝑉  𝑎𝑛𝑑 𝑀𝐻are the complex wave amplitudes  𝐶𝑆is the wave speed; 

𝐶 𝑆
=
𝑤

𝑘𝑆
   𝑤𝑕𝑒𝑟𝑒 𝑤 𝑕𝑒𝑟𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 the frequency . 

 

We can verify that 𝑢𝑆 𝑥, 𝑡  is divergence free. 

Here, the divergence is only with respect to the space variables in the X vector. 

 

𝑢𝑆 𝑥, 𝑡 =𝑧  × 𝑛   . 𝑒𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆𝑡 +𝑀𝐻 .  𝑧  . 𝑒𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆 𝑡  

𝑥 = (x1, x2,. xn),𝑛  = (n1, n2…nN) 
𝜕𝑘𝑆

𝜕𝑥𝑖
 =  𝑀𝑉 . (𝑧  × 𝑛   ). 𝑖𝑘𝑆 .𝑛𝑖 .𝑒

𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆 𝑡 +𝑀𝐻 .𝑧  . 𝑖𝑘𝑆.𝑛𝑖 .𝑒
𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆 𝑡  

Divergence (𝑢𝑆) 

=  
𝜕𝑈𝑆

𝜕𝑥𝑖

𝑁
𝑗=1 = [ 

𝑛

𝑖=1
𝑀𝑉 . (𝑧  × 𝑛   ). 𝑖𝑘𝑆.𝑛𝑖]. 𝑒

𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆 𝑡  

=[ 𝑖. 𝑘𝑆 .𝑀𝑉[𝑧   × 𝑛   ).𝑛   ]+𝑀𝐻 . 𝑖. 𝑘𝑆  (𝑧  .𝑛   )].𝑒𝑖𝑘𝑆 𝑛   ∙𝑥 − 𝐶𝑆 𝑡  

(𝑧  ×  𝑛   ).  𝑛  = 0,𝑧  .𝑛   =0 

=0. 

This can be seen that the divergence is 0. This means that  𝑢𝑆 𝑥, 𝑡  is divergence free. 

 Consider 𝑢 as a vector  

𝑢 𝑥, 𝑡 = 𝑢𝐿 𝑥, 𝑡 + 𝑢𝑆 𝑥, 𝑡 =  

𝑢1

𝑢2

𝑢3

  

 These vectors have components 

 

𝑢1 𝑥, 𝑡 =  𝑢𝐿 cos ∝ 𝑒𝑖𝑘𝑆 𝑛   ∙𝑥  − 𝐶𝐿𝑡 −  𝑢𝑣 sin ∝ 𝑒𝑖𝑘𝑆 𝑛   ∙𝑥  − 𝐶𝑆 𝑡  

𝑢2 𝑥, 𝑡 =  𝑢𝐿 sin ∝ 𝑒𝑖𝑘𝐿 𝑛  ∙𝑥 − 𝐶𝐿𝑡 +  𝑚𝑣 cos ∝ 𝑒𝑖𝑘𝑆  𝑛  ∙𝑥 − 𝐶𝑆 𝑡  

𝑢3 𝑥, 𝑡 = 𝑢𝐻 𝑧  𝑒
𝑖𝑘𝑆  𝑛  ∙𝑥 − 𝐶𝑆𝑡  

 

It is worth mentioning that 𝑢3 is decoupled and consists only of the shear horizontal wave. 

 

RAYLEIGH WAVES  

The ground is at 𝑥2 = 0, and 𝑥2 ≤ 0. 

The wave propagates on the earth when  𝑥2 ≤ 0.  

𝑢 𝑥1, 𝑥2 , 𝑡 = 𝑢𝐿 𝑥1, 𝑥2 , 𝑡 + 𝑢𝑆 𝑥1 , 𝑥2 , 𝑡  

=  𝐿 𝑥2 + 𝑆 𝑥2  𝑒
𝑖 𝑘𝑥1−𝑤𝑡   

Where; 𝐿 𝑥2  𝑎𝑛𝑑 𝑆 𝑥2 are vector-valued functions. Since 𝑢𝐿 and 𝑢𝑆 satisfy the wave equations;  
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𝜕2𝑢𝐿
𝜕𝑡2

− 𝐶2
𝐿∇

2𝑢𝐿 = 0 

and  

𝜕2𝑢𝑆
𝜕𝑡2

− 𝐶2
𝑆∇

2𝑢𝑆 = 0 

It follows from (9). Then L(x2) and S(x2) satisfy the equations  

𝐿" +  
𝑤2

𝐶2
𝐿

− 𝑘2 𝐿 = 0 

and 

𝑆" +  
𝑤2

𝐶2
𝑆

− 𝑘2 𝑆 = 0 

The amplitude deceases, therefore, 

 
𝑤2

𝐶2
𝐿

− 𝑘2 < 0 

and 

 
𝑤2

𝐶2
𝑆

− 𝑘2 < 0,  

set   
𝑤2

𝐶2
𝐿

− 𝑘2 = −𝑘𝐿
2
 

 𝑎𝑛𝑑 
𝑤2

𝐶2
𝑆
− 𝑘2 = −k

2
s 

𝑘𝐿 > 0, 𝑘𝑆>0. Making the substitution we will have: 

𝐿" − 𝑘2
𝐿  𝐿 = 0 and 𝑆" − 𝑘2

𝑠𝑆 = 0(14) 

solving this second order differential equations with constant coefficients, we will have: 

𝐿 𝑥2 = 𝑀𝑒𝑘𝐿𝑥2 + 𝑁𝑒−𝑘𝐿𝑥2  

𝑆 𝑥2 = 𝑃𝑒𝑘𝑆𝑥2 + 𝑄𝑒−𝑘𝑆𝑥2  

Since 𝑢 → 0 𝑎𝑛𝑑 𝑥2 → −∞ 𝑡𝑕𝑒𝑛, 𝑁 = 𝑄 = 0.  

𝐿 𝑥2 = 𝑀𝒆𝒌𝑳𝒙𝟐 , 𝑆 𝑥2 = 𝑃𝒆𝒌𝑺𝒙𝟐  𝑤𝑖𝑡𝑕 𝑁, 𝑃 ∈ ℝ3 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

It follows that; 

𝑢 𝑥1, 𝑥2 , 𝑡 =  𝑀𝑒𝑘𝐿𝑥2 + 𝑃𝑒𝑘𝑆𝑥2 𝑒𝑖 𝑘𝑥1−𝑤𝑡  (15) 

 

Note that since 𝑒𝑘𝐿𝑥2  𝑎𝑛𝑑 𝑒𝑘𝑆𝑥2  𝑎𝑝𝑝𝑟𝑜𝑎𝑐𝑕𝑒𝑠 0 𝑎𝑠 𝑥2  𝑎𝑝𝑝𝑟𝑜𝑎𝑐𝑕𝑒𝑠 −∞, then the wave will be only felt on the 

surface 𝑥2near boundary𝑥2 = 0. 

The longitudinal component 𝑀𝑒𝑘𝐿𝑥2𝑒𝑖 𝑘𝑥1−𝑤𝑡   must be curl-free and 𝑃𝑒𝑘𝑆𝑥2𝑒𝑖 𝑘𝑥1−𝑤𝑡   must be divergence-free. 

So, 

∇𝑥  𝑀𝒆𝒌𝑳𝒙𝟐𝒆𝒊 𝒌𝒙𝟏−𝒘𝒕  = 0  

 𝑎𝑛𝑑  

∇ ∙  𝑃𝒆𝒌𝑺𝒙𝟐𝒆𝒊 𝒌𝒙𝟏−𝒘𝒕  = 0 

If  

𝑀 =  

𝑀1

𝑀2

𝑀3

  

𝑎𝑛𝑑  

𝑃 =  

𝑃1

𝑃2

𝑃3

  

Then; the curl − free condition implies;  𝑀3𝑘𝐿 = 0,𝑀3𝑖𝑘 = 0, 𝑖𝑘𝑀2 − 𝑘𝐿𝑀1 = 0 

So,  

𝑀3 = 0, and 𝑀2 =
𝑘𝐿
𝑖𝑘
𝑀1 

 

The divergence − free condition gives;  𝑖𝑘𝑃1 + 𝑘𝑆𝑃2 = 0 ,  we can solve for  𝑃2 

𝑃2 = −
𝑖𝑘

𝑘𝑆
𝑃1  𝑠𝑖𝑛𝑐𝑒 𝑢 ≡ 0 𝑓𝑜𝑟 𝑡 → ∞, 𝑡𝑕𝑒𝑛 𝑃3 = 0 
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We have then; 

𝑢 𝑥1 , 𝑥2 , 𝑡 =   

𝑀1

𝑘𝐿
𝑖𝑘
𝑀1

0

 𝑒𝑘𝐿𝑥2 + 

𝑃1

−
𝑖𝑘

𝑘𝑆
𝑃1

0

 𝑒𝑘𝑆𝑥2 𝑒𝑖 𝑘𝑥1−𝑤𝑡   

 

Set 𝑎 = 𝑀1  𝑎𝑛𝑑 𝑏 = 𝑃1. This gives: 

 

𝑢 𝑥1 , 𝑥2, 𝑡 =   

1
𝑘𝐿
𝑖𝑘
0

 𝑎𝑒𝑘𝐿𝑥2 +  

1

−
𝑖𝑘

𝑘𝑆
0

 𝑏𝑒𝑘𝑆𝑥2 𝑒𝑖 𝑘𝑥1−𝑤𝑡   

Impose free boundary condition as 𝑥2 = 0. This means that there is no stress. 

 

 

𝜍12  𝑥2=0
= 0 ⇒ 

𝜕𝑢1

𝜕𝑥2

+
𝜕𝑢2

𝜕𝑥1

 𝑥2=0
= 0 

 

𝜍22  𝑥2=0
= 0 ⇒   𝜆 + 2𝜇  

𝜕𝑢1

𝜕𝑥
+
𝜕𝑢2

𝜕𝑥2

 − 2𝜇
𝜕𝑢1

𝜕𝑥1

  𝑥2=0
= 0 

 

The first condition implies that; 

 2𝑘𝐿𝑘𝑆 𝑎 =  𝑘2
𝑆 + 𝑘2 𝑏 = 0(16) 

The second condition gives;  

 𝜆 + 2𝜇  𝑖𝑘𝑎 + 𝑖𝑘𝑏 +
𝑘2

𝐿

𝑖𝑘
𝑎 − 𝑖𝑘𝑏 − 2𝜇 𝑖𝑘𝑎 + 𝑖𝑘𝑏 = 0(17) 

Let  

𝑘 =  
𝜆+2𝜇

𝜇
.  

Making the substitution, we will have: 

𝑘2 𝑘2
𝐿 + 𝑘2 𝑎 + 2𝑘2 𝑎 + 𝑏 = 0 

The system becomes: 

 2𝑘𝐿𝑘𝑆 𝑎 +  𝑘2
𝑠 + 𝑘2 𝑏 = 0 

𝑘2 𝑘2
𝐿 − 𝑘

2 𝑎 + 2𝑘2 𝑎 + 𝑏 = 0 
Since,   

𝑤2

𝐶2
𝐿

− 𝑘2 = −𝑘2
𝐿  ;   

𝑤2

𝐶2
𝑠

− 𝑘2 = −𝑘2
𝑠 , 𝑘 =

𝐶𝐿
𝐶𝑆

 

 

Then,   

𝑤2 = 𝑐𝐿
2 𝑘2 − 𝑘2

𝐿 ,    𝑤
2 = 𝐶2

𝑠 𝑘
2 − 𝑘2

𝑠 ,  𝑘2 =
𝑘2 − 𝑘2

𝑠

𝑘2 − 𝑘2
𝐿

 

Clearly, 

 2𝑘𝐿𝑘𝑆 𝑎 +  𝑘2
𝑠 + 𝑘2 𝑏 = 0 

 

 
𝑘2 − 𝑘2

𝑠

𝑘2 − 𝑘2
𝐿

 𝑘2
𝐿 − 𝑘

2 𝑎 + 2𝑘2𝑎 + 2𝑘2𝑏 = 0 

Multiply the above expression in the bracket by (𝑘2 − 𝑘2
𝐿). We now have: 

 

 2𝑘𝐿𝑘𝑆 𝑎 +  𝑘2
𝑠 + 𝑘2 𝑏 = 0 

 𝑕2 + 𝑘2
𝑠 𝑎 + 2𝑘2𝑏 = 0 

 

In order for the systems to have a nontrivial solution, the determinant “𝐷𝑒𝑡 = 0” 

 4𝑘2𝑘𝐿𝑘𝑆 −  𝑘
2 + 𝑘2

𝑠 
2 = 0 

 

Now, we can replace, 

𝑘𝐿
2 = 𝑘2 − 

𝑤2

𝐶2
𝐿

 𝑎𝑛𝑑  𝑘𝑆
2 = 𝑘2 −

𝑤2

𝐶2
𝑠

 

This gives, 
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4𝑘2 𝑘2 − 
𝑤2

𝐶2
𝐿
 𝑘2 −

𝑤2

𝐶2
𝑆
−  2𝑘2 −

𝑤2

𝐶2
𝑆
 

2

= 0                      (18) 

Squaring both side of the equation, we will have: 

16𝑘4  𝑘2 − 
𝑤2

𝐶2
𝐿

  𝑘2 −
𝑤2

𝐶2
𝑆

 −  2𝑘2 −
𝑤2

𝐶2
𝑆

 

4

= 0 

To simplify this expression further, let 

 𝑋 =
𝒘

𝑪𝑺𝒌
 

16𝑘8  1 − 
𝑤2

𝐶2
𝐿𝑘

2
  1 − 𝑋2 − 𝑘8 2 − 𝑋2 4 = 0 

 

Since 

𝑘 =
𝐶𝐿

𝐶𝑆
,

𝑤2

𝐶2
𝐿𝑘

2 =
𝐶2

𝑆

𝐶2
𝐿

,
𝑤2

𝐶2
𝑆𝑘

2 =
𝑋2

𝑘2  ,  

our new equation becomes: 

 

16 1 − 
𝑋2

𝑘2
  1 − 𝑋2 −  2 − 𝑋2 4 = 0 

The binomial expansion of the term 

 2 − 𝑋2 4 is 𝑋8 − 8𝑋6 + 24𝑋4 − 32𝑋2 + 16. 

For the term 

 1 − 
𝑋2

𝑘2  1 − 𝑋
2 ,  

we will have:  

1 − 𝑋2 − 
𝑋2

𝑘2 +
𝑋4

𝑘2 .  

 Now, our new equation becomes: 

16  1 − 𝑋2 − 
𝑋2

𝑘2
+
𝑋4

𝑘2
 −  𝑋8 − 8𝑋6 + 24𝑋4 − 32𝑋2 + 16 = 0 

By reducing the above equation, we will have: 

𝑋8 − 8𝑋6 + 8 3 −
2

𝑘2
 𝑋4 + 16  1 −

1

𝑘2
 𝑋2 = 0 

 

𝑋6 − 8𝑋4 + 8 3 −
2

𝑘2 𝑋
2 + 16  1 −

1

𝑘2 = 0.      (19) 

This is the Rayleigh wave equation. It is a 3
rd

 degree equation in 𝑋2.          

Since for a given material,  

𝑘 =  
2 1 − 𝑣 

1 − 2𝑣
=
𝐶𝐿
𝐶𝑆

 

depends on the properties of the materials. The roots of (18) implies the possible values of 

𝑋 =
𝑤

𝐶𝑆𝑘
. 

 

However, not all such roots are admissible. Since 

 
𝑤2

𝐶2
𝐿
− 𝑘2 = −𝐾2

𝐿 < 0,
𝑤2

𝐶2
𝑆

= −𝐾2
𝑆 < 0, 

 

this implies that,  

−𝐾2
𝐿 = 𝑋2 ∙ 𝐶2

𝑆𝑘
2/𝐶2

𝐿 − 𝑘
2 < 0 → 𝑋2/𝑘2 − 1 < 0 

 

 

−𝐾2
𝑆=𝑋2𝑘2-𝑘2< 0,  

this implies: 

𝑋2 − 1< 0 

That is,  

 𝑋 < 1, 𝑋 < 𝑘  
Since 
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𝐶𝐿 > 𝐶𝑆    ,     𝑘 > 1 
 

We need to prove that the cubic equation has a single solution in the interval (0, 1) for any ratio k.  

𝑌3 − 8𝑌2 + 8 3 −
2

𝑘2
 𝑌 + 16  1 −

1

𝑘2
 = 0 

Has only one solution in their interval  0, 1 .  We reached the following equation; 

      𝑌3 − 8𝑌2 + 8 3 −
2

𝑘2
 𝑌 − 16  1 −

1

𝑘2
 = 0 

 

We note that 𝑘 =
𝑪𝑳

𝑪𝑺
 is always > 1 since the longitudinal speed wave in > shear speed wave. 

We need to show that the Rayleigh waves equation derived above has a unique solution 𝑌 ∈  0, 1  for 

every  𝑘 ≥ 1 

 

Let the function f(y) equals the polynomial equation, that is, 

𝑓 𝑌 = 𝑌3 − 8𝑌2 + 8  3 −
2

𝑘2
 𝑌 − 16  1 −

1

𝑘2
  

𝑓 0 = −16  1 −
1

𝑘2
 < 0;   𝑓 1 = 1 − 8 + 24 −

16

𝑘2
− 16 +

16

𝑘2
= 1 > 0 

 

So, 𝑓 𝑌 = 0 has at least one solution in  0, 1 . We need to show that there are no others. 

 

𝑓 ′(𝑌) = 3 𝑌3 − 16𝑌 + 8  3 −
2

𝑘2
 ; 

The roots of 𝑓 ′ 𝑌 = 0 are; 

𝑌± =
8 ± 64 − 24  3 −

2

𝑘2 

3
=

8

3
±
 

48

𝑘2 − 8

3
 

𝑌± =
8

3
±
 8  

6

𝑘2 − 1 

3
 

If
6

𝑘2 − 1 < 0, 𝑖. 𝑒. 𝑘2 > 6, 𝑘 >  6 

 

then, 𝑓 ′ 𝑌  has no real roots, 𝑓 ′ 𝑌 > 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑦.  𝑓 is increasing.Equation 

𝑓 𝑌 = 0 has only one solution. 
 

Note that,   

𝑌+ =
8

3
+

 8 
6

𝑘2−1 

3
> 1,  

for every k, 

𝑘 ≤  6 

Consider two cases depending on whether 𝑌− < 1 or not. Where  

 

𝑌− =
8

3
−
 8  

6

𝑘2 − 1 

3
 

 

Case 1: 

𝑌− ≥ 1. This occurs if,  

 
48

33
< 𝑘 <  6  ;  1.21 < 𝑘 < 2.45 

Since 𝑓 ′ 𝑌 > 0 for  𝑌 < 𝑌−, then f is increasing at the interval (0, 1) ⊂ (0, 𝑌−) and so 𝑓 𝑌 = 0 has only root 

in (0, 1). 

 

Case 2: (Note that if 𝑘 > 1, then 𝑌− > 0) 
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Suppose 0 < 𝑌− < 1, the function f has a local maximum at 𝑌− and a local minimum at 𝑌+ with 0 < 𝑌− < 1 <
𝑌+ 

 

Since 𝑓 1 = 1, 𝑡𝑕𝑒𝑛 𝑓 𝑌− > 𝑓 1 = 1, then f is increasing  0, 𝑌−  and decreasing on   𝑌−, 1  
 

𝑓 𝑦 = 0  has a single solution on  0, 𝑌−  andno solution on   𝑌−, 1  
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