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Abstract: Unified statistics theory by MCMC is considered. A new proposed algorithm is presented  to obtain 

surely empirical analysis conclusions in order to turn to surely theoretical analysis results about stationary 

triple probabilities of any genetic or clonal selection algorithm of any general too large dimensional 

deterministic and probabilistic (the grouping data, both continuous and discrete) linear or nonlinear 

programming problem in order to introduce a complete framework and to estimate stationary triple 

probabilities by the proposed algorithm towards the fifth resounding success of unified statistics theory by 

MCMC. 
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I. INTRODUCTION 
Genetic and clonal selection algorithms within the framework of Markov chains and MCMC and 

estimation of  stationaryprobabilities have been studied by El-Nady et al. [1], [2], [3], and [4].Unified 

statistics theory by MCMC (UST by MCMC) has been proposed by Abou El-Enien [5].Unique chromosomes 

by simple random sampling without replacement theorem for any objective real valued function of n - variables 

of the form
1 2

( , , . . . , )
n

f x x x ,  where
i i i

a x b   for  1, 2 , ...,i n  within the framework of unified 

statistics theory by MCMC has been proposed by Abou El-Enien and Khalil [6].Subset of unique chromosomes 

by simple random sampling without replacement theorem to solve any too large dimensional deterministic and 

probabilistic linear ornonlinear programming problems toward two obvious criteria (speed and accuracy) has 

been proposed by AbouEl-Enien [7].Estimation of stationary transition probabilities of stochastic matrixtheorem 

for any objective real valued function (linear or nonlinear) of n - variables to estimate stationary transition  

probabilities of stochastic matrix of any genetic or clonal selection algorithm of any general too large 

dimensionaldeterministic and probabilistic  linear or nonlinear programming problem and of any Markov 

Chain  has been proposed by Abou El-Enien [8]. 

AbouEl-Enien estimation of stationary joint probabilities of stochastic matrixtheorem for any objective 

real valued function (linear or nonlinear) of n - variables to estimate stationary joint probabilities of 

stochastic matrix of any genetic or clonal selection algorithm of any general too large dimensional 

deterministic and probabilistic linear or nonlinear programming problem and of any Markov Chain  has been 

proposed by Abou El-Enien [9]. 

These works do not develop estimation of stationary tripleprobabilities of any genetic or clonal 

selection algorithm of any general too large dimensional deterministic and probabilistic (the grouping data, 

both continuous and discrete) linear or nonlinear programming problem and do not develop estimation of 

stationary triple probabilities of any Markov Chainto provide a general framework.The rest of the paper is 

organized as follows. In Section 2, we give the formulation of the problem. In Section 3, we state the main 

result. Then in Section 4, the proof of the main result is given in five steps. In Section 5, we propose the 

algorithm. In Section 6, we give numerical example. In Section 7, we give some concluding remarks. 
 

II. FORMULATION OF THE PROBLEM 
In this paper, we consider a problem, namely: Why unified statistics theory by MCMC 

towards estimation of stationary triple probabilities of any Markov Chain?.Throughout this paper, we consider 

any objective real valued function (linear or nonlinear) of n - variables
1 2

( , , . . . , )
n

f x x x ,  

where
i i i

a x b   for 1, 2 , ...,i n  are domains of each variable 
i

x  and  
i

a and
i

b are real numbers: 

0u  equations: 
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1 2
( , , . . . , )

i n
q x x x = 0 (linear or nonlinear),   0 , ......,  ,i u        (I) 

and  0m u  inequalities:  

1 2
( , , . . . , ) 0

i n
q x x x  (linear or nonlinear), 1, ......,i u m  .       (II)

 

Proposition 2.1. We restrict an arbitrary uncountable set  S = {
i i i

a x b   for  1, 2 , ...,i n } to be a 

subset of n -space R
n
 as a sample space, restrict an arbitrary countable set T to be set of all 

1 2
( , , . . . , )

n
x x x  

in  S = {
i i i

a x b  } for which P
1 2

( , , . . . , )
n

x x x > 0 as a sample space (see [5]). 

Proposition 2.2. We divide each interval 
i i i

a x b  , 1, 2 , ...,i n  into k  (k  is a different optional 

integer number for each interval 
i i i

a x b  ) subintervals 
i i i

a x c  , 
1i i i

c x d


  , ……, 

1i k i
w x y


   , 

i k i
y x b   and 

i
c , 

i
d ,……, 

i
w and 

i
y  (the new population) are optional real 

numbers, list the possible simple random samples without replacement of n   ( n as n of S ) subintervals from 

this new population (see [6]). 

Proposition 2.3. We restrict any simple random sample without replacement of n  subintervals of  Proposition 

2.2,  get unique chromosomes ( 2 )
k

 , k  bits {0,1},  substitute in (I) and (II), get subset of unique 

chromosomes (see [7]), generate all possible combinations of states of subset of unique chromosomes. 

 

III. MAIN RESULT 
In this section, we shall state the main theorem. 

Theorem 3.1. For any objective real valued function (linear or nonlinear) of n - variables
1 2

( , , . . . , )
n

f x x x ,  

where
i i i

a x b   for  1, 2 , ...,i n  are domains of each variable 
i

x  and  
i

a and
i

b are real numbers: 

0u  equations: 

1 2
( , , . . . , )

i n
q x x x = 0 (linear or nonlinear),   0 , ......,  ,i u and   

0m u  inequalities: 

1 2
( , , . . . , ) 0

i n
q x x x   (linear or nonlinear), 1, ......,i u m  , the following holds: 

(1) A real valued function is one that contains all possible simple random samples without replacement of n  

( n as n of S ) subintervals from the  new population.  

(2) Every simple random sample without replacement of n  subintervals has unique chromosomes, subset of 

unique chromosomes and all possible combinations of states of subset of unique chromosomes. 

(3) By applying genetic or clonal selection algorithms. We have the probability of 

each
1 1

 ) ( ,  , v
m m m

f s f t f
 

    

 m   1  ( P ), where  

1 1
 ,  ,  n u m b er o f t im es  ( )  ap p ea redv

2

m m m
f s f t f

P
n

 
  




  

and have stationary triple probabilities. 
 

IV. PROOF OF THE MAIN RESULT 
In this section, we prove the main result in Theorem 3.1. We start with a useful theorem. 

Theorem 4.1.Let ( , , )S P be a probability space and let T  denote the set of all x  in  S  for which  

( ) 0P x   Then T  is countable (see [10]). 

We shall prove Theorem 3.1 in five steps. 

Proof of Theorem 3.1.Step 1. For the real valued function, we define a probability space  ( , , )S P  (see [5]). 

Step 2. We prove that T  is a countable subset of S , and define n - dimensional  random variable defined on a 

sample space T (see [5]). 

Step 3. We divide each interval 
i i i

a x b  , 1, 2 , ...,i n  into k subintervals, define new population, and 

list the possible simple random samples without replacement of n subintervals from this new population. 

Step 4. We restrict any simple random sample without replacement of n  subintervals,  get unique chromosomes 

( 2 )
k

 , k  bits {0,1},  substitute in (I) and (II), get subset of unique chromosomes and generate all possible 

combinations of states of subset of unique chromosomes. 
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Step 5. We pick one state randomly, apply genetic or clonal selection algorithms on the state for n -iterations, 

where n  is a large number, count for each  
1 1

 ) ( ,  , v
m m m

f s f t f
 

     m   1 (see [5]) 

such that  
0 1

, , . . . .f f  are outcome functions 

and  s, t, v  are  any possible sequence of outcomes  

the number of times it appeared, calculate the probability of each 
1 1

 ) ( ,  , v
m m m

f s f t f
 

    ( P ), where 

 1 1
 ,  ,  n u m b er o f t im es  ( )  ap p ea redv

2

m m m
f s f t f

P
n

 
  




 

and get the stationary triple probabilities.  

On the basis of Steps 1-5, we complete the proof of Theorem 3.1. 

 

V. PROPOSED ALGORITHM 
We prepared programs by using MATLAB 7.5. We named the proposed algorithm Abou El-EnienEstimation 

of Stationary Triple Probabilities (Abou El-Enien ESTP), the basic steps of  Abou El-Enien ESTP 

algorithm are as follows:  

1. Divide each interval 
i i i

a x b  , 1, 2 , ...,i n  into k subintervals, define the new population. 

2.  List the possible simple random samples without replacement of n subintervals from this new population. 

For any restricted simple random sample without replacement of n  subintervals, do the following:  

a. Input number of bits k . 

b. Get unique chromosomes = 2
k

. 

c. Substitute in (I) and (II). 

d. Get subset of unique chromosomes. 

e. Generate all possible combinations of states of subset of unique chromosomes and give each state a number. 

f. Pick one state randomly. 

g. Apply genetic or clonal selection algorithms on the state for n -iterations, where n  is a large number. 

h. Count for each 
1 1

 ) ( ,  , v
m m m

f s f t f
 

     m   1  

such that  
0 1

, , . . . .f f are outcome functions 

and  s, t, v  are  any possible sequence of outcomes  

the number of times it appeared. 

i. Calculate the probability of each  
1 1

 ) ( ,  , v
m m m

f s f t f
 

    ( P ), where 

1 1
 ,  ,  n u m b er o f t im es  ( )  ap p ea redv

2

m m m
f s f t f

P
n

 
  




. 

j. Get the stationary triple probabilities.  

 

VI. NUMERICAL RESULTS AND DISCUSSION 
Consider the following function: 

( ) s in (1 0 ) 1,f x x x      1, 2x    

if 5k  bits, 2m  chromosomes, probability of crossover = 0.6, probability of mutation = 0.9 then  

unique chromosomes = { 00000 = -1.000000, 00001 = - 0.903226, ……, 11101 = 1.806452, 11110 =1.903226, 

11111 = 2.000000 } and globally optimum value = 1.225806. 

All possible combinations of states of unique chromosomes = 2
k m

= { 0: (00000, 00000), 1: (00000, 00001) 

,. . . , 1023: (11111, 11111) } 

Pick one state randomly (state 1006), apply GAs with bit mutation on the state for n  = 100000 and then getthe 

stationary tripleprobabilities. 

1006,17,1006,17,972,……,63,960,30,977,55. 

One of the stationary triple probabilities 

P (1006,17,1006) =0.00001. 

 

VII. DISCUSSION 
In this paper, the main result is Abou El-Enien estimation of stationary tripleprobabilities for any 

objective real valued function (linear or nonlinear) of n - variables. Using this, we propose Abou El-Enien 

estimation of stationary tripleprobabilities method to estimate stationary triple probabilities of anygenetic or 

clonal selection algorithm of any general too large dimensional deterministic and probabilistic linear or 

nonlinear programming problem andof any Markov Chain. 
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