
American Journal of Engineering Research (AJER) 2017

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

 Volume-6, Issue-7, pp-251-256
 www.ajer.org

Research Paper Open Access

w w w . a j e r . o r g

Page 251

Comparison of the Documents Based On Vector Model: A Case

Study of Vietnamese Documents

*
Hung Vo Trung

1
, Ngoc Anh Nguyen

1
, Hieu Ho Phan

1
, Thi Dung Dang

2

1
The University of Danang, Vietnam;

2
Mien Tay Construction University

Corresponding Author: Hung Vo Trung

Abstract: In this paper, we present the result of the study related to the comparability of two documents. This

comparison aims to determine the similarity of a text/document with other one. Our method is converting a

document into vector. Each element of vector is a weight corresponding to the index term that appears in the

text. The similarity comparison of the two texts are transformed into angle created by two vectors. This angle

represents the similarity/difference between the two documents. We have developed a tool that compares an

analysis document with two or set of documents. The results reflect exactly the similarity/difference and

achievement of the objectives.

Keywords: Vector model, document comparison, copy detection, measurement, vectorization

--- ----------

Date of Submission: 12-07-2017 Date of acceptance: 22-07-2017

--- ----------

I. INTRODUCTION
Along with the development of the Internet, exchanges and sharing of documents are also common.

The publishing of articles, research papers, internship reports, graduation thesis, dissertations… are increasingly

popular on the internet. Users can find the information they need relatively quickly and easily. However, besides

the advantage of providing a rich source of reference material, plagiarism is becoming a big problem. The

question proposed is how to detect the copying a text from other one, to improve the quality of research

documents. Currently, the research to find duplication on the text has come up with many effective tools and can

be used online such as Plagiarism Checker Software, Turnitin, etc. But these systems only serviceto English

documents, there are not plagiarism checker software for Vietnamese documents. In addition, these systems

don’t permit users to update new data to the database. Therefore, further research is needed to find better

solutions. Currently, there are many two-text matching algorithms that are widely used in various fields such as

information search, intrusion detection in cybersecurity, pattern search in ADN sequences, etc. Each algorithm

Matching has a different approach and each algorithm has its own advantages and limitations [1]. In this paper,

we focus on improving the text comparison algorithm based on vector model. To detect whether D1 is copied

from D2or not, the way to do this is to convert D1 to an n-dimensional vector in which each dimension of the

vector can be a word, a sentence or a paragraph in the document D1. Similarly, convert the text of D2 to a vector

and then compare the two vectors together. This vector model is consistent with the problem of copy detection.

We can evaluate the similarity of a text with many other texts available. The content of the paper is organized

into 5 parts. The first part presents reasons for studying and an overview about methods and results. The second

part presents some research results related including the vector model and text matching. Part 3 introduces the

content of our proposed solutions related to the generalized model, the process of document vectorization and

some related algorithms. Part 4 presents the results of the experiment and some comments on the results. The

last part is the conclusion and development direction in the future.

II. RELATED WORKS
1. Vector model

The vector model is a popular and simple algebra model used to represent a text. A text is described by

a set of keywords, also known as index terms, after removing the words (stop word). A set of index words/terms

defines as a vector where each index wordis representedas a dimension in the vector. These index words are

words that contain the body of the text, each of which is assigned a weight. You can use mathematical

operations on the vector model to compute the similar measure between the query text and the sample text. [7]

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 252

[9] For example, the text d is represented in the form with an m-dimensional vector. Where m is the dimension

of the text vector d, each dimension corresponds to a word in the set of words, wi is the weight of the i
th

character (with 1≤i ≤ m). The similarity of the two texts is often defined as the distance between the points or

the angle between the vectors in vector space.

Figure 1. Example of angle created by two vectors
 ,

 with

2. String matching

The string matching problem is expressed as follows: Given a string with the length ofn and ais a

patternwith the length of m, find the occurrence of the pattern in the string. To find all the occurrences of the

pattern in the string, do this by scanning through the entire string sequentially. The "match" problem is

characterized as a search problem, in which the pattern is treated as a key.

Currently, there are several algorithms to solve the matching problem:

a. Brute-Force algorithm

The Brute-Force algorithm is a shallow-type algorithm. By moving the counter j from the left to the

right of each character of the string. Then take m consecutive characters in s (starting at position j) forming an

extra string r. Compare rwithpattern, if the same, output the result. Repeat this process until j> n-m + 1. [4]

b. Knuth-Morris-Pratt algorithm

The Knuth-Morris-Pratt matching algorithm (or KMP algorithm)searches for the appearance of a

"word" in a "text string" by continuing the search process when it does not fit, ignoring the process. Check the

characters compared before. The idea, at each point in time, that the algorithm is always defined by two integer

types, n is the length of the string s, and m is the length of the pattern p. [3]

c. Boyer-Moore algorithm

The idea of this algorithm is to assume that there are strings s and strings p, which need to find p in s;

Start checking the characters of p and s from right to left and when detecting the first difference the algorithm

will proceed to translate p to the right to make further comparisons. [2]

d. Rabin-Karp algorithm

The Rabin-Karp algorithm [5] uses the equivalence of two congruence numbers with a third number

(for positive integers n, two integers a and b are called congruencies under module n if they have the same

number. Balance when divided by n). We can see that each letter of the alphabet A is a number in the base

system d, with d = | A |.

Given the given form p [1 ... m], calling p represents its corresponding number. Similarly, for the text

T[1 ... n], we denote t, representing the number of substrings T[s + 1 ... s + m] of length m, where s = 0,1 ...,

m*n. Obviously, ts = p if and only if T[s + 1 ... s + m] = p [1 ... m].

e. Comment

We realize that searching with Brute-Force may be very slow for some templates, for example if the

string to look at is a binary string. In the worst case, when all the samples are zero and end up with a number of

1. For each position n-m + 1 the positions can be matched, is compared with each character of the text, so it is

necessary to make n-m + 1 comparisons. On the other hand, m is very small compared to n, so the number of

character comparisons is approximately m * n.

The Knuth-Morris-Pratt algorithm uses less mathematical comparisons than Brute-Force. However, in

practical application, the Knuth-Morris-Pratt algorithm is not significantly faster than the Brute-Force algorithm.

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 253

The Knuth-Morris-Pratt algorithm performs a sequential search within the text and does not require backing up

that text. This makes sense when applied on a large file, which consumes less caching.

Boyer-Moore algorithm does not use more than m + n character comparison. In fact, when text

characters do not appear in the form or except for a few being present in the template, each comparison leads to

a template that will translate to the right m of the character, so for text Large and not long sample, the algorithm

must use n/m steps. The Rabin-Krap algorithm is almost linear. The number of comparisons in this algorithm is

m + n; the algorithm only looks for a location in the text that has the same hash value with the pattern.

III. SOLUTIONS PROPOSED
1. General model

The process of comparing a query text to a set of sample text is done in the following pattern:

Figure 2. Comparison of two documents

According to this model, the set of sample texts must be processed [8] and vectored for storage. Then,

each text that needs to be compared to the sample text will also be processed, vectored, and compared to the

archived data to detect the same (copy) level from the query text to the file.

2. Vectorization model

In the course of comparison, the vectorization step is for the purpose of rendering the text in vector

form for future comparisons. Vectorization can be done based on the word processor (each vector element is

word) or sentence unit (each vector element is a sentence).

The process of vectorization in units of words is as follows:

Figure 3. The process of vectorization using wordunit

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 254

3. Matching algorithms

a. Match on the unit vector model is from

The purpose of the algorithm is to calculate the similarity of the evaluation text with the given set of text

samples based on the unit of words.

Input: A set of texts given and the text/document to be evaluated (already preprocessed).

Output: The same ratio between the text of the review and the given text.

Algorithm:

Step 1: Preprocessing
- Text formatting in plain text format (.txt).

- Separation of words.

- Create a Wordlist vocabulary list.

- Remove StopWord.

Step 2:

- Calculating the weight of index words W=TF*IDF*N with N = 1.

- Calculation of local weights Lij:

00

0log1

ijfif
ijfifijf

TF

- Calculatefij: Number of occurrences of i in document j.

TF(i, j) // i: Inđex termi; j: document j

if fij= 0 then return(0)

else return(1 + log(fij))

- Calculate the global weighting Gi:

in

N
IDF = log

IDF(i, docs) // docs are set of.

 CalcN: number of ducuments in the set.

 Calcni: number of documents which is included word.

if (ni>0) thenreturn log(N/ni)

 else return 0

Step 3: Build a weight matrix to calculate the semantic similarity between the two texts.

Step 4: Calculate the semantic similarity between the two texts.

m
i iqwm

i ijw

m
i iqwijw

qjd

q
T

jd
θ

1
2

1
2

1

22

cos

Step 5: Build a weighting matrix that calculates the order of similarity between two documents.

Step 6: Calculate the order of similarities between two documents.

1
0

2

1
0

2

1

m
i iq

r
ij
r

m
i iq

r
ij
r

q
r

j
r

q
r

j
r

jr
S

Step 7: Measure the same measurement completely between two documents.

q
r

j
r

q
r

j
r

δ)+ (

q
j

d

qT
j

d

δ
r

δ)S(
j

θ
δS,q)

j
S(d 1

22

1
cos

b. Match on the unit vector model is the sentence

The purpose of the algorithm is to calculate the similarity of the evaluation text with a given set of sample text

based on unit of sentence.

Input: A set of texts given and the text / text to be evaluated (already preprocessed).

Output: The same ratio between the text of the review and the given text.

Step 1: Preprocessing

Step 2: Calculate the weight of the words in the text of the query text:

k
n

N
TFIDFTF

qk
w log

k
n

N
TFIDFTF

k
w log

j

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 255

Calculate the weight of the sentence in the query text:

1

0 jj

n

k k
w

qk
w),Sqsim(S

1

0 j

m

q,jj
),Sqsim(S)qasim(S)qScore(S

Step 3: Calculate the weight of the words in the sample text:

k
n

N
TFIDFTF

ik
w log

k
n

N
TFIDFTF

k
w log

j

Step 4: Calculate the weight of the sentence in the sample text:

1

0 jj

n

k k
w

ik
w),Sisim(S

1

0 j

m

i,jj
),Sisim(S)iasim(S)iScore(S

Step 5: Build up the weight matrix to calculate the semantic similarity between the two texts.

Step 6: Measure semantic similarity between two texts:

1

0
21

0
2

1
0

22

cos
m
i iqwm

i ijw

m
i iqwijw

qjd

q
T

jd

IV. EXPERIMENT AND EVALUATE
For testing, we have built a software on C # with basic functions like word processing, text conversion

and matching. Data for the test is more than 100 graduated dissertations of students in the Faculty of

Information Technology, University of Technology, Danang University. These essays will be processed to

retain the text, other content will be discarded (images, tables, ...).

Data after converting to text:

Figure 4. Data is a set of sample texts

American Journal of Engineering Research (AJER) 2017

w w w . a j e r . o r g

Page 256

The same ratio of documents is as follows:

Figure5. Statistics the same ratio of text 1 to other documents in the data warehouse

By experiment, we find that the match rate result has the difference between word-based vectorization

and sentence-based vectorization. This difference is due to the dependence of weighting methods and functions.

Comparable results are 100% when two documents are completely identical and the result is 0% when two

documents do not have the same vocabulary (completely different). To get the best result when the text has a

difference in length is not too large. For example, when matching a query text to a sample text, if the sample

text is large and the text in the sample text is the same as the query text, it only accounts for about 16% of the

sample text. Matched results run from 14% to 20%. The time and space consumed by the match process depend

on the length of the match text (the number of words in the text).

V. CONCLUSION

In this paper, we have used some techniques of natural language processing, vector expressions for text

representation, pattern matching algorithms, C # and semi-structured databases. The content of text/document is

structuredto XML format to perform research and testing on similarity assessment between texts. We have

developed tools and tested to detect duplication on text through the use of vector models. The tool allows you to

check any two texts, two paragraphs of text, text with text, a text with multiple text copied together or not. The

application is tested on a set of over 1000 graduated theses in the field of information technology. In the coming

time, we will continue the related research: improving the vector model to limit the number of dimensions for

text when vectored; Integrates preprocessing tools into the application; Study new solutions, especially the

results of research in the field of biology, into the problem of copy detection.

REFERENCES
[1] J.-I. Aoe, Computer algorithms: string pattern matching strategies, IEEE Computer Society Press, 1994, pp 97-107.

[2] A. Postolico, R. Giancarlo, The Boyer-Moore-Galil string searching strategies revisited, SIAM Journal on Computing, 1986, p.p 98-
105.

[3] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cambridge University Press, 1997, pp 1-58.

[4] M. Crochemore, C. Hancart, Pattern Matching in Strings, Algorithms and Theory of Computation Handbook, 1999, pp 11-28.
[5] D. Knuth, J.H. Morris, V. Pratt, Fast pattern matching in strings, SIAM Journal on Computing, 1977, pp 323–350.

[6] E. Chisholm and T.G. Kolda, New Term Weighting Formulas For The Vector Space Method In Information Retrieval, Oak Ridge,
1999, pp 31-63.

[7] G. Salton, A. Wong, C. S. Yang, A vector space model for automatic indexing, Communication ACM, 18, 1975, pp 613-620.

[8] L. H. Phuong and H. T. Vinh, A Maximum Entropy Approach to Sentence Boundary Detection of Vietnamese Texts, IEEE
International Conference on Research, Innovation and Vision for the Future RIVF 2008, 2008, pp 102-122.

[9] N. Polettini, The Vector Space Model in Information Retrieval- Term Weighting Problem, Sommarive 14, 2004, pp 69-91.

Hung Vo Trung. "Comparison of the Documents Based On Vector Model: A Case Study of Vietnamese

Documents." American Journal of Engineering Research (AJER) 6.7 (2017): 251-56.

