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Abstract: This paper presents a fuzzy continuous review inventory model for deteriorating items in a supply 

chain management system with price dependent demand. In reality it is seen that, the cycle time of almost every 

supply chain system is uncertain, so we describe it as symmetric triangular fuzzy number. Signed distance 

method is used to defuzzify the cost function. To illustrate the proposed model a numerical example and 

sensitivity analysis with respect to different associated parameters has been presented. 
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I. INTRODUCTION: 
Inventory control plays an important role in any supply chain system.  The main objective of 

maintaining an inventory is to provide a cushion between supply and demand for smooth and efficient running 

of the supply chain’s operation. In any production inventory system, we face uncertainty associated with 

different parameters such as demand, raw materials supply, various relevant costs, rate of deterioration etc. To 

solve these types of problems we use fuzzy set theory. Bellman and Zadeh  (1) first introduced fuzzy set theory 

for solving decision making problems.  Thereafter, Dubois and Prade(2) developed some operations on fuzzy 

numbers. Park (3) presented fuzzy set theoretical interpretation of economic order quantity. Wu and Yao (4) 

studied fuzzy inventory with backorder for fuzzy order quantity and fuzzy shortage quantity. X. Wang, Tang, 

and Zhao (5) worked on fuzzy economic order quantity inventory model without backordering. Jinsong Hu et al. 

developed fuzzy economic quantity model with imperfect quality and service level (6).  Researchers have 

developed inventory models assuming demand as constant, time dependent, stock dependent or price dependent. 

Silver and Meal, in 1973,(7) published a lot size model taking time varying demand. After that, the model with 

time dependent demand has been studied by several other researchers (8-12).  Various authors have investigated 

price dependent inventory model (13-18). Other related analyses on inventory systems with stock-dependent 

consumption rate have been performed by Sarker, Mukherjee, and Balan (1997), Datta and Paul (2001), Goh 

(1992), S. Pal, Goswami, and Chaudhuri (1993), Bar-Lev, Parlar, and Perry (1994), Urban (1995), Mandal and 

Maiti (1999), Giri and Chaudhuri (1998) (19-26). In real world problem, deterioration is a natural and common 

phenomenon. There are some physical goods which deteriorate with time during their normal storage. In this 

area, a lot of research papers have been published by several researchers viz., Wee (1993), Liu (1999), T.-Y. 

Wang and Chen (2001), A. K. Pal, Bhunia, and Mukherjee (2006), Bera, Bhunia, and Maiti (2013), He, Wei, 

and Fuyuan (2013), Dutta and Kumar (2015), Mishra et al. (2015 (33) etc. (12, 27-34). In most models, the 

cycle time is considered as constant. But realistically it is seen that we cannot predict the cycle time in prior. So 

keeping in mind this real life situation, we consider the cycle time as uncertain and describe it as triangular 

fuzzy number (symmetric).  The rest of this paper is organized as follows. In section 2, the assumption and 

notations are given. In section 3, we have developed the mathematical models. In section 4, we provided 

numerical examples to illustrate the results. In addition, the sensitivity analysis of the optimal solution with 

respect to parameters of the system is carried out in section 5. Finally, we draw the conclusions in section 6 and 

provided the references in section 7. 
 

II. ASSUMPTIONS AND NOTATIONS: 
Assumptions: 

i) Demand is selling price dependent and is of the form D(p) = ap
-b

, where a, b > 0 and p is the selling price. 

ii) The rate of deterioration is constant. 

http://www.ajer.org/
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iii) Replenishment is instantaneous and lead time is zero. 

iv) The cycle time is uncertain and we assume it as triangular fuzzy number. 

v) Shortages are not allowed. 

 

Notations: 
To develop this model the following notations have been used. 

i) Demand D(p) = ap
-b

, where a, b > 0 and p is the selling price. 

ii) θ is the  rate of deterioration. 

iii) q is the initial stock level at the beginning of every inventory. 

iv) D is the total deteriorated items 

v) T is the length of a cycle. 

vi) is the fuzzy cycle length. 

vii) I(t) is the inventory level at any time t. 

viii) h is the holding cost per unit time. 

ix) A is the set up cost per cycle. 

x) C is the deterioration cost per unit. 

xi) TC is the total inventory cost. 
xii)  is the fuzzy total cost 

 
III. MATHEMATICAL MODEL: 

Let I(t) be the on hand inventory at time t (0≤ t ≤T). The inventory cycle starts at t=0 with inventory level q. The 

inventory level decreases due to both demand and deterioration. Ultimately the inventory reaches 0 at the end of 

the cycle time T. Then the differential equation describing the instantaneous state of I(t) at any time t is given by 

: 

 + θI(t) = - ap
-b

 ………………………………………………………………………………..(1) 

With boundary conditions I(0) = q and I(T) = 0 

Solving this equation we have, 

I(t) = qe
-θt

 +( ap
-b

/θ)(e
-θt

 – 1)  …………………………………………………………………….(2) 

Using I(T) = 0 we have-  

q= (ap
-b

/θ)(e
θT

- 1)  …………………………………………………………………….……………(3) 

From (2),  

I(t) = (ap
-b

/θ)(e
θT

 – 1).e
-θt

 + (ap
-b

/θ)( e
-θt

 – 1) 

      = ap
-b

[(T – t) +  θ +  θ
2
]  ………………………………………………..…….(4) 

The inventory in a cycle is given by- 

IT = dt 

    = ap
-b 

[  + θ + θ
2
]  ………………………………………………………….……………………(5) 

Total deterioration in a cycle- 

D = q – total demand 

   = q - p
-b

dt 

   = (e
θT

 – 1) – ap
-b

T        (Using (3)) 

   = θT
2
(Neglecting higher power of θ)    ……….……………………………………………....(6) 

Average cost of the system- 

 

TC = ( A +CD + hIT) 

       =  + C( ap
-b

θT
2
) + h( ap

-b
T +  ap

-b
θT

2
 +  ap

-b
θ

2
T

3
) ……………………………………..(7) 

Now let us describe the cycle time as triangular fuzzy number.  = (T- Δ, T, T+ Δ). 

So, from (7) the cost function with fuzzy cycle time is- 

 = =  + C( ap
-b

θ
2
) + h( ap

-b
  +  ap

-b
θ

2
 +  ap

-b
θ

2 3
)   ………………..…………….(8) 
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We know from the definition of Signed distance method that 

d(  , ) =  AL(α) + AU (α) ]dα 

where, =(a, b, c), AL(α) = a + (b – a) α, AU (α) =c – (c – b) α 

Now, TL(α) = (T – Δ)+ Δα 

           TU (α) = (T + Δ)- Δα 

 

Therefore, d( , ) =  (T – Δ)+ Δα + (T + Δ) - Δα] dα 

                                    =  dα = T  ……………………………….. …………………………… (9) 

and  d( , )  = ( )L(α) + (   )U(α)]dα 

                       = +  ] dα 

                       = ln( )   ……………………………………………….. ...………………………. (10) 

From (8), (9) and (10) we have- 

 

 =  ln( )  + C( ap
-b

θT
2
) + h( ap

-b
T +  ap

-b
θT

2
 +  ap

-b
θ

2
T

3
)   …………..…………..  (11) 

 

Theorem:  The cost function  given by equation (11) is strictly convex. 

Proof: Here,  =  + C(ap
-b

θT) + h( ap
-b

 +  ap
-b

θT +  ap
-b

θ
2
T

2
) 

And, =  2A  + Cap
-b

θ + h ap
-b

 θ + ap
-b

 θ
2
T) > 0 

Hence  is strictly convex. 
 

IV. NUMERICAL EXAMPLE 
To illustrate the following model we consider the following numerical values of the parameters. 

A = 200, a = 100, p =50, b = 0.05, h = 20, θ = 0.05, c = 18. 

We obtain for crisp model total cost TC = 823 and cycle time T = 0.479 and for fuzzy model total cost = 824 

and  = 0.481 

 

V. SENSITIVITY ANALYSIS 
Table-1 

  Change Value 

 

Crisp model  Fuzzy model 

TC T 
  

A 180 780 0.455 781 0.457 

190 802 0.467 803 0.469 

200 823 0.479 824 0.481 

210 843 0.491 845 0.492 

220 863 0.502 865 0.503 

 

Table -2 
  Change Value 

 

Crisp model  Fuzzy model 

TC T 
  

h 16 740 0.531 740 0.533 

18 782 0.503 783 0.505 

20 823 0.479 824 0.481 

22 862 0.458 863 0.460 

24 899 0.440 900 0.442 

 
Table -3 

  Change Value 
 

Crisp model  Fuzzy model 

TC T 
  

C 14 821 0.481 822 0.483 

16 822 0.480 823 0.482 

18 823 0.479 824 0.481 

20 824 0.478 825 0.480 

22 825 0.477 826 0479 
 

Table -4 
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  Change Value 

 

Crisp model  Fuzzy model 

TC T 
  

θ 0.01 814 0.490 814 0.492 

0.03 818 0.485 819 0.487 

0.05 823 0.479 824 0.481 

0.07 828 0.474 829 0.476 

0.09 832 0.469 833 0.471 

Observations: 

From the above tables it is observed that: 

i) The total cost (for both the models) increases as the holding cost per unit time increases. 

ii) The increase in set up cost increases the total inventory cost for the two models. 

iii) With the increase of the deterioration cost per unit, the total cost (for both the models) also increase. 

iv) As the rate of deterioration increase, the total inventory costs for both the models also increase. 

 

VI. CONCLUSION 
In this paper I have considered a fuzzy supply chain inventory model where I have described the cycle 

time as a triangular fuzzy number (symmetric).The demand rate is assumed to be a function of selling price.  I 

have tried to compare crisp model with the fuzzy model and have seen that the cycle time and the total cost 

obtained by crisp model is less than those obtained by fuzzy model. From the sensitivity analysis it is observed 

that the total cost of both the model increase as the cost associated with the model increase. 
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