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ABSTRACT: The publication suggests how to significantly improve the spacecraft center of mass movement 

stabilization accuracy in the active phases of trajectory correction during interplanetary and transfer flights, 

which in some cases provides for high navigation accuracy, when rigid trajectory control method is used. The 

required stability conditions obtained are consistent with the known criteria in the invariant theory. 
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I. INTRODUCTION 

The thriving space technology is characterized by an increasing complexity of the tasks to be solved by 

modern space vehicles (SV). The efficiency in solution of such tasks significantly depends upon technical 

characteristics of the on-board systems ensuring the functioning of the spacecraft. In some cases, when using a 

control system built according to the principle of program control (the "robust trajectories" method) the 

efficiency of task solution is much influenced by the accuracy of the spacecraft stabilization system in the 

powered portion of flight. This concerns, for example, the trajectory correction phases during interplanetary and 

transfer flights, when the rated impulse execution errors during trajectory correction resulting from various 

disturbing influences on the spacecraft in the active phase, greatly affect the navigational accuracy. Hence, 

reduction of the cross error in the control impulse on the final correction phase during the interplanetary flight, 

facilitates almost proportional reduction of spacecraft miss in the "perspective plane". For example, in some 

space probes (SP) like Deep Impact [1], [2] and Rosetta missions [3], [4] reduction of cross error by one order 

during the execution of correction impulse (for modern stabilization systems this value shall be 5.0 )/ sm  results 

in reduction of spacecraft miss in the "perspective plane" from 200 to 20 .km  Such reduction of the miss  

accordingly increases a possibility of successful implementation of the flight plan, as well as the accuracy of the 

research and experiments conducted [5]. 

The Martian Moons Exploration (MMX) mission is scheduled to launch from the Tanegashima Space 

Center in September 2024. The spacecraft will arrive at Mars in August 2025 and spend the next three years 

exploring the two moons and the environment around Mars. During this time, MMX will drop to the surface of 

one of the moons and collect a sample to bring back to Earth. Probe and sample should return to earth in the 

summer 2029 [6]. 

Besides improvement of the navigational accuracy, reduction of spacecraft stabilization cross errors in 

the active phase, it also results in lower total characteristic velocity of corrective impulses, and, consequently, in 

reduction of fuel required for the correction. So, when the correction speed impulse reaches 30 sm /  reduction 

of gross error during the correction maneuver results in proportional reduction of the required characteristic 

velocity during the next correction. The data referred to in [7], [8] show that improved accuracy of roll 

stabilization in the active phase by one order results in reduction of total characteristic correction velocity for 

Mars interplanetary probe (Mars-96, Russian Federation) from about 20 to 2 ,/ sm  which corresponds to fuel 

savings approximately by 30 kg , or to increase of the payload mass by 4 %.  Due to the relatively small weight 

of modern scientific instruments (about 3-8 kg ), even such seemingly small increase of payload weight can 

significantly extend the program of research and experiments implemented by the spacecraft. 
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Objectives: to solve the task of significant increase in stabilization accuracy of center of mass tangential 

velocities during the trajectory correction phases when using the "rigid" trajectory control principle.  

Since the time of the active phase in correction maneuvers, which is to be determined by the required 

velocity impulse, shall not be clearly determined in advance, and quite limited, and because a guaranteed 

approach enabling to estimate the accuracy, is always used in practice for solving the targeting tasks, we shall 

understand the maximum dynamic error of the transition process as concerns the drift velocity of the spacecraft 

to mean the accuracy of the spacecraft center of mass movement stabilization [9]. 

Subject of research: The center of mass movement stabilization system in the transverse plane, which is used 

during the trajectory correction phases. 

 

II. STATEMENT OF THE PROBLEM 
In order the control actions could be created during the spacecraft trajectory correction phase, a high-

thrust service propulsion system with a tilting or moving in linear direction combustion chamber shall be used. 

Functioning of the spacecraft movement stabilization channel in the transverse plane is based on the 

feedback principle, and together with the spacecraft this channel forms a closed deviation control system. We 

can consider two channels in this control system: an angular stabilization channel and center of mass movement 

stabilization channel. 

The angular stabilization channel facilitates angular position of the spacecraft when exposed to 

disturbing moments. The center of mass movement stabilization channel is to ensure proximity to zero of 

normal y  and lateral z  velocities of the spacecraft under the influence of disturbing moments and forces. In 

most of the known (model) spacecraft stabilization systems [10],[11],[12] the control signal in the center of 

mass movement stabilization channel is generated according to proportional plus integral control law based on 

the measurements of tangential velocity of the center of mass )(zy   and its integral-linear drift ).(zy  In the  

angular stabilization channel, the control signal shall be generated in proportion to the spacecraft deviation angle 

in the transverse plane )(  and the angular velocity of the spacecraft rotation in this plane ).(   

Distance Improvement of control accuracy increases chances for successful implementation of the 

flight program. However, a significant reduction in the correcting impulse lateral error leads to reduction in fuel 

required for corrections, and thus increases the payload [5], [6].  

The publication addresses spacecraft which use high-thrust PS for correcting impulses and control at 

active phases. During the active phase, the spacecraft shall be exposed to disturbances caused mainly by 

working PS. These disturbances create components of the spacecraft center of mass velocity in the normal and 

lateral directions (the drift velocity), and the spacecraft center of mass stabilization system is to provide center 

of mass lateral drift velocities close to zero during active phases. Since the time of the active phase ,T  which is 

determined by specified velocity impulse is not known and quite limited during correction maneuvers [7], [8] 

and in view of the fact that a guaranteed approach evaluating accuracy is always used to solve a guidance task in 

practice, in this publication, we shall understand the maximum dynamic error of the transition process  maxmax zy   

with normal (lateral) drift velocity of the spacecraft  as the accuracy of spacecraft center of mass movement 

stabilization in transverse directions.  

Consequently, our purpose is to significantly increase stabilization accuracy of the spacecraft center of 

mass tangential velocities (reduction of the maximum dynamic error in the drift velocity of the spacecraft in the 

transition process). This shall be done by synthesis of highly accurate stabilization algorithms in the rigid 

trajectory control system on the trajectory correction phases outside the atmosphere when using high-thrust 

engines.   

The spacecraft center of mass movement stabilization system in the normal (lateral) plane applied in 

the trajectory correction phases shall be the subject of research. A high-thrust sustainer PS provided either with 

deviating or linearly moving combustion chamber shall be used in the correction phase to control motions of the 

spacecraft [5]. 

 

III. SYNTHESIS OF STABILIZATION ALGORITHMS 
We study motions of the spacecraft in the normal plane of the inertial coordinate system XOY  (Fig. 1) 

[5]. The center O  of the inertial coordinate system at the beginning of the active phase is the same as the center 

of mass of the spacecraft; the axis OX  coincides with the direction of the required correction impulse ,corV


  

axis OY  together with axis OX  form a normal plane. The angular position of the spacecraft in the normal plane 

is determined by an angle   between axis OX  of the inertial coordinate system and X- axis 
cc XO  of the bound 

coordinate system. Control of the spacecraft in the active phase shall be done by deflection of combustion 
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chamber of PS  at an angle   between X-axis 
cc XO  of the spacecraft and X-axis of the nozzle symmetry of PS 

[9]. 

 
Fig. 1. Spacecraft diagram in the inertial coordinate system 

 

The following assumptions and conditions were used in the process of synthesis of the stabilization 

algorithms [5]: 

1. We assume that the spacecraft is subject to disturbances in the active phase (force F  and moment 

),M  which are mainly caused by working PS (tilt and thrust misalignment). Because of their nature, these 

parameters shall slowly change in time throughout the active phase (except for the period from the start of PS 

till switching to the nominal operation mode ).2.0 s  For this reason, the disturbances may be considered 

permanent within the active phase with a reasonable degree of accuracy: .; constMconstF   We shall 

consider the work of the stabilization system within the entire possible range of disturbances: 

maxmax 0;0 MMFF   (experience shows that the maximum force and moment are respectively about 

0.3
0
 and 3.5

0
 in the equivalent deviation angles of PS).  

2. The motion of the spacecraft is considered as movement of the absolute rigid body in vacuum relative 

to the reference trajectory in the normal plane of the inertial coordinate system. 

3. A high-thrust chemical engine is used to control the spacecraft in the active phase. Control is provided 

by deflecting PS combustion chamber. The servo control, which deflects the combustion chamber, includes a 

feedback control actuator. 

To stabilize the angular position of the spacecraft we shall use the information about deviation of the 

spacecraft body-fixed axes from the axes of the inertial coordinate system implemented in the gyro stabilized 

platform (CST) on board the spacecraft and the angular velocity sensors (AVS). The information on the 

deviation of the tangential velocities shall be taken from the accelerometers installed on CSP. 

 

3.1. Mathematical Model 
Taking in consideration the above assumptions and suppositions we can set down a system of equations 

(1) describing the behavior of the spacecraft center of mass motion stabilization system under study: 















),( 









FBCMASCA

z

yyy

KyWWK

MC

FCCy






(1) 

where y  is the center of mass drift coordinate in the inertial coordinate system;  CCC yy ,,  are dynamic 

coefficients of the spacecraft; ,
m

P
CC yy  

 where P  is PS thrust, m  is mass of the spacecraft; 

,
zI

Pl
C 

 where l  is the distance from the gimbal assembly of PS to the center of mass of the spacecraft, 

zI  is momentum of inertia of the spacecraft relative to the axis 
cz0  of the bound coordinate system; CAK  is 

a velocity performance index of the control actuator; FBK  is a control actuator feedback index; ASW  is a 

response function of the angular stabilization controller; CMW  is a response function of the stabilization 

controller through the center of mass channel. 
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Fig. 2. Block diagram of the spacecraft center of mass motion stabilization system under study 

 

According to the above mathematical model, a block diagram of the stabilization system under study shall be as 

follows (Fig. 2) [5], [9]. 

In order to improve accuracy of stabilization while using synthesized algorithms, a model of a model of 

a standard stabilization system shall be made. It is to be used as a reference model for comparison. The standard 

stabilization model uses a known stabilization controller [13],[14],[15], which provides control proportionally to 

the angle ,  of the spacecraft angular rotation velocity in the normal plane ,  linear drift y  and the drift 

velocity .y  A block diagram of the standard stabilization system is shown in Fig. 3 [5], [9]. 

 

 
Fig. 3. Block diagram of a standard center of mass motion stabilization system of a spacecraft 
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3.2. Method to Solve an Invariant Problem 
As mentioned above, usage of methods of the invariant theory [16],[17],[18],[19],[20],[21],[22],[23] is 

seen as a way to improve the accuracy of the automatic regulation system. In the present case, it is not possible 

to synthesize the invariant stabilization system using the method of combined regulation, which is traditional for 

invariant systems because actual measurements of the disturbing effects are not available. However, 

publications [24],[25] observe that it is possible to build an invariant system without use of combined regulation 

methods, if we apply the principle of dual-channel impact distribution in the controlled object. The principle of 

dual-channel impact distribution resides in the fact that if the controlled object has two  distribution channels of 

the same impact, we may achieve mutual compensation of the impact transferred through the above channels by 

selecting a respective law of control so that the regulated value becomes invariant (independent) of the said 

impact. 

Fig. 2 shows that the controlled object under study has two channels of distribution of disturbing 

moment M [5].  Therefore we can improve the accuracy of the stabilization system by using the invariant theory 

principle. So we select synthesis of high-precision stabilization systems based on the principles of the invariant 

theory as a method helping us to solve the problem set. 

 

IV. SYNTHESIS OF INVARIANT STABILIZATION ALGORITHMS IN A CONTROL 

SYSTEM WITH ROTATING OPERATING DEVICE 
Based on general provisions and the formulae of the invariant automatic control system theory 

[17],[18],[19],[20],[21],[22],[23],[24], [25], we shall synthesize an invariant center of mass stabilization system 

of the spacecraft, and compare the accuracy and quality of transition processes in the standard and invariant 

stabilization systems [5], [9]. 

 

4.1. Analysis the Physical Implementation of a Stabilization System Invariant to the Destabilizing 

Force and to the Disturbing Moment 
Let's consider the system of equations (1), which describes the system to be explored, the stabilization  

and the functional diagram (Fig 2) [5] in terms of the choice of response functions )(),( sWsW CMAS
 and ),(sKFB

 

providing invariance for coordinates y  under influence F  and .M  The values F  and M  cannot be measured 

directly as supposed in combined regulation systems. 

To analyze invariant conditions, we shall write equations (1) in operator form: 


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According to the basic provisions of the invariant theory [18],[19], [20] it is necessary that (2) to ensure 

invariance y  under influences F  and M  

0




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 (3) 

Whence ,0 FM yy   where 
FM yy   ,  are invariant minors, and   is the main determinant of 

the closed system (2). 

By substituting the determinants 
FM yy   , in (3) and   from the equations (2) we shall have the 

following necessary invariance conditions in the operator form [26]: 
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whence 

.,
CA

FBAS
K

s
KW  (5) 

Rather than focusing so far on the meaning of the conditions obtained, let's consider the physical 

implementation of an invariant system providing the condition (4). 
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We know that the requirement to ensure the open system's absolute invariance is a criterion for the 

physical implementation of the invariant system proposed by academician B. Petrov [27]. 

The expression for 
OS  shall be as follows [26]: 

.
12









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



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
 CWs

K
Kss AS

CA

FBOS
(6) 

It is easy to see that when conditions (5) are met, the expression (6) identically becomes zero, whence 

it follows that an absolutely invariant in moment M  and force F  system can't be implemented [26]. 

Let's consider physical implementation of the system for each of the disturbances individually. 

 

4.2. Physical Implementation of a Stabilizing System, which is Invariant under Disturbing Moment 

In order to ensure invariance of the coordinate y  under influence F  it is necessary that the condition 0 My  

is met, that is 

.0
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
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It is obvious that in general the expression (6) doesn't become zero in case the invariance condition (7) 

is met, which makes it clear that the condition for physical implementation of the center of mass stabilization 

system under disturbance M  is met. 

We shall demonstrate that the transfer function of the open system under disturbing moment M is equal 

to zero if the invariance conditions are met. Hence .0y Let’s write down an open system determinant: 


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The invariance minor 
21  shall be obtained by cancellation of the first column and the second line in 

(8): 
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The open system transfer function shall be as follows under disturbing moment :M  

.
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Because 
21  meeting the invariance conditions  (7) is zero, and 

21  is a minor of absolute invariance, 

so ,0MW  and therefore .0 MWy M
  It is not possible to achieve a minor value 

21   exactly equal to zero, 

that is the actual value obtained y  can be  only close to zero [26]. It is significant that if the equality 

,0   yy CC  and therefore the equality ,   are fulfilled, there are two channels for transmission of 

the same disturbance M  in the stabilization object itself, as can be seen from the block diagram (Fig. 2) [5] 

since 
 yy CC   achieves absolute invariance under .M  

 

4.3. Physical Implementation of a Stabilizing System, which is Invariant under Disturbing Force 

In order to ensure invariance of the coordinate y  under influence F it is necessary that the condition 

0 Fy  is met, or 

.0
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It is easy to see that the expression (11) is the same as the main determinant (8), if the system is open at 

.y  Consequently, when the condition of absolute invariance is met, the open system determinant becomes zero, 

indicating physical inability to implement absolute invariance of the system under influence .F   The  obtained 
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results may be physically interpreted as follows: the system under consideration conforms to the principle of 

dual-channel impact transmission under disturbing moment ,M  while lacking such a characteristic under 

destabilizing force F [26]. 

Fig. 1 [5] shows two channels transferring an impact from the origin of the disturbing moment M  to 

the controlled condition y , while there is only one channel between the origin of destabilizing force F  and the 

controlled condition y . This explains the earlier conclusion about the physical inability to implement a system 

which would be invariant both for ,M  and .F  

Therefore, an analysis of the possibility of an invariant stabilization system shows that such a system 

can be implemented only under one of the influences, i.e. disturbing moment [5], [26]. As this impact is a 

determining one, it is useful to consider a possibility to build such a system [9]. 

 

4.4. Synthesis of a Stabilization Invariant under Disturbing Moment 
Practical building of invariant systems shows that it is generally not possible to implement absolute 

invariant conditions. Likewise, in the case under consideration [26], it is evident that it is not possible to achieve 

the condition   

0
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In such cases, it is usually a task to build a system partially invariant or invariant to the point of   [27]. 

Having in mind that the object is subject to a slowly changing influence, we shall assume that disturbance is 

constM   and try to build a simple invariant system. In this case, we shall only compensate for the 

disturbance itself ,constM   without claiming compensation of its derivatives. Meeting these requirements 

means that a free member in the expression for ,0 My  or 

,0  yFBy CkKC (12) 

where
k  is the gain of the stabilization controller according to spacecraft angle of deflection. 

The relation (12) demonstrates that the feedback of the control actuator ensuring invariance shouldn't 

be negative as usually but a positive one (because the signs in the expression (12) correspond to the earlier 

assumption that a feedback sign should be negative) [26]. Its gain should be: 
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If , yy CC   direct signal gain and feedback gain must be equal, i.e. feedback coefficient for the 

control actuator shall be equal to kKFB   [5], [26]. 

To analyze stability of such a system, we shall analyze its characteristic equation. In accordance with 

above, we shall therefore assume that there are no measurements y , that is .0yWCM
 So, the characteristic 

equation for the closed system subjected to the invariance conditions will be: 
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Let 
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characterizing delay of stabilization controller. Then the characteristic equation shall be as follows: 
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The above relation (15) demonstrates that the characteristic equation of the closed system does not 

meet stability requirements as there appear members ),(2 sWsk AC


  with negative components. To compensate 

them it is necessary [26]: 

1. To enter second derivative action into the control mode .2sk

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2. To enter equivalent delay block ),(sWCA
  into the feedback loop of the control actuator. The 

equivalent delay block shall be written as a polynomial which denominator is minimum the order of the 

polynomial ).(sWAC
  

After the above requirements have been satisfied, the characteristic equation shall be as follows: 

  0)()()()(
)()( 23 


sWCkssWCkssWksWCks

K

sWsW
CACACACA

CA

ACCA
 

(16) 

The necessary condition for the system stability as follows from (16) is that ,
kCk   and the 

coefficients at corresponding members in a polynomial )(sWCA
  should not be less than the coefficients of the 

polynomial ).(sWAC
  

The required stability conditions obtained are consistent with the known criteria in the invariant theory. 

According to them, the response rate of the loop, which guarantees invariance (here the actuator loop), must be 

not less than the response rate of the main loop [9]. 

If the above condition is met providing the order of polynomial denominator in the loop of control 

actuator equivalent delay )(sWCA
  equal to the order of polynomial ),(sWAC

  the invariant stabilization system 

shall be "rough" because execution of invariant conditions results in the degeneration of leading  members in the 

characteristic equation of the system, and thus a sufficient degree of stability can be achieved by selection of 

parameters in the control mode (Polynomial Block)[26]. 

 
Fig. 4.Block diagram of the center of mass stabilization system invariant under disturbing moment 

 

A block diagram of the center of mass stabilization system invariant under disturbing moment 

constM   is shown in Fig. 4. 

 

By analyzing the invariant stabilization system you can draw the following conclusions: 

1. The stabilization system under consideration ensures invariance of the controlled variable y  only under one 

influence, i.e. disturbing moment .M  Since its influence has the greatest impact on the stabilization 

accuracy of the spacecraft center of mass, use of the proposed system plus normal center of mass 

stabilization channel which enables to introduce components proportional to velocity and the object drift 

coordinate  into the control mode can significantly improve the control accuracy .y  

2. The peculiarities of the system considered include the need to introduce equivalent delay loop into feedback 

of the control actuator, which in its turn results in the complexity of the control actuator design and the need 

to use positive feedback. 

 

 



American Journal of Engineering Research (AJER) 2017 
 

 
w w w . a j e r . o r g  
 

Page 305 

4.5. Synthesis of a Stabilization System Partially Invariant under Destabilizing Force and Disturbing 

Moment 
It is possible to synthesize an invariant stabilization system still other way. As mentioned earlier, 

absolute inequality to zero of the system's main determinant (8) is a necessary criterion for implementation of an 

open loop invariant system considering the absolute invariance conditions [17]: 
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(17) 

 

If this criterion is met, the invariant system can be synthesized. In practice, when such a system being 

synthesized, the absolute invariance conditions are only partially met with accuracy to the first few members of 

the absolute invariant expression (17) expanded into series. Therefore, such systems are invariant to the value of 

  (partially invariant).  

We used the same principle for research and synthesis in the previous paragraphs of this work: we 

checked the criterion for physical implementation of the invariant stabilization system described above under 

disturbing moment and destabilizing force. As a result, we revealed a possibility to synthesize an invariant 

system only under disturbing moment. In the synthesis process, the condition of absolute invariance (7) was 

replaced by a partial invariance condition (12). That is, the synthesis resulted in a partial invariant stabilization 

system under disturbing moment [26].  

This work suggests a different approach to the synthesis of partially invariant systems, in which unlike 

the "traditional" approach described above, absolute invariance conditions are replaced with partial invariance 

conditions but considering physical implementation of the invariant system. 

As noted above, disturbances influencing the spacecraft over the active phase are slowly changing, so it 

is necessary to fulfill the invariance conditions for drift velocity under disturbances themselves rather than under 

their derivatives [26]. Therefore, invariance conditions for the case under consideration can be obtained from the 

expressions (4) by accepting :0s  

,
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whence it follows that 

,0,0 


kKFB
(18) 

that is, the system must have no control over the angular deflection of the object, and the feedback of the control 

actuator must be open. It is easy to see that when the conditions (18) are met, the expression determining the 

open system (6) is not identically equal to zero, and therefore, a partially invariant system under disturbing 

moment and force can be implemented. 

Suppose the partial invariance conditions have been obtained, the characteristic equation for the closed 

system shall be: 
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where
ASW   is a polynomial characterizing delay of stabilization controller. 

By expanding the expressions for 
CSW  and ,CSW we shall get a characteristic equation of the system as 

follows: 

  .000 234 
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As follows from this characteristic equation, this stabilization system is unstable because there are zero 

coefficients in the 3rd and the 1st degrees s  it is necessary to introduce second derivative actions from center of 

mass drift velocity into control action to ensure stability .sk y
 In which case the characteristic equation takes the 

form: 
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(19) 
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As follows from the equation (19), it is necessary that 
yy kCkC    and

yy kCkC     to ensure 

stability of the system. As in the previous case (Paragraph IV.4), this system is "rough", because execution of 

invariance conditions )0,0(  kKFB
 does not reduce the order of the characteristic equation, and therefore 

sufficient system stability can be achieved by selecting parameters in the control action [26].  

It should be noted that the proposed center of mass stabilization system, which is close to an invariant 

one due to consistent disturbing influences M and ,F  has significant advantages over the previously 

synthesized system (in Paragraph 4.3).  

First, the system provides a simultaneous partial invariance of the controlled value under both 

disturbances: moment and force.  

Second, in order the invariance conditions are met, it is necessary only to open feedback of the control 

actuator before the start of the active phase, while a positive feedback should be introduced for the system 

previously considered (Paragraph 4.4). With some precision, it is necessary to ensure that the values 
FBK and 

0k coincide.   

 
Fig. 5.Block diagram of a partially invariant center of mass stabilization system 

 

Third, in order to provide stability and "roughness" of the previous system (Paragraph 4.4) it is 

necessary to introduce an equivalent delay loop in the feedback of control actuator complementary to 

introduction of an additional second derivative action from the deflection angle ,sk


 whereas the system under 

consideration does not require it.  

Fourth, the proposed system does not require two distribution channels for two disturbances in the 

controlled object for its implementation.  

In view of the benefits listed, we can assert that a stabilization system, which is close to an invariant 

one in moment and force, is more suitable for practical application. It should also be noted that, while the 

proposed stabilization system is not entirely invariant under influences M  and ,F  yet as previously noted 

(Paragraph 4.2) [5], [26], disturbing influences M  and F  in practice are slowly changing in time, and therefore 

application of a partial invariant stabilization system, as the author has shown above, has a significant effect in 

improving the accuracy of the stabilization of the center of  mass tangential velocities.  

Note: For the sake of brevity, we shall hereinafter imply a stabilization system, which is partially 

invariant under influencing disturbances under "invariant stabilization system". 

As may be seen from the analysis of the characteristic equation of the system in question, the dynamic 

delay of the stabilization controller, in this case, unlike the system in Paragraph IV.4, does not have a 

fundamental impact on the structure and stability of the system, so the dynamic delay of the stabilization 

controller will not be taken into account hereinafter. Thus the block diagram for the stabilization system under 

consideration will be as follows (Fig. 5). 

 

4.6. Additional Possibilities for Improving the Accuracy of Partially Invariant Stabilization Systems 
As noted above ([5], [26], [28]), the accuracy of the center of mass stabilization system can be 

improved by using additional algorithms. The initial adjustment of the operating device (before the active phase) 
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in the position, which was taken at the end of the previous active phase used in practice in a number of cases, is 

one of such algorithms.  

Here, we use the fact that the main factor, i.e. disturbing moment determined by the thrust 

misalignment and the displacement of the spacecraft center of mass relative to the X- axis slowly changes over 

time, and preliminary adjustment of the operating device allows for immediate creation of a control moment 

partially compensating for this disturbance.  

Mathematical modeling shows that the simultaneous use of invariant algorithms and the initial 

adjustment of the operating device give an increase in the accuracy of the drift velocity twice or more as 

compared to the model stabilization system using similar additional algorithms [5]. 

The additional algorithm specified has the following mathematical interpretation. Let the differential 

equation be used for a tangential velocity control error )(ty  

    )(...)(... 1

10

1

10 tfbsbsbtyasasa m

mm

n

nn    (20) 

where )(tf  is disturbing influence. 

The equation solution (20) has two components: transitional )(tyt
  and forced ),(tye

  i.e. 

)()()( tytyty et
   [15]. The forced component )(tye

  is an isolated solution to this equation, and due to the 

partial invariance of the system, the component will be close to zero for slowly changing disturbing influences

 consttf )( .0)( tye
  

The transitional component )(tyt
  is a general solution of the equation (20) without the right side and is 

determined by the initial conditions of the transition process, so it is possible to reduce the transitional 

component to zero  .0)( tyt
  

For this case, the values of the phase coordinate vector of the dynamic system at the time moment  

:0t  

 TX 00000 ,,,    

shall be initial conditions for transition process. In a typical system operation mode, if influence of the errors in 

spacecraft orientation and stabilization systems are neglected during the passive phase, all vector components 

0X  have zero values.  

The final conditions of the transition process 
fX  can be determined based on the conditions of the 

steady mode ).0( s In this case the system (1) shall be as follows: 
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By expressing disturbances M  and F  through equivalent deviations of the steering control 

),,(, FyMFM CFCM     and also taking into account the fact that , yy CC   for the spacecraft 

with rotating operating device, we shall write equations for the steady mode as follows: 
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From the first equation, we obtain an expression for deflection of steering control f  in the steady 

mode: 

.Mf    

The angle value 
f  for the steady mode shall be obtained from the second system equation: 

.Ff    

Because disturbing moment is the main disturbance to which a spacecraft is subject in the active phase, 

the value 
f  in the last expression can be ignored and we shall consider that .Mf    

Thus, the initial conditions vector of the transition process ensuring proximity of transition component 

to zero shall be as follows [26]: 

  .0,,0,0

T

MMX  (21) 
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Consequently, an additional algorithm for initial adjustment of the operating device based on the results 

of the previous adjustment is nothing more than the approximation of the component 
0  of the initial conditions 

vector to the value of ,f  which corresponds to the steady mode. 

 
Fig. 6.Block diagram of a partially invariant center of mass stabilization system with self-configuration 

elements 

 

Therefore, the observed additional algorithm contributes to reduction of the transitional component of 

the tangential velocity control process ).(ty  However, (21) demonstrates that in order start and end condition 

vectors could fully match, it is necessary that the spacecraft body deflection angle in the transverse plane be 

equal to the steering control deflection angle at the initial moment of time in the steady mode taken with the 

reverse sign. Accordingly, an additional algorithm with self-configuration elements should ensure that the 

operating device is adjusted (before the start of the active phase) in the position which was at the end of the 

previous active phase and must also rotate the spacecraft to an appropriate angle (Fig. 6-7) [29] to improve the 

stabilization  accuracy in this case. Although the suggested self-configuration elements have the same 

drawbacks as those mentioned above (namely, initial adjustment errors, storage of a transient value of operating 

device deflection angle, complexity of the control system), still use of invariant algorithms is a great way to 

compensate for these drawbacks [26]. The transition process in the invariant stabilization system has 

significantly less decay time than in the model system, which significantly increases the probability for the 

achievement of the steady mode by the end of the active phase, and hence the probability that an operating 

device deviation value which is more close to the established one shall be stored. Because a forced component 

of the transition process is practically absent when invariant algorithms are used, tangential velocity control 

error shall depend, by contrast to the typical systems, only upon errors made during initial adjustment of 

operating device and the spacecraft body rather than upon disturbances, if the suggested self-configuration 

elements are used. 

 
Fig. 7.Initial adjustment of the operating device and the spacecraft body following the previous adjustment 
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The mathematical modeling shows that simultaneous use of initial adjustment of operating device and 

the body of a spacecraft with invariant stabilization algorithms improves the accuracy of regulation 

approximately by one order as compared with a typical stabilization system using the same configuration 

elements [28, 29]. 

Transition process diagrams for the invariant and standard stabilization systems are shown in Fig. 8-9 

and correspond to maximum value case ., H

M

H

F mm  

 
Fig. 8.Spacecraft drift velocity transition processes in the normal plane in the invariant and standard 

stabilization systems  ( deg5.3deg;3.0  H

M

H

F mm  ) 

 

 
Fig. 9.Spacecraft X-axis angular deviation transition processes in the normal plane in the invariant and standard 

stabilization systems ( deg5.3deg;3.0  H

M

H

F mm ) 
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As the mathematical modeling shows (Fig. 8-9),  application of the invariant algorithm in this case 

improves the accuracy of center of mass roll stabilization twice or three times. Transition processes in the 

invariant stabilization system have significantly less attenuation time than in the standard system. Random 

disturbances caused by fluctuating PS operating conditions during normal operation, as well as random AVS 

measurement errors in have no significant impact on the stabilization accuracy. 

 

V. CONCLUSION 
1. In practice, a partially invariant under disturbing moment stabilization system is the easiest one to 

implement. In order the invariance conditions could be met, there must be a positive feedback of the control 

actuator with a gain which is equal to the gain according to angular deflection of the object in the angular 

stabilization channel. Stability of the system is ensured by introduction of an additional second derivative 

action from the object's deflection angle into the action as well as by introduction of an equivalent delay 

loop in the feedback of control actuator in order to compensate for the dynamic delay of the stabilization 

controller. 

2. It is also possible to synthesize a stabilization system, which shall be partially invariant under two 

disturbances simultaneously, i.e. moment and the force. Open feedback of the control actuator and 

exclusion  of control according to object's deflection angle from the angular stabilization channel are the 

invariance conditions in this case  Stability is achieved through the introduction of second derivative actions 

from object's deflection angle and the center of mass drift coordinate into the control action. Such a 

stabilization system has obvious advantages over a system, which is invariant under disturbing moment, and 

therefore more suitable for practical implementation.  

3. A partially invariant fewer than two disturbances (moment and force) stabilization system provides a 

significant increase in the accuracy of the center of masstangential stabilization velocities as compared to 

known stabilization systems. 
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