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I. INTRODUCTION 
This study deals with the topic that beyond any doubt presently attracts a great deal of interest.  We 

consider the formal neuron whose inputs receive – via the dendrite channels 1 2 1, , , ,n nB B B B  having 

various error probabilities ( )1, 1iq i n= +  – different binary versions 1 2 1, , , ,n nX X X X   of one and the 

same random binary signal X . It is associated with a certain cell of the matrix that contains a video-image. It is 
assumed that 1X = + if a point of the video-image matches the matrix cell or 1X = −  otherwise. The neuron 
is expected to restore the correct input signal X or, as we say, to make a decision Y  on the basis of these 

1n +  dendrite versions 1 2 1, , , ,n nX X X X  . When the binary signal X  is delivered to the inputs of the 
restoring element via the equally reliable channels, the decision making with regard for predominance of some 
value among other versions, i.e. according to the majority principle, was for the first time described by J. von 
Neumann [1]. 

When the input channels have different reliabilities, the restoration of a correct signal needs the 
adaptation of the formal neuron. The adaptation is interpreted as the process of control of weights 

( )1, 1ia i n= + of the neuron dendrite inputs so that these weights could match the current probabilities 

( )1, 1iq i n= + оf errors of the dendrite channels. Any weight ia  is an arbitrary real number

( )ia−∞ < < +∞ . Such a control is aimed at making more reliable dendrites produce a greater influence on 
decision making (i.e. on the restoration of a correct signal) as compared with less reliable inputs. 

Restoration (Fig. 1) is performed by weighted voting [2] by means of the relation 
1

1

sgn sgn
n

i i
i
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Fig. 1 The formal neuron in the role of a restoring device 

 
II. SELECTION OF WEIGHTS FOR DENDRITE INPUT CHANNELS 

Suppose there are two subsets (classes) of objects 1Ω and 2Ω which differ from each other according to 

some qualitative criterion. A priori probabilities ( )1 1nq P+ = Ω and ( )1 21 nq P+− = Ω of the emergence of 

these two classes correspond to the supply of the artificial neuron with a random binary value X for 
recognition. Two possible values of X are coded as 1+ and 1− , respectively. Each object of the sesubsets is 
characterized by a set of qualitative criteria – a collection of 1n + number of binary versions of one and the 
same value X : 

1 2 1, , , ,n nX X X X + ⋅  

The nomenclature of these criteria is the same for 1Ω and 2Ω , but the numerical values of  parameters 

iX may be different and may coincide for some individuals ( )1, 1iB i n= + . In the sequel, the realizations of 

binary random values X and ( )1, 1iХ i n= + are denoted by the respective small  letters. Thus at the inputs 

(«dendrites») of the artificial neuron we obtain the vector of observations  

( )1 2 1, , , , T
n nx x x x x +=



  

whereТ is the symbol of transposition of the row-vector into the column-vector. The vector of observations 
emerges according to the probabilities  
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where for the pseudorandom parameter 1nX + the realization 1nx + is invariably ( 1)− : 

1 1.nx + ≡ −  
Let us introduce the so-called discriminant function 

1

1 1 2 2 1 1 1
1

n

n n n n i
i

Z a x a x a x a x a x
+

+ +
=

= + + + + =∑  

where ( )1 1, 1a i n= + are some real constants ( )1 , 1, 1a i n−∞ < < +∞ = + called dendrite weights of the 

artificial neuron, i.е. weights of objects ( )1 1, 1B i n= + , and ( )1 2 1, , , , T
n nx x x x x +=



 is the vector of 

observations  which has to be attributed either to 1Ω when 1X = + or to 2Ω when 1X = − . Thus, the multi-
dimensional space is projected on to the one-dimensional one.  
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If the distribution were normal with respect to each parameter ( )1, 1iX i n= + , then the variable Z
would also have a normal distribution. Assuming in rough approximation that this is so, thestandard 
classification procedure takes the following form of logical reasoning: 

1

1 1 2 2 1 1 1 1
1
1

1 1 2 2 1 1 1 2
1

0

0

n

n n n n i
i
n

n n n n i
i
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which can also be equivalently written as  
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≡ Θ


≡ − 

∑

∑



  

where 1na +Θ ≡ is some real constant ( )−∞ < Θ < +∞ called the threshold [3] of the neuron. 

III. GENERALIZED DISTANCE MAXIMUM CRITERION 
Quite reasonably, there arises the question of finding weights ( )1, 1ia i n= + for which the 

classification error is minimal. What does the erroneous classification mean? 
If we consider the hypothetical case where the variable Z has the same normal distribution as the 

parameters ( )1, 1iX i n= + , then it turns out that for the classes 1Ω and 2Ω the density ( )1,2/f z Ω of the 

distribution of probabilities of a random variable Z has the form as shown in Fig.2. 

 

1,2( / )f z Ω   

z   
2m

  

1m

  
Θ
    

1x∈Ω   
2x∈Ω  

 

 
Fig. 2 Density ( )1,2/f z Ω of the distribution of probabilities of a random variable Z in the classes 1Ω and 2Ω  

The mathematical expectation for 
1

1

n

i i
i

Z a X
+

=

= ⋅∑ in the class 1Ω , where 1X = + , can be found by 

means of the mathematical expectation of a discrete random variable iX X⋅  that takes the value 1ix x⋅ = −  

with probability iq and the value 1ix x⋅ = +  with probability1 iq− . On the one hand, for 1X = +  the 

mathematical expectation  [ ] [ ]M Z M X Z= ⋅  and, on the other hand, 
1 1

1 1
( ) [ ]

n n

i i i i
i i

М a X X a M X X
+ +

= =

 ⋅ ⋅ = ⋅ ⋅  
∑ ∑ . 

Therefore 
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( ) ( )
1 1 1

1 1
1 1 1

[ / ] [ ] ( 1) ( 1) (1 ) 1 2
n n n

i i i i i i i
i i i

m M Z a M X X a q q a q
+ + +

= = =

≡ Ω = ⋅ ⋅ = ⋅ − ⋅ + + ⋅ − = ⋅ −∑ ∑ ∑ .     (1) 

The mathematical expectation for 
1

1

n

i i
i

Z a X
+

=

= ⋅∑  in the class 2Ω , where 1X = − , can be expressed, 

as above, via the mathematical expectation of a discrete random value ,iX X⋅ that takes the value 1ix x⋅ = −  

with probability iq and the value 1ix x⋅ = +  with probability 1 iq− . However, for  1X = −  the 

mathematical expectation [ ] [ ]M Z M X Z= − ⋅  and, on the other hand, 
1 1

1 1
( ) [ ].

n n

i i i i
i i

М a X X a M X X
+ +

= =

 ⋅ ⋅ = ⋅ ⋅  
∑ ∑  Therefore 

( ) ( )
1 1 1

2 2
1 1 1

[ / ] [ ] ( 1) ( 1) (1 ) 2 1
n n n

i i i i i i i
i i i

m M Z a M X X a q q a q
+ + +

= = =

≡ Ω = − ⋅ ⋅ = − ⋅ − ⋅ + + ⋅ − = ⋅ −∑ ∑ ∑ . (2) 

From the comparison of relations (1) and (2) it follows that 1 2m m= − and therefore  
1

1 2
1

2 (1 2 )
n

i i
i

m m a q
+

=

− = ⋅ −∑ .                                                   (3) 

The dispersion for a continuous random value 
1

1

n

i i
i

Z a X
+

=

= ⋅∑  in the class 1Ω , where 1X = + , can 

also be expressed via the dispersion of a discrete random variable iX X⋅  that takes the value 1ix x⋅ = −  with 

probability iq and  the value  1ix x⋅ = +  with probability 1 iq− .  

On the one hand, for 1X = + the dispersion 2 2
1 1[ ] ( 1) [ ] [ / ] ZD X Z D Z D Z σ⋅ = + ⋅ = Ω ≡  and, on 

the other hand, 
1 1

2

1 1
( ) [ ].

n n

i i i i
i i

D a X X a D X X
+ +

= =

 ⋅ ⋅ = ⋅ ⋅  
∑ ∑ Therefore for finding [ ]iD X X⋅  we should resort 

to Table 1, where the first row contains the realization iх х⋅  of a random value iX X⋅ , and also  its two values 

1−  and 1+  that correspond to the recognition of a random binary variable Х  with error and without error. 
The second row for these two values contains the probabilities ip  of their realizations 1i ip q=  and 

2 1i ip q= − , respectively. The third row contains for the discrete random value ( )[ ]i iX X M X X⋅ − ⋅  its 

two possible values ( 1) (1 2 ) 2 2 2(1 )i i iq q q− − − = − + = − −  and ( 1) (1 2 ) 2i iq q+ − − = , since in any case 

[ ] 1 2 .i iM X X q⋅ = −  The fourth row contains for the discrete random variable ( )2[ ]i iX X M X X⋅ − ⋅  its 

two possible values ( ) ( )2 22(1 ) 4 1i iq q− − = −  and ( )2 22 4 .i iq q=  Finally, the fifth row contains the 

products of these two values of the discrete random variable ( )2[ ]i iX X M X X⋅ − ⋅ by the probabilities 

i ip q=  and 1i ip q= −  of the realizations of the values 1−  and 1+ of the discrete binary variable iX X⋅ . 
 

Table 1 Data for determining the dispersion (variation) of a random variable Z in the class 1Ω  
 Values of a random variable iX X⋅  1−  1+  

 Probabilities ip  of these values  iq  1 iq−  

 Mathematical expectation [ ]iM X X⋅  ( )1 2 iq−  

 
Values of ( )[ ]i iX X M X X⋅ − ⋅  1 (1 2 ) 2(1 )i iq q− − − = − −  1 (1 2 ) 2i iq q− − =  

 
Values of ( )2[ ]i iX X M X X⋅ − ⋅  

24(1 )iq−  24 iq  
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Values of ( )2[ ]i i iX X M X X p⋅ − ⋅ ⋅  

24(1 )i iq q− ⋅  24 (1 )i iq q⋅ −  

Summing the results of the last row, we obtain the dispersion iD X X⋅    of a random binary variable 

iX X⋅  in the class 1Ω , where 1X = + : 

( )2 24(1 ) 4 (1 ) 4 1i i i i i i iD X X q q q q q q⋅ = − ⋅ + ⋅ − = −   . 

The substitution of iD X X⋅    into the formula  
1 1

2 2 2
1 1

1 1
[ ] ( 1) [ ] [ / ] ( ) [ ]

n n

Z i i i i
i i

D X Z D Z D Z D a X X a D X Xσ
+ +

= =

 ⋅ = + ⋅ = Ω ≡ = ⋅ ⋅ = ⋅ ⋅  
∑ ∑  

yields  

( )
1

2 2
1 1

1
[ / ] 4 1

n

Z i i i
i

D Z a q qσ
+

=

Ω ≡ = −∑ . 

It is easy to guess that in the class 2Ω , where 1X = − , we will have  
1 1

2 2 2
2 2

1 1
[ ] ( 1) [ ] [ / ] ( ) [ ]

n n

Z i i i i
i i

D X Z D Z D Z D a X X a D X Xσ
+ +

= =

 ⋅ = − ⋅ = Ω ≡ = ⋅ ⋅ = ⋅ ⋅  
∑ ∑  

where the dispersion iD X X⋅    of a random binary variable iX X⋅  in the class 2Ω  for  1X = −   will be 

expressed by the previous formula ( )4 1i i iD X X q q⋅ = −   . Hence 

( )
1

2 2
2 2

1
[ / ] 4 1

n

Z i i i
i

D Z a q qσ
+

=

Ω ≡ = −∑ . 

Thus the dispersion 2
Zσ   of a random variable Z  will be the same for the classes 1Ω and 2Ω , since

2 2
1 1 2 2[ / ] [ / ]Z ZD Z D Zσ σΩ ≡ = Ω ≡ : 

2 2 2
1 2 .Z Z Zσ σ σ= ≡  

Finally,  

( ) ( )
1 1

2 2 2

1 1
4 1 4 1

n n

Z i i i i i i
i i

a q q a q qσ
+ +

= =

= − = −∑ ∑ .                                             (3) 

It is reasonable to choose dendrite weights ia  for which the mathematical expectations 1m and 2m  

would be as distant from each other as possible with respect to 2
Zσ  (i.e. it is required to maximally increase the 

distance between the humps having a minimal width). For this, it suffices to find a maximum of the value  

( )2
1 2

2
Z

m m
ρ

σ
−

= .                                                                          (4) 

From the condition maxρ =  we determine the coefficients 1 2 1, , , ,n na a a a + ≡ Θ  of the 
discriminant function. The value ρ  is called the generalized distance (or the Mahalanobis distance after the 
name of Indian statistician Mahalanobis who introduced [4] it in general usage) between two classes. It seems to 
be similar to the t-criterion by means of which the difference between two means is estimated, but this similarity 
is only outward. 

In particular, if in expression (4) we use relations (1), (2) and (3), we obtain  
2 21 1

1 1
1 1

2 2

1 1

2 (1 2 ) (1 2 )

4 (1 ) (1 )

n n

i i i i
i i
n n

i i i i i i
i i

a q a q

a q q a q q
ρ

+ +

= =
+ +

= =

   ⋅ − −   
   = =

⋅ − −

∑ ∑

∑ ∑
.                                            (5) 

By considering ρ   as a ratio of u to v , we find the derivative of this relation by the formula  
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2 , 0u v u u v v
v v

′ ′ ′⋅ − ⋅  = ≠ 
 

. 

As a result, we have  
21 1 1 1 1

2

1 1 1 1 1
21

2

1

(1 ) 2 (1 2 ) (1 2 ) (1 2 ) 2 (1 )

(1 )

n n n n n

i i i i i i i i i i i
i i i i i

n
i

i i i
i

a q q a q q a q a q q

a
a q q

ρ

+ + + + +

= = = = =

+

=

        − ⋅ − ⋅ − − − ⋅ ⋅ −        ∂         =
∂  − 

 

∑ ∑ ∑ ∑ ∑

∑
. 

Optimal dendrite weights  ( 1, 1)ima i n= +  with respect to a maximum of the Mahalanobis distance 
can be defined from the system of equations  

0

1, 1
ia

i n

ρ∂ = ∂ 
= + 

, 

which with the use of the preceding expression (provided that the denominator is not equal to zero) gives  
1 1 1 1

2

1 1 1 1
(1 ) (1 2 ) (1 2 ) (1 ) 0

1, 1

n n n n

i i i i i i i i i
i i i i

a q q q a q a q q

i n

+ + + +

= = = =

       − ⋅ − − − ⋅ − =        
        

= + 

∑ ∑ ∑ ∑
. 

This relation can be rewritten in the form  
1 1

1 1
1 1

2

1 1

(1 2 ) (1 2 )

(1 ) (1 )

1, 1

n n

i i i
i i

n n

i i i i i i
i i

q a q

a q q a q q

i n

+ +

= =
+ +

= =

− − 
= 
− −



= + 

∑ ∑

∑ ∑ .                                              (6) 

This requirement does not contradict the assumption that  

( )1 2 (1 )

1, 1
i i i iq a q q

i n

− = ⋅ − 


= + 
,                                                     (7) 

since then there also holds the following statement  

( )
( )2

1 2 (1 )

(1 ) 1 2 .

1, 1

i i i i

i i i i i

q a q q

a q q a q

i n

− = ⋅ − 


⋅ − = ⋅ − 


= + 

 

Here the summation of the left- and right-hand parts gives   

( )

( )

1 1

1 1
1 1

2

1 1

1 2 (1 )

(1 ) 1 2

1, 1

n n

i i i i
i i
n n

i i i i i
i i

q a q q

a q q a q

i n

+ +

= =

+ +

= =

− = ⋅ − 



⋅ − = ⋅ − 

= +



∑ ∑

∑ ∑  

or, which is the same,  
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1 1
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q a q q

a q a q q
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+ +

= =

+ +

= =

− = ⋅ − 



⋅ − = ⋅ − 

= +



∑ ∑

∑ ∑ . 

Termwise division of these two equalities gives relation (6): 

( )

( )

1 1

1 1
1 1

2

1 1

1 2 (1 )

1 2 (1 )

1, 1

n n

i i i i
i i

n n

i i i i i
i i

q a q q

a q a q q

i n

+ +

= =
+ +

= =

− ⋅ − 
= 
⋅ − ⋅ −



= + 

∑ ∑

∑ ∑ . 

Thus the statement that assumption (7) does not contradict requirement (6) is proved.  

But assumption (7) implies that the weights ( 1, 1)i ima a i n= = +  supplying a maximum maxρ  to the 
Mahalanobis distance ρ  must be defined by the following relations  

1 2
(1 ) .

1, 1

i
im

i i

qa
q q

i n

− = − 
= + 

                                                                       (8) 

 
For such weights, by virtue of formula (5) the maximal value maxρ  of the Mahalanobis distance is  

( )

( )

222 12 11

111
max 1 22 112

1 11

1 21 2 (1 2 )(1 2 ) (1 )(1 )
1 21 2(1 ) (1 ) (1 )(1 )

nnn ii
iim i

i i iii i i
n nn

iiim i i
i ii i i ii i i

qq qa q q qq q
qqa q q q q q qq q

ρ

+++

===
+ ++

= ==

 − −   −−     −−     = = =
  − −−  ⋅ −  − −  

∑∑∑

∑ ∑∑
 

which, upon reducing the numerator and the denominator, gives the following final result  
 

( )21

max
1

1 2
.

(1 )

n
i

i i i

q
q q

ρ
+

=

−
=

−∑                                                                    (9) 

It is easy to verify that this value is half the difference (more exactly, half the absolute value of the 
difference) of the mathematical expectations 1m  and 2m of a random sum Z  for the classes 1Ω  and 2Ω  if the 

dendrite weights ( 1, 1)ia i n= + of the neuron are chosen by relations (8): 

max 1 2
1 , if , 1, 1.
2 i imm m a a i nρ = − = = +  

 
IV. ENTROPY SENSITIVITY CRITERION 

For an alternative approach, 1n +  dendrites B B B Bn n1 2 1, , , , +  can be interpreted as some source 
of binary information with entropy E  defined by the formula 

1

1

n

i
i

E E
+

=

=∑                                                                             (10) 
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where ( )1, 1iE i n= +  is the entropy of a discrete random variable X X i⋅  whose distribution is given in the 

form of a set of probabilities qi and ( )1− qi , corresponding to its realizations x xi⋅ = −1 and x xi⋅ = +1 , 
respectively. 
Thus 

( ) ( )( )ln 1 ln 1i i i i iE q q q q= − ⋅ + − ⋅ − .                                               (11) 
Hence 

( ) ( )( )
1

1
ln 1 ln 1

n

i i i i
i

E q q q q
+

=

= − ⋅ + − ⋅ −∑ .                                           (12) 

The weight ai of the dendrite ( )1, 1iB i n= + will serve as a measure of variation E∂  of the entropy 

E throughout the entire set depending on an increment iq∂  of the probability qi  of the error of this concrete 
dendrite 

1, 1

i
i

Ea
q

i n

∂ = ∂ 
= + 

.                                                                           (13) 

Applying expression (12) for E , by the entropy sensitivity criterion (definition) (13) the weight of the 
dendrite iea is written in the form 

1ln

1, 1

i
iе

i

qa
q

i n

− = 

= + 

.                                                                          (14) 

 
 
V. RELATIONSHIP OF DENDRITE WEIGHTS DEFINED BY VARIOUS CRITERIA 

To establish the relationship between ima  and iea , we write expression (8) in a somewhat different 
form 

1 2 1
(1 ) 1

1, 1

i i i
im

i i i i

q q qa
q q q q

i n

− − = = − − − 
= + 

. 

Here, formally,  

( )

( )

1 1exp ln exp

1exp ln exp ln exp
1 1

i i
ie

i i

i i i
ie

i i i

q q a
q q

q q q a
q q q

 − −
= =  

  


   − = = − = −    − −    

. 

Using this fact in the preceding formula, we obtain  
exp( ) exp( )exp( ) exp( ) 2

2
1, 1

ie ie
im ie ie

a aa a a

i n

− − = − − = 

= + 

. 

Here, based on the definition of a hyperbolic sine, we may have the representation  
exp( ) exp( ) sinh( )

2
1, 1

ie ie
ie

a a a

i n

− − = 

= + 

.                                                    (15) 
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Finally, we obtain 

 
2sinh( )

.
1, 1

im iea a

i n

= 


= + 
                                                                          (16) 

 
 
VI. GRAPHIC INTERPRETATION OF THE RESULTS COMPUTED FOR DENDRITE 

WEIGHTS 
Figure 3 shows for the sake of comparison the graphs of relationship between (8) (i.е. (16)) and (14). 
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1ln i
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i

qa
q
−
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Fig. 3 Dependence of the weight ia  on the probability iq  for two optimality criteria 

. 
VII. STOCHASTIC APPROXIMATION FOR THE CONTROL OF DENDRITE WEIGHTS 

OF THE NEURON 
Figure 4 presents the block-diagram of realization of the methods of continuous adaptation [5](both 

with and without feedback) by an algorithm of stochastic approximation type [6, 7] with the aim of computing 
an increment of the input weights. 

 

 
Fig. 4 The continuous adaptation block-diagram for computation of optimal dendrite weights 

For a random increment ( ) ( 1) ( )i i ia k a k a k∆ = + − of the weight of the iB  dendrite  ( )ia k  

obtained at the iteration step ( 1)k +  we write  
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1

0
1

( ) ( ) ( ) ( )

1, 1

n

i k i j j
j

a k X k m X a k X k

i n

γ
+

=

 
∆ = ⋅ − ⋅  

 


= + 

∑
.                          (17) 

Here kγ means the fraction of errors, which are to be eliminated at each iteration step ( 1)k + . Because 
the dendrite weights keep being continuously refined, this fraction is supposed to decrease by the rule  

1

1,2,

k k
k

γ = 

= 

.                                                          (18) 

kγ  being an element of the so-called harmonic sequence will satisfy the following conditions 

1

2 2

1

lim 0

1 1.6449
6

k
k

k
k

k
k

γ

γ

γ π

→∞

∞

=

∞

=


= 




= ∞ 



= ≈ < ∞


∑

∑

.                                              (19) 

The last relation in this system is the solution found by Leonard Euler as far back as 1735 for the so-
called «Basel problem» to which the attention of European mathematicians was for the first time drawn by Basel 
professor of mathematics Jacob Bernoulli. Thus the problem reduced to finding a mathematical expectation of a 
random increment variable of increment (17) and deriving expressions for those weights which match the 
stationary state with zero mathematical expectations. As is well known, the convergence of the iteration process 
to this state is provided by the fulfillment of conditions (19). 

The quantizing element (adaptation circuit) receives, on the one hand, the value 
1

1 1

n

i iz a x
+

=

=∑  of a 

random sum Z  and, on the other hand, the value 0m Xξ = (in the absence of feedback) or the value 

0m Yξ =  (in the presence of feedback), where 0m −  is a given restriction imposed on the absolute value of the 

sum Z . The increment value of the dendrite weight is defined by the deviation of the desired 0m X (or 0m Y ) 

from the real value of the sum Z . What is the advantage that makes this approach attractive?  
There may occur a case where one dendrite suppresses the rest and completely determines the output 

signal. If the domain of weight values were not restricted, then the deciding element could be «captured» by one 
dendrite input which had no non-coincidences with the output solution during the adaptation process. If the new 
weight of the vote of the dominating dendrite exceeds the sum of weight values of votes of all other dendrites, 
then in the next adaptation act the signal of the dominating dendrite will coincide with the output signal. In case 
this situation turns out to persist, the dominating dendrite will determine the solution in many or even in all 
subsequent adaptation cycles. This will the «usurpation» of the right to make a decision, which is especially 
dangerous since at some moment of time the dominating dendrite may turn out to be unreliable [8, 9].  

Let us transform equality (17) and write it in the following form 

}
1

0
1

( ) ( ) ( ) ( ) ( )

1, 1

n

i k i k i j j
j

a k m X X k X k a k X k

i n

γ γ
+

=


∆ = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ 


= + 

∑
. 

If here in the sum 
1

1
( ) ( )

n

j j
j

a k X k
+

=

⋅∑  we pick out the term ( ) ( )i ia k X k , then for the remaining part 

of the initial sum we can introduce the conditional notation  
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1

1
( ) ( )

n

j j
j
j i

a k X k
+

=
≠

⋅∑ . 

Hence in the preceding relation there appears the three-component equality  

}
1

2
0

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

1, 1

n

i k i k i i k i j j
j
j i

a k m X X k a k X k X k a k X k

i n

γ γ γ
+

=
≠


∆ = ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ 




= + 

∑
.      (20) 

If the errors of neuron dendrites are independent, then the mathematical expectation [ ( )]iM a k∆ of the 

increment ( )ia k∆  is found as the sum of mathematical expectations of three separate summands of this 
increment.  

In particular, for the first two mathematical expectations (a discrete random value and a constant) we 
have by definition  

[ ] [ ]
[ ]

0 0 0

2 2

( ) ( 1) ( 1)(1 ) (1 2 )

( ) ( ) ( ) ( ) ( ) 1 ( )
k i k i i k i

k i i k i i k i k i

M m XX k m q q m q

М a k X k a k М X k a k М a k

γ γ γ

γ γ γ γ

⋅ = − + + − = − 


   ⋅ = ⋅ = ⋅ =     
.       (21) 

To find the mathematical expectation of the summand
1

1
( ) ( ) ( )

n

k i j j
j
j i

X k a k X kγ
+

=
≠

⋅ ⋅ ⋅∑ , we need to 

compute it separately for the classes 1Ω   and 2Ω , where the random variable X  has respectively the values 

1X = + and 1X = − . In particular, for 1X = +  the value 1iX = +  is realized with probability (1 )iq−  of 

the absence of an error, while the value 1iX = −  appears with probability iq  of an error, i.e.  

[ / 1] ( 1) (1 ) ( 1) 1 2 .i i i iM X X q q q= + = + ⋅ − + − ⋅ = −  

 Analogously, for 1X = −  the value 1iX = +  is realized with probability iq  of an error, while the 

value 1iX = −  appears with probability ( )1 iq−  of the error absence, i.e.  

[ / 1] ( 1) ( 1) (1 ) 2 1i i i iM X X q q q= − = + ⋅ + − ⋅ − = − . 
Thus we have  

1 1

1 1
( ) ( ) ( ) 1 (1 2 ) ( ) (1 2 )

n n

k i j j k i j j
j j
j i j i

M X k a k X k X q a k qγ γ
+ +

= =
≠ ≠

 
 ⋅ ⋅ ⋅ = + = ⋅ − ⋅ ⋅ − 
  

∑ ∑ , 

1 1

1 1
( ) ( ) ( ) 1 (2 1) ( ) (2 1)

n n

k i j j k i j j
j j
j i j i

M X k a k X k X q a k qγ γ
+ +

= =
≠ ≠

 
 ⋅ ⋅ ⋅ = − = ⋅ − ⋅ ⋅ − 
  

∑ ∑ . 

In the latter case the result remains as before since  
1 1

1 1
(2 1) ( ) (2 1) (1 2 ) ( ) (1 2 )

n n

k i j j k i j j
j j
j i j i

q a k q q a k qγ γ
+ +

= =
≠ ≠

⋅ − ⋅ ⋅ − = ⋅ − ⋅ ⋅ −∑ ∑ . 

Thus, independently of the class 1Ω  or 2Ω , the mathematical expectation of the third summand in 
relation (20) has the form  

1 1

1 1
( ) ( ) ( ) (1 2 ) ( ) (1 2 )

n n

k i j j k i j j
j j
j i j i

M X k a k X k q a k qγ γ
+ +

= =
≠ ≠

 
 ⋅ ⋅ ⋅ = ⋅ − ⋅ ⋅ − 
  

∑ ∑ .                (22) 

Taking results (21) and (22) into account and using relation (20), for the mathematical expectation 
[ ( )]iM a k∆  of a weight increment we will have  
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1
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1

[ ( )] (1 2 ) ( ) (1 2 ) ( ) (1 2 )

1, 1

n

i k i k i k i j j
j
j i

M a k m q a k q a k q

i n

γ γ γ
+

=
≠


∆ = ⋅ − − − − ⋅ ⋅ − 




= + 

∑
. 

This relation can be rewritten in the following form, too,   

1

0
1

[ ( )] (1 2 ) ( ) (1 2 ) ( )

1, 1

n

i k i j j i
j
j i

M a k q m a k q a k

i n

γ
+

=
≠

  
  ∆ = − − ⋅ − −       

= + 

∑
. 

Since here  
1 1

1 1
( ) (1 2 ) ( ) (1 2 ) ( ) (1 2 )

n n

j j j j i i
j j
j i

a k q a k q a k q
+ +

= =
≠

 
⋅ − = ⋅ − − ⋅ − 

 
∑ ∑ , 

the preceding relation transforms to the form  
1

2
0

1
[ ( )] (1 2 ) ( ) (1 2 ) ( ) (1 2 ) ( )

1, 1

n

i k i j j i i i
j

M a k q m a k q a k q a k

i n

γ
+

=

   ∆ = − − ⋅ − + ⋅ − −   
   


= + 

∑
 

where 
2( ) (1 2 ) ( ) 4 ( ) (1 )i i i i i ia k q a k a k q q⋅ − − = − − . 

Finally, we have  
1

0
1

[ ( )] (1 2 ) ( ) (1 2 ) 4 ( ) (1 )

1, 1

n

i k i j j i i i
j

M a k q m a k q a k q q

i n

γ
+

=

   ∆ = − − ⋅ − − −   
   


= + 

∑
. 

For the state of equilibrium in which the mathematical expectations of weight increments take zero 
values we obtain  

1

0
1

(1 2 ) ( ) (1 2 ) 4 ( ) (1 ) 0

1, 1

n

i j j i i i
j

q m a k q a k q q

i n

+

=

 
− − ⋅ − − − =  

 


= + 

∑
. 

Denoting the weights for which this state occurs by the symbol ( )ˆ 1, 1ia i n= + , from the last 

equations we obtain  
1

0
1

ˆ (1 2 )
1 2ˆ
(1 ) 4

1, 1

n

j j
ji

i
i i

m a q
qa

q q

i n

+

=


− − − = ⋅ − 

= + 

∑
. 

In the structure of this formula, the first co-factor (8) represents the weights imа , which supply   

maximal value (9) to the Mahalanobis distance between the sets of values of a random sum 
1

1

n

i i
i

Z a X
+

=

=∑  in 

the classes 1Ω  and 2Ω . By the optimal weights iеа  defined by the entropy sensitivity formula (14) they are 

related via (16): 2sinh( )im iea a= . 
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As to the second co-factor, it does not depend on the index i  and is completely defined by the weights, 
which match the state of equilibrium.  
Thus we finally have  

ˆ 2sinh( )

1, 1
i im iea a a

i n

γ γ= ⋅ = ⋅ 


= + 
                                              (23) 

where, according to the notation,  
1

0
1

ˆ (1 2 )

4

n

j j
j

m a q
γ

+

=

− −
=

∑
.                                        (24) 

Using sequentially the expression ˆi ima aγ= ⋅  in notation (24), and formulas (8) and (9) we have  

( )

1 1

0 0
1 1

2
1 1

0 0
1 1 0 max

ˆ (1 2 ) (1 2 )

4 4

1 21 2
(1 2 )

(1 ) (1 )
4 4 4

n n

j j jm j
j j

n n
jj

j
j jj j j j

m a q m a q

qq
m q m

q q q q m

γ
γ

γ γ
γ ρ

+ +

= =

+ +

= =

− − − ⋅ −
= = =

−−
− ⋅ − − ⋅

− − − ⋅
= = =

∑ ∑

∑ ∑
. 

The result 

0 max

4
m γ ργ − ⋅

=  

implies 

   0

max4
mγ
ρ

=
+

                                                               (25) 

where, as has been mentioned above, 0m  is a given restriction on the absolute value of the sum Z . 
Thus, when using the method described in this paper, the weights of dendrite channels in the formal 

neuron which match the state of equilibrium are proportional to the weights computed by the criterion of 
maximum of a generalized distance or, which is the same, by the hyperbolic sine of weights which estimate 
entropy sensitivity. Simultaneously, these weights are inversely proportional to the maximum maxρ  of the 

Mahalanobis distance ρ  between the distributions of a random sum Z  in the classes 1Ω (when  1X = +  ) 

and 2Ω (when   1X = − ). 
The argumentation is also well-grounded for adaptation with feedback, but in that case instead of the 

dendrite error probability one has to apply the probability of deviation of the dendrite from the global solution of 
the whole neuron. 

 
VIII. CONCLUSION 

A. The first result 
The weights of the neuron dendrite inputs iea , calculated by the criterion of entropy sensitivity, are 

given by the following formula 
1ln

1, 1

i
iе

i

qa
q

i n

− = 

= + 

. 

B. The second result 
The weights of the neuron dendrite inputs ima , calculated by the criterion of the maximum Mahalanobis 

distance, are given by the following formula 
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1 2
(1 ) .

1, 1

i
im

i i

qa
q q

i n

− = − 
= + 

 

Recall that the Mahalanobis distance is given by the relationship 

( )2
1 2

2
z

m m
ρ

σ
−

=  

where 1m  and  2m   are the mathematical expectations of the random sum  Z  at 1X = +  and 1X = −  
respectively 

[ ]
[ ]

1

2

/ 1
.

/ 1

m M Z X

m M Z X

= = + 


= = − 
 

As for the value of the nominator of the Mahalanobis distance, it represents the dispersion of the same 
sum. The dispersion is identical at both conditions, that is 

[ ] [ ] 2/ 1 / 1 .ZD Z X D Z X σ= + = = − ≡  
C. The third result 

The link between the above-mentioned weights is established on the basis of monotonic rearrangement 
by a hyperbolic sine 

2sinh( )
.

1, 1
im iea a

i n

= 


= + 
 

D. The fourth result 
The maximum value of the Mahalanobis distance is determined by the following expression 

( )21

max
1

1 2
.

(1 )

n
i

i i i

q
q q

ρ
+

=

−
=

−∑  

E. The fifth result 
In the process of continuous adaptation, when the increment of weights is formed by the stochastic 

approximation algorithm, the weights that are proportional to those that give the maximum to the Mahalanobis 
distance are determined 

0

max

ˆ 2sinh( )

4

1, 1

i im iea a a
m

i n

γ γ

γ
ρ

= ⋅ = ⋅

= + 
= + 

 

 
where 0m  is a given restriction on the absolute value of the sum Z . 
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