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I. INTRODUCTION 
The theory of fractional differential equations has become an important area of investigation because of its wide 

applications in many branches of sciences, engineering, nature and social sciences. Lakshmikantham and 

Vatsala [12, 14] obtained local and global existence of solutions of Riemann-Liouville fractional differential 

equations and uniqueness of solutions. Monotone method for Riemann-Liouville fractional differential 

equations with initial conditions is developed by McRae [17] involving study of qualitative properties of 

solutions of initial value problem. Jankwoski [7] formulated some comparison results and obtained existence 

and uniqueness of solution of differential equations with integral boundary conditions.  

In 2009, Wang and Xie [22] developed monotone method and obtained existence and uniqueness of 

solution of fractional differential equation with integral boundary condition. Basic theory of fractional 

differential equations in Banach spaces is well established by Lakshmikantham in [10, 11]. Vasundhara Devi 

developed [3] the general monotone method for periodic boundary value problem of Caputo fractional 

differential equation when the function is sum of non-decreasing and non-increasing function. The Caputo 

fractional differential equation with periodic boundary conditions has been studied by present authors [5, 6] and 

developed monotone method for the problem. Existence and uniqueness of solution of Riemann-Liouville 

fractional differential equation with integral boundary conditions is also obtained by Nanware and Dhaigude in 

[18, 19, 20]. The qualitative properties of solutions such as existence, periodicity, ergodicity, almost periodic 

and pseudo-almost periodic etc. of fractional differential equations and fractional integro-differential equations 

were studied by many researchers. For more details see [1, 2, 4, 8, 9, 13, 15, 16 , 21]. 

 In this paper, we consider system of differential equations of non-integer order with integral boundary 

conditions and develop monotone method for system of differential equations of non-integer order with integral 

boundary conditions and obtained existence and uniqueness of solution of the problem.  

The paper is organized in the following manner: In section 2, we consider some definitions and lemmas 

required in next section. In section 3, monotone method is developed for the problem. As an application of the 

method existence and uniqueness results for system of differential equations of non-integer order with integral 

boundary conditions are obtained. 

 

II.  PRILIMINARIES 
In 2009, Wang and Xie [22] developed monotone iterative method for the following fractional differential 

equations with integral boundary conditions with Holder continuity and obtained existence and uniqueness of 

solution of the problem 

 

𝐷𝑞𝑢 𝑡 = 𝑓 𝑡, 𝑢 ,         𝑡 ∈ 𝐽 =  0, 𝑇 ,     𝑇 ≥ 0 
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                                                                                                                   (2.0) 

                                                 𝑢 𝑡 = 𝜆  𝑢 𝑠 𝑑𝑠
𝑇

0
+ 𝑑,    𝑑 ∈ 𝑅. 

 

 where  0 < 𝑞 < 1,    𝜆  is 1 or -1 and 𝑓 ∈ 𝐶 𝐽 × 𝑅, 𝑅 ,   𝐷𝑞   is the Riemann-Liouville fractional derivative 

of non-integer order derivative of order q.  

 

In this paper, we consider the following system of differential equations of non-integer order with integral 

boundary conditions 

              
                      𝐷𝑞𝑢𝑖 𝑡 = 𝑓𝑖 𝑡, 𝑢1(𝑡), 𝑢2(𝑡) ,         𝑡 ∈ 𝐽 =  0, 𝑇 ,     𝑇 ≥ 0 

                                                                                                                                                (2.1) 

                                                 𝑢𝑖 𝑡 =  𝑢𝑖 𝑠 𝑑𝑠
𝑇

0
+ 𝑑𝑖 ,    𝑑𝑖 ∈ 𝑅,    𝑖 = 1,2. 

where  𝑓1,𝑓2 in 𝐶 𝐽 × 𝑅2 , 𝑅 ,   𝜆 = 1,       0 < 𝑞 < 1. 
 

We develop monotone method for the problem (2.1) for the class of continuous functions and study 

existence and uniqueness of solutions of the problem (2.1). 

 

Lemma 2.1 [4] Let 𝑚 ∈ 𝐶𝑝([𝑡0,T], R) and for any 𝑡1 ∈ (𝑡0,T] we have m(𝑡1) = 0  and               𝑚 𝑡 < 0   

for 𝑡0 < 𝑡 < 𝑡1 . Then  𝐷𝑞𝑚(𝑡1) ≥ 0. 
 

Lemma 2.2 [12] Let {𝑢𝜖(𝑡)} be a family of continuous functions on [𝑡0, 𝑇], for each 𝜖 > 0 where 𝐷𝑞𝑢𝜖 𝑡 =
𝑓 𝑡, 𝑢𝜖(𝑡) ,   𝑢𝜖 𝑡0 = 𝑢𝜖 𝑡  (𝑡 − 𝑡0)1−𝑞  𝑡=𝑡0

  and 

  𝑓 𝑡, 𝑢𝜖(𝑡)  ≤ 𝑀 for 𝑡0 ≤ 𝑡 < 𝑇. Then the family {𝑢𝜖(𝑡)} is equicontinuous. 

 

Theorem 2.1 [22] Assume that  

i) v(t)  and w(t)  in 𝐶𝑝(𝐽, R) are ower and upper solutions of (2.1) 

ii) 𝑓 𝑡, 𝑢(𝑡)  satisfy one-sided Lipschitz condition 

𝑓 𝑡, 𝑢 − 𝑓 𝑡, 𝑣 ≤ 𝐿 𝑢 − 𝑣 ,               𝐿 ∈  0,
1

Г 1−𝑞 𝑇𝑞    

Then  v(0)≤ w(0) implies that v(t)≤ w(t),   0 ≤   t  ≤  T 

       

  

Definition 2.1. A pair of functions  𝑣 𝑡 = (𝑣1 , 𝑣2) and  𝑤 𝑡 = (𝑤1 , 𝑤2)  in  𝐶𝑝(𝐽, R) are said to be lower and 

upper solutions of the problem (2.1) if  

   𝐷𝑞𝑣𝑖 𝑡 ≤ 𝑓𝑖 𝑡, 𝑣1(𝑡), 𝑣2 𝑡  ,            𝑣𝑖 0 ≤  𝑣𝑖 𝑠 𝑑𝑠 + 𝑑𝑖
𝑇

0
 

                                    𝐷𝑞𝑤𝑖 𝑡 ≥ 𝑓𝑖 𝑡, 𝑤1 𝑡 , 𝑤2 𝑡  ,           𝑤𝑖 0 ≥  𝑤𝑖 𝑠 𝑑𝑠 + 𝑑𝑖
𝑇

0
. 

 

III. MONOTONE METHOD 

 
  In this section we develop monotone method for the problem (2.1) and obtain the existence and uniqueness of 

solutions of the problem (2.1). 

 

Definition 3.1  A function 𝑓𝑖 =  𝑡, 𝑢1(𝑡), 𝑢2 𝑡    in  𝐶𝑝(𝐽 × 𝑅2, R) is said to be  quasi-monotone non-decreasing  if  

  𝑓𝑖 𝑡, 𝑢1(𝑡), 𝑢2 𝑡  ≤ 𝑓𝑖 𝑡, 𝑣1(𝑡), 𝑣2 𝑡  ,       𝑖𝑓    𝑢𝑖 = 𝑣𝑖  𝑎𝑛𝑑 𝑢𝑗 ≤ 𝑣𝑗 , 𝑖 ≠ 𝑗,    𝑖 = 𝑗 = 1,2. 

 

Definition 3.2  A pair of functions 𝑣 𝑡 = (𝑣1, 𝑣2) and  𝑤 𝑡 = (𝑤1, 𝑤2)   in  𝐶𝑝(𝐽, R) are said to be weakly coupled  lower 

and upper solutions of  the problem (2.1) if  

   𝐷𝑞𝑣𝑖 𝑡 ≤ 𝑓𝑖 𝑡, 𝑣1(𝑡), 𝑣2 𝑡  ,            𝑣𝑖 0 ≤  𝑤𝑖 𝑠 𝑑𝑠 + 𝑑𝑖
𝑇

0
 

                                    𝐷𝑞𝑤𝑖 𝑡 ≥ 𝑓𝑖 𝑡, 𝑤1 𝑡 , 𝑤2 𝑡  ,           𝑤𝑖 0 ≥  𝑣𝑖 𝑠 𝑑𝑠 + 𝑑𝑖
𝑇

0
. 

 

 

 

Theorem 3.1   Assume that  

i) 𝑓𝑖 𝑡, 𝑣1(𝑡), 𝑣2 𝑡   is quasi-monotone non-decreasing,  

ii) 𝑣𝑜(𝑡) and 𝑤𝑜(𝑡) in 𝐶𝑝(𝐽, R) are weakly coupled lower and upper solutions of (2.1) such that 𝑣0(𝑡) ≤ 𝑤0(𝑡) on 

J=[0,T] 

iii) 𝑓 𝑡, 𝑢(𝑡)  satisfy one-sided Lipschitz condition 
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𝑓 𝑡, 𝑢 − 𝑓 𝑡, 𝑣 ≤ −𝐿 𝑢 − 𝑣 ,               𝐿 ≥ 0  

Then there exists monotone sequences {𝑣𝑛(𝑡)} and {𝑤𝑛(𝑡)} in  𝐶𝑝(𝐽, R) such  that {𝑣𝑛(𝑡)} → 𝑣(𝑡) and {𝑤𝑛(𝑡)} → 𝑤(𝑡)  as 

n→∞ where  𝑣(𝑡) and 𝑤(𝑡) are minimal and maximal solutions of (2.1) respectively. 

 

Proof.  For any 𝜂 𝑡 = (𝜂1 𝑡 , 𝜂2(𝑡)) and μ 𝑡 = (𝜇1 𝑡 , 𝜇2(𝑡))  in 𝐶𝑝(𝐽, R) such that for 𝑣𝑖
0(0) ≤ 𝜂𝑖  and 𝑤𝑖

0(0) ≤ 𝜇𝑖  on J, 

consider the following linear fractional differential equation 

 

        𝐷𝑞𝑢𝑖 𝑡 + 𝑀𝑖𝑢𝑖 𝑡 = 𝑓𝑖 𝑡, 𝜂1 𝑡 , 𝜂2 𝑡  −𝑀𝑖𝜂𝑖 𝑡 ,        𝑢𝑖 0 =  𝑢𝑖 𝑠 𝑑𝑠
𝑇

0
+ 𝑑𝑖 ,   𝑖 = 1,2 .      (3.1) 

 

Uniqueness of solution of linear fractional differential equation (3.1) can be proved as in [18].  

Define a mapping A by  𝜂𝑖 𝑡 , 𝜇𝑖 𝑡  = 𝑢𝑖(𝑡) , where 𝑢𝑖(𝑡) is the unique solution of the problem (3.1). This mapping 

generates the sequences  𝑣𝑖
𝑛(𝑡)  𝑎𝑛𝑑  𝑤𝑖

𝑛(𝑡) .  Now we prove that  

(I) 𝑣0 ≤ 𝐴 𝑣0 , 𝑤0 ,     𝑤0 ≥ 𝐴[𝑤0 , 𝑣0] 
(II) 𝐴 possesses the monotone property on the segment 

  𝑣0 , 𝑤0 =   𝑢1 , 𝑢2 ∈ 𝐶 𝐽, 𝑅 : 𝑣𝑖
0 ≤ 𝑢𝑖 ≤ 𝑤𝑖

0 ,   𝑖 = 1,2. 

Set  𝐴  𝑣0, 𝑤0 = 𝑣1(𝑡), where 𝑣1 𝑡 = (𝑣1,
1𝑣2

1) is the unique solution  of te problem (3.1) with 𝜂𝑖 = 𝑣𝑖
0(0).                                                                        

Setting 𝑝𝑖 𝑡 = 𝑣𝑖
0 𝑡 − 𝑣𝑖

1(𝑡) we see that 

                       𝐷𝑞𝑝𝑖(𝑡) ≤ 𝑓𝑖(𝑡, 𝑣1
0 𝑡 , 𝑣2

0 𝑡 ) − 𝑓𝑖(𝑡, 𝑣1
1 𝑡 , 𝑣2

1 𝑡 ) 

                   ≤ −𝑀𝑖𝑝𝑖(𝑡) 

and 𝑝𝑖(0) ≤ 0. 

Applying Theorem 2.1, we get 𝑝𝑖(𝑡) ≤ 0 on 0 ≤ 𝑡 ≤ 𝑇 and hence 𝑣𝑖
0 𝑡 − 𝑣𝑖

1(𝑡) ≤ 0 which implies         𝑣𝑖
0 ≤ 𝐴 𝑣0 , 𝑤0 . 

Set 𝐴 𝑣0 , 𝑤0 = 𝑤1(𝑡), where 𝑤1 𝑡 = (𝑤1,
1𝑤2

1) is the unique solution of the problem                                     (3.1) with 

𝜇𝑖 = 𝑤𝑖
0(0). Setting  𝑝𝑖 𝑡 = 𝑤𝑖

0 𝑡 − 𝑤𝑖
1(𝑡) we see that 

                       𝐷𝑞𝑝𝑖(𝑡) ≥ 𝑓𝑖(𝑡, 𝑤1
0 𝑡 ,𝑤2

0 𝑡 ) − 𝑓𝑖(𝑡,𝑤1
1 𝑡 , 𝑤2

1 𝑡 ) 

                   ≥ −𝑀𝑖𝑝𝑖(𝑡) 

and 𝑝𝑖(0) ≥ 0. Applying Theorem 2.1, we have   𝑤𝑖
0 ≥ 𝑤𝑖

1. Hence 𝑤0 ≥ 𝐴 𝑤0 , 𝑣0 . This proves (I).      

Let 𝜂 𝑡 , 𝛽 𝑡 , 𝜇(𝑡) ∈  𝑣0 , 𝑤0  with 𝜂(𝑡) ≤ 𝛽(𝑡). Suppose that 𝐴 𝜂, 𝜇 = 𝑢 𝑡 , 𝐴 𝛽, 𝜇 = 𝑣 𝑡 . Then           setting 

         𝑝𝑖 𝑡 = 𝑢𝑖 𝑡 − 𝑣𝑖(𝑡) we find that  
              𝐷𝑞𝑝𝑖(𝑡)      ≤ −𝑀𝑖𝑝𝑖(𝑡) 

                                                                and         𝑝𝑖(0) ≤ 0. 

As before in (I), we have 𝐴 𝜂, 𝜇 ≤  𝐴 𝛽, 𝜇 . Similarly we can prove that  𝐴 𝜂, 𝜈 ≤  𝐴 𝜂, 𝜇 .Thus the             mapping A 

possesses monotone property on the segment  𝑣0 , 𝑤0 . Now in view of (I) and (II), define the sequences 𝑣𝑖
𝑛 𝑡 =

𝐴 𝑣𝑖
𝑛−1, 𝑤𝑖

𝑛−1 ,           𝑤𝑖
𝑛 𝑡 = 𝐴[𝑤𝑖

𝑛−1 , 𝑣𝑖
𝑛−1] on the segment  𝑣0, 𝑤0  by  

𝐷𝑞𝑣𝑖
𝑛 𝑡 = 𝑓𝑖  𝑡, 𝑣𝑖

𝑛−1 𝑡 , 𝑣2
𝑛−1 𝑡  − 𝑀𝑖 𝑣𝑖

𝑛 − 𝑣𝑖
𝑛−1 ,     𝑣𝑖

0 0 =  𝑣𝑖
𝑛−1 𝑠 𝑑𝑠 + 𝑑𝑖

𝑇

0

 

 

𝐷𝑞𝑤𝑖
𝑛  𝑡 = 𝑓𝑖  𝑡, 𝑤𝑖

𝑛−1 𝑡 ,𝑤2
𝑛−1 𝑡  −𝑀𝑖 𝑤𝑖

𝑛 − 𝑤𝑖
𝑛−1 ,     𝑤𝑖

0 0 =  𝑤𝑖
𝑛−1 𝑠 𝑑𝑠 + 𝑑𝑖

𝑇

0

 

 From (I) , we have  𝑣𝑖
0 ≤ 𝑣𝑖

1 ,    𝑤𝑖
0 ≥ 𝑤𝑖

1. Assume that 𝑣𝑖
𝑘−1 ≤ 𝑣𝑖

𝑘 ,    𝑤𝑖
𝑘−1 ≥ 𝑤𝑖

𝑘 .  

To prove 𝑣𝑖
𝑘 ≤ 𝑣𝑖

𝑘+1,    𝑤𝑖
𝑘 ≥ 𝑤𝑖

𝑘+1 𝑎𝑛𝑑     𝑣𝑖
𝑘 ≥ 𝑤𝑖

𝑘 , define  𝑝𝑖 𝑡 = 𝑣𝑖
𝑘 𝑡 − 𝑣𝑖

𝑘+1(𝑡). 

Thus  
              𝐷𝑞𝑝𝑖(𝑡)      ≤ −𝑀𝑖𝑝𝑖(𝑡) 

                                                                and                   𝑝𝑖(0) ≤ 0. 

        It follows from Theorem 2.1 that  𝑝𝑖(𝑡) ≤ 0, which gives 𝑣𝑖
𝑘(𝑡) ≤ 𝑣𝑖

𝑘+1(𝑡). Similarly, we  prove           𝑤𝑖
𝑘 𝑡 ≥

         𝑤𝑖
𝑘+1 𝑡           𝑎𝑛𝑑     𝑣𝑖

𝑘(𝑡) ≥ 𝑤𝑖
𝑘(𝑡). By induction it follows that  

                  𝑣𝑖
0(𝑡) ≤ 𝑣𝑖

1(𝑡) ≤ 𝑣𝑖
2(𝑡) ≤ … ≤ 𝑣𝑖

𝑛(𝑡) ≤ 𝑤𝑖
𝑛(𝑡) ≤ 𝑣𝑖

𝑛−1(𝑡) ≤ ⋯ ≤ 𝑤𝑖
1(𝑡) ≤ 𝑤𝑖

0(𝑡).  

        Thus the sequences {𝑣𝑛(𝑡)} and {𝑤𝑛(𝑡)} are bounded from below and bounded from above respectively                    and 

monotonically non-decreasing and monotonically non-increasing on J. Hence point-wise limit exist and are given 

by    lim𝑛→∞ 𝑣𝑖
𝑛 𝑡 = 𝑣𝑖(𝑡),   lim𝑛→∞ 𝑤𝑖

𝑛  𝑡 = 𝑤𝑖(𝑡) on  J. 

Using corresponding fractional Volterra integral equations 

𝑣𝑖
𝑛 𝑡 = 𝑣𝑖

0 +
1

Г(𝑞)
 (𝑡 − 𝑠)𝑞−1 𝑓 𝑠, 𝑣1

𝑛 𝑠 , 𝑣2
𝑛(𝑠)  − 𝑀(𝑣𝑖

𝑛 − 𝑣𝑖
𝑛−1) 𝑑𝑠

𝑇

0

 

 

𝑤𝑖
𝑛 𝑡 = 𝑤𝑖

0 +
1

Г(𝑞)
 (𝑡 − 𝑠)𝑞−1 𝑓 𝑠, 𝑤1

𝑛 𝑠 ,𝑤2
𝑛 𝑠  − 𝑀(𝑤𝑖

𝑛 −𝑤𝑖
𝑛−1) 𝑑𝑠

𝑇

0

 

it follows that 𝑣(𝑡) and 𝑤(𝑡) are solutions of  (3.1). 

Next we claim that 𝑣(𝑡) and 𝑤(𝑡) are the minimal and maximal solutions of (2.1). Let 𝑢(𝑡) be any solution of (2.1) different 

from 𝑣(𝑡) and 𝑤(𝑡),  so that there exists k such that 𝑣𝑖
𝑘 𝑡 ≤ 𝑢𝑖 𝑡 ≤ 𝑤𝑖

𝑘 𝑡  on J and set 𝑝 𝑡 = 𝑣𝑖
𝑘+1 𝑡 − 𝑢𝑖(𝑡)  so that  

     𝐷𝑞𝑝𝑖 𝑡 ≥ −𝑀𝑖𝑝𝑖(𝑡) 
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and     𝑝(0) ≥ 0.   

Thus 𝑣𝑖
𝑘+1 𝑡 ≤ 𝑢𝑖(𝑡) on J. Since 𝑣𝑖

0 𝑡 ≤ 𝑢𝑖(𝑡) on J, by induction it follows that 𝑣𝑖
𝑘 𝑡 ≤ 𝑢𝑖 𝑡  for all k. Similarly we can 

prove  𝑢𝑖 𝑡 ≤ 𝑤𝑖
𝑘 𝑡  on J. Thus 𝑣𝑖

𝑘 𝑡 ≤ 𝑢𝑖 𝑡 ≤ 𝑤𝑖
𝑘 𝑡  on J. Taking limit as n→∞, it follows that 𝑣 𝑡 ≤ 𝑢 𝑡 ≤ 𝑤 𝑡  on 

J. 
 

Next we obtain the uniqueness of solutions of problem (2.1) in the following 

 

Theorem 3.2   Suppose that  

i)  𝑓𝑖 𝑡, 𝑢1 𝑡 , 𝑢2 𝑡   is quasi − monotone non − decreasing  

ii) 𝑣𝑜(𝑡)  and 𝑤0(𝑡)  in 𝐶𝑝(𝐽, R) are weakly coupled lower and upper solutions of (2.1) such that 𝑣0(𝑡) ≤ 𝑤0(𝑡) on 

J=[0,T] 

iii) 𝑓𝑖 𝑡, 𝑢1 𝑡 , 𝑢2 𝑡       𝑠atisfies  Lipschitz condition 

                      𝑓𝑖 𝑡, 𝑢1 𝑡 , 𝑢2 𝑡  − 𝑓𝑖 𝑡, 𝑣1 𝑡 , 𝑣2 𝑡   ≥ 𝑀𝑖 𝑢𝑖 − 𝑣𝑖 ,              𝑀𝑖 ≥ 0  

iv)   lim𝑛→∞ 𝑤
𝑛 𝑡 − 𝑣𝑛(𝑡) = 0, where the norm is defined by  𝑓 =   𝑓(𝑠)  𝑑𝑠

𝑇

0
 

Then the solution of problem (2.1) is unique. 

 

Proof.  It is sufficient to prove that 𝑣 𝑡 ≥ 𝑤 𝑡 . Consider 𝑝𝑖 𝑡 = 𝑤𝑖 𝑡 − 𝑣𝑖(𝑡) we find that 

     𝐷𝑞𝑝𝑖 𝑡 = 𝑓𝑖 𝑡, 𝑤1 𝑡 , 𝑤2 𝑡  − 𝑓𝑖 𝑡, 𝑣1 𝑡 , 𝑣2 𝑡   

≤ −𝑀𝑖𝑝𝑖(𝑡) 

and     𝑝𝑖(0) ≤ 0.   
Applying Theorem 2.1, 𝑝𝑖(𝑡) ≤ 0 implies 𝑣𝑖 𝑡 ≥ 𝑤𝑖 𝑡 . Combining with 𝑣 𝑡 ≤ 𝑤 𝑡 , we obtain 𝑣𝑖 𝑡 = 𝑤𝑖 𝑡 . Thus 

there exists unique solution of problem (2.1) on J. 
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