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ABSTRACT: We introduce the concept of bisimulation between Datalog goals using bottom-up evaluation 

technique: two Datalog goals are bisimilar with respect to a given Datalog program equipped with a bottom-up 

evaluation technique when their resolution trees are bisimilar. We define the notion of a resolution tree and we 

address the problem of deciding whether two given goals are bisimilar with respect to given programs. When 

the given program is a Datalog program equipped with a bottom-up evaluation technique, this problem is 

decidable in 2EXPTIME. 
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I. INTRODUCTION 
Datalog bottom-up evaluation technique constitutes a trend in the deductive database evaluation 

strategy. In fact, deductive databases provide more expressive power than most relational databases, because 

they can naturally represent non-first-normal-form relations, and allow recursive view definitions.  

It is easy to embed a programming interface to a deductive database in a logic programming language 

such as Prolog. 

Search algorithms in deductive databases are generally divided in two parts: bottom-up algorithms and 

top-down algorithms.  

Bottom-up algorithms generate logical consequences of the database until all answers to the goal are 

found. Top-down algorithms start with the goal and reduce it to subgoals. When we compare a typical Prolog 

top-down execution with the Datalog bottom-up execution we notice that the bottom-up evaluation reduces the 

overall cost due to constant per-join overheads, such as initialization costs, and per iteration overheads, such as 

updating the various predicate extensions and increases the degree of set-orientation. Bottom-up also guarantees 

termination for any pure Datalog program. 

For this, and as is it was instructed by Antoun et al. [1,2], comparing two given Datalog programs and 

taking into account the shape of the SLD-trees they give rise to necessitates the comparison of infinitely many 

SLD-trees. Thus, in a first approach, they have restricted their study to the comparison of two given Datalog 

goals using top-down execution technique.  

They showed that deciding whether two given goals are bisimilar with respect to a given general logic 

program is undecidable. Hence, a natural question was to restrict the language of logic programming. Thus, 

when the given logic program is hierarchical or restricted, the problem of deciding whether two given goals are 

bisimilar becomes decidable in 2EXPTIME using top-down execution technique. 

In this paper, we extend the work done by Antoun et al. [1,2,3,4,5,6,7] and we consider Datalog 

programs equipped with bottom-up execution technique. We will say that, with respect to a fixed Datalog 

program P, two given goals are equivalent when their resolution trees are bisimilar. For this, we need to define 

what we mean by a resolution tree for a goal generated using a bottom-up execution technique. We examine the 

complexity of the following decision problem: given two Datalog goals F,G and a Datalog program P equipped 

with a bottom-up execution technqiue, determine if the resolution tree of P ∪ F and P ∪ G are bisimilar. 

In section 2 of this paper, we will present some basic notions about Datalog programs, syntax and 

semantics. In section 3, we will refine the concept of bisimulation between Datalog goals. In section 4, we will 

address the problem of deciding whether two given goals are bisimilar with respect to a given Datalog program. 

At the end of the section, computational issues will be studied. 

 

II. DATALOG PROGRAMS 
Deductive database is like a relational database with a special query language (i.e. Datalog instead of 

SQL). It is also like an automated "theorem prover" which allows special kinds of formulas [8]. The relational 

database defines a number of relations called predicates "extensionally" (i.e. EDB) by enumerating the 
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mentioned tuples contained in the relation, and a logic program, which defines a number of predicates 

“intentionally” (i.e.. IDB). Since deductive database theory is based on logic programming, it borrows heavily 

from the field of logic programming [9]. It combines the benefits of representational and operational uniformity, 

recursion and declarative. Nonetheless, significant problems remain inherent in this synthesis. 

The fact is that deductive databases provide more expressive power than most relational databases. It is 

easy to embed a programming interface to a deductive database in a general-purpose, or imperative, logic 

programming language such as Prolog [10]. 

 

Datalog is a non-procedural query language based on first-order logic that consists of a finite set of rules and a 

query literal. In Datalog we define two types of relations:  

(1) base relations - physically stored in the database and  

(2) derived relations - usually temporary relations that hold intermediate results.  

 

Datalog was specifically designed to be used as a database language. Syntactically, Datalog is very 

similar to Prolog.  

Another characteristic of Datalog is that each relation has a unique name and fixed arity (or number of 

attributes). In practice, we do not associate a “name” with an attribute, but rather its argument position. Consider 

the following example: [11] 

r1( A1, A2, A3, A4) 

Here r1 is the relation name and R1 is of arity 4.  

All of the rules are built from literals: p(A1, A2,…,An), where p is the relation name and Ai are the 

variables or constants. Names that start with an upper case letter are variables. 

The general form of a rule is as follows: 

p(x1,x2,…,xn) :– q1(x11,x12,…,xm1),…,qk(xk1,…,xmk), e. 

 

In this form qi are base or derived relation names, e is an arithmetic predicate (any number) and each xi 

appearing in p appears in at least one of the qi's. 

The Datalog rule can be interpreted as: 

p(...) is true if q1(…) and q2(…) and ... and qk(…) and e is true. 

 

Because Datalog often uses the bottom-up evaluation, the termination behavior is much better than that 

of Prolog. Normally we can assure that termination be guaranteed for a query evaluation. This is not possible for 

arbitrary programs. 

Termination is a major issue in databases, and large subsets of queries/programs have been defined for 

which termination can be guaranteed. 

Besides predicates and constants, Datalog-programs contain also variables, (i.e. place holders for 

domain elements). In Datalog an answer to an atomic query, say Q(X), is a set of constants that satisfy the query 

[9]. 

When it comes to query, search algorithms in deductive databases are generally divided in two parts: 

bottom-up algorithms and top-down algorithms [10].  

The two approaches have been compared and contrasted mainly on strong (terminating) completeness 

over programs without function symbols, weak (non-terminating) completeness, coverage and efficiency [8]. 

The top-down approach is goal directed, often a good feature for efficiency. However, it has been 

shown that strict top-down approaches cannot be strongly complete over programs without function symbols 

[12]. Vieille has described top-down approaches in which lemmas are used to obtain termination over programs 

without function symbols, and there is a completeness proof for one of his methods [13]. 

The main disadvantage of top-down algorithms in databases is that the computations are performed a 

tuple at a time. Reduction of a goal to subgoals involves only a small amount o data. This usually results in a 

loss of efficiency [14]. 

The bottom-up approach is complete and terminating in programs without function symbols. But in 

certain situations it computes the entire deductive closure of a program in order to answer any question. Various 

methods based on “magic sets” have been proposed to focus bottom-up deduction. Sometimes a very large 

number of auxiliary “magic rules” is needed [15].   
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Figure:1 Bottom-up algorithms generate logical consequences of the database until all answers to the goal are 

found. 

 

In Datalog bottom-up approach we assign rules in certain order and then evaluate them in that order. 

Bottom-up evaluation of queries on deductive databases has many advantages over an evaluation 

scheme such as Prolog (top-down). In particular, it is able to avoid infinite loops by detecting repeated (possibly 

cyclic) subgoals. Bottom-up evaluation works by applying the rules to the given facts, thereby deriving new 

facts, and repeating this process with the new facts until no more facts are derivable. The query is considered 

only at the end, when the facts matching the query are selected [8]. 

The bottom-up method offers three significant advantages over the traditional top-down model:  

(1) The declarative least Herbrand model semantics is guaranteed for positive Horn clause programs;  

(2) Redundant derivations are avoided through memoing, leading to measurable gains in efficiency for 

programs in which goals or facts can be derived in many ways;  

(3) As a consequence of the first advantage, no operational guarantees need to be made, and a number of 

semantic optimizations are possible. One example of a powerful optimization made possible by the 

declarative semantics is factoring [8]. 

Another advantage of bottom-up evaluation of logic programs is the increased degree of set-oriented 

computation. When the number of inferences made by two different evaluation techniques is identical, the 

technique that performs more set-oriented computation is expected to perform better in terms of the number of 

I/O operations. Ramakrishnan’s theoretical analysis and performance results show that rule ordering can greatly 

reduce the number of rule applications, and therefore the number of joins in bottom-up evaluation, without 

making additional inferences. 

This has two benefits:  

(1) It reduces the overall cost due to constant per-join overheads such as initialization costs, and per iteration 

overheads such as updating the various predicate extensions and 

(2)  It increases the degree of set-orientation. The fewer the number of rule applications performed, the greater 

the number of inferences made in a single rule application. Again, this increases the degree of set-

orientation, and hence decreases the number of I/O operations [16]. The reduction in cost due to ordering of 

rules depends on other techniques such as efficient join and indexing strategies, and duplicate elimination 

techniques. 

The main disadvantage of bottom-up algorithms is that bottom-up algorithms are not goal-oriented. 

Thus, the search can involve a lot of irrelevant computation.  

In the literature, three main algorithms [17] were extensively used and applied to the bottom up 

approach: Very Naive, Semi Naive and Magic Sets algorithms. In the following, we will not be concerned by 

which algorithm we will use, but instead we will be concerned by all the generated subgoals/atoms to draw our 

tree. 

For example, the Very Naive algorithm starts from scratch i.e it sets the values of all IDB predicates to 

empty. Then, it computes all the possible facts round by round. Note that the query is considered only at the end 

of the algorithm. For example, if we have a goal: ?p(a,y), the answer of this goal is returned as soon as the 

algorithm terminates (i.e. after computing all the possible facts). 

 

Example 1. 

Let P be a Datalog program with the following input: 

q(a,b). 

q(b,c). 

q(c,d). 

p(x,y):- q(x,y). 

p(x,y):- q(x,z), p(z,y). 

Let the goal be: ?p(a;y). 
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In this example, we have 3 facts q(a,b), q(b,c) and q(c,d). Also, q is the only EDB predicate since it 

appears only in the body of the rules, whereas p is the only IDB predicate. Moreover, we have two rules as 

shown earlier. 

Now let us execute this program using the Very-Naïve Bottom-up evaluation technique. 

Initially, set all the IDB’s to empty, here we only have p. 

So P = empty, and Q = {(a;b); (b;c); (c;d)} 

In round 1: P = {(a,b); (b,c); (c,d)}. Clearly, only the first rule works in the first round because P is empty, so it 

takes all the tuples from Q. 

In round 2: P = {(a,b); (b,c); (c,d); (a,c); (b,d)}. Here, the second rule also works. Applying the join between p 

and q, we get the newly added tuples. The algorithm continues because the values of P are changed. 

In round 3: P = {(a,b); (b,c); (c,d); (a,c); (b,d); (a,d)}. New facts are generated, so the algorithm continues. 

In round 4: P = {(a,b); (b,c); (c,d); (a,c); (b,d); (a,d)}. No new facts are generated, the algorithm stops. The 

answer for the query is y = {b;c;d}. 

Let us now show the resolution tree of Datalog programs using the bottom-up evaluation algorithm. 

 

 
Note that the above resolution tree is always finite. We call, for example, q(a,b) an atom without 

antecedent and that q(a,b) is an antecedent of p(a,b). We define the tree of a goal ?p(b,y) as the set of all sub-

tree(s) rooted by ?p(b,_) where _ could be any constant. In the above example, the tree of the goal ?p(b,y) is the 

following: 

 
In the case where, the resulting tree contains more than one root, we add a fictive root as in the following: 

 
 

III. BISIMULATION 
A bisimulation is a binary relation between goals such that related goals have "equivalent" trees. Let P 

be a Datalog program. A binary relation Z between Datalog goals is said to be a P-bisimulation iff it satisfies the 

following conditions for all Datalog goals F1,G1 such that F1ZG1: 

– F1 is without antecedent iff G1 is without antecedent , 

– For each antecedent F2 of F1 and a clause in P, there exists an antecedent G2 of G1 and a clause in P such 

that F2ZG2, 

– For each antecedent G2 of G1 and a clause in P, there exists an antecedent  F2 of F1 and a clause in P such 

that F2ZG2. 
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One can show that the set of all P-bisimulations is closed under taking arbitrary unions. This shows that: 

Proposition 1. There exists a maximal P-bisimulation, namely the binary relation Zmax between Datalog goals 

defined as follows: F1ZmaxG1 iff there exists a P-bisimulation Z such that F1ZG1. 

It follows immediately that: 

Proposition 2. Zmax is an equivalence relation on the set of all Datalog goals. 

 

Example 2. Let P be the following program: 

q(a). 

r(a). 

s(a). 

p(a,y) :-q(y). 

p(b,y) :-r(y). 

p(b,y) :s(y). 

and let F, G be respectively the following goals ?p(a,y) and ?p(b,y).  

The resulting resolution tree from the program gives the following: 

 
Let Z be the binary relation between goals such that: 

?p(a,a) Z ?p(b,a), 

?q(a) Z ?r(a), 

?q(a) Z ?s(a). 

Obviously, Z is a P-bisimulation. Since F Z G, then F Zmax G. 

 

Example 3. Let P be the following program: 

s(a). 

r(a). 

t(a). 

q(a,y) :-r(y),t(y). 

p(b,y) :-q(a,y). 

p(a,y) :s(a),q(a,y). 

and let F, G be respectively the following goals ?p(a,y) and ?p(b,y).  

The resulting resolution tree from the program gives the following: 

 
Obviously, Z is not P-bisimulation. Since p(a,a) has an antecedent s(a) and s(a) has no antecedent, whereas 

p(b,a) has q(a,a) as antecedent and r(a) (or t(a)) as antecedent for q(a,a). 

In this paper, we address the following decision problem :  

(π) given a Datalog program P equipped with a bottom-up evaluation technique and Datalog goals F1,G1, 

determine whether F1ZmaxG1. 

 

IV. BISIMULATION DECIDABILITY FOR DATALOG PROGRAMS EQUIPPED WITH 

BOTTOM-UP EVALUATION TECHNIQUE 
We now study the computational complexity of the following decision problem: 

(π) given a Datalog program P equipped with a bottom-up evaluation technique and Datalog goals 

F1,G1, determine whether F1ZmaxG1. In this respect, let P be a Datalog program. In the following algorithm, 

bothWithoutAntecedent(F1,G1) is a Boolean function returning true iff F1  is without antecedent and G1 is 

without antecedent. Moreover, antecedent(.) is a function returning the set of all antecedents of its argument 

with a clause of P whereas get-element(.) is a function removing one element from the set of elements given as 
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input and returning it. In order to demonstrate the decidability of (π), we need to prove the following lemmas for 

all Datalog goals F1,G1: 

 

Lemma 1 (Termination). bisim(F1,G1) terminates. 

Lemma 2 (Completeness). If F1ZmaxG1, then bisim(F1,G1) returns true. 

Lemma 3 (Soundness). If bisim(F1,G1) returns true, then F1ZmaxG1. 

Let < be the binary relation on the set of all pairs of Datalog goals defined by: (F2,G2) <  (F1,G1) iff 

– the tree for F1 is deeper than the tree for F2, 

– the tree for G1 is deeper than the tree for G2. 

The depth of a tree is the depth of its longest branch. Remark that in this section, all trees are finite. 

Obviously, < is a partial order on the set of all pairs of goals, and thus < is well-founded. 

 

Algorithm  function bisim(F1,G1) 

begin 

  if bothWithoutAntecedent(F1,G1) then 

    return true 

  else 

    SF ←− antecedent(F1) 

    SG ←− antecedent(G1) 

    if SF  and SG then 

      SF’ ←− SF 

      while SF’ do 

        F2 ←− get-element(SF’) 

        found-bisim ←− false 

        SG’←− SG 

        while SG’ and found-bisim = false do 

          G2 ←− get-element(SG’) 

          found-bisim ←− bisim(F2,G2) 

  end while 

        if found-bisim = false then 

          return false 

        end if 

      end while 

      SG’←− SG 

      while SG’ do 

        G2 ←− get-element(SG’) 

        found-bisim ←− false 

        SF’←− SF 

        while SF’ found-bisim = false do 

          F2 ←− get-element(SF’) 

          found-bisim ←− bisim(G2, F2) 

  end while 

        if found-bisim = false then 

          return false 

        end if 

        return true 

      else 

        return false 

      end if 

end 

 

Proof of Lemma 1. The proof is done by <-induction on (F1,G1). Let (F1,G1) be such that for all 

(F2,G2), if (F2,G2) < (F1,G1) then bisim(F2,G2) terminates. Since every recursive call to bisim that is 

performed along the execution of bisim(F1,G1) is done with respect to a pair (F2,G2) of goals such that (F2,G2) 

< (F1,G1), then bisim(F1,G1) terminates. 

 

Proof of Lemma 2. Let us consider the following property: (Prop1(F1,G1)): if F1ZmaxG1 then 

bisim(F1,G1) returns true. Again, we proceed by <-induction. Suppose (F1,G1) is such that for all (F2,G2), if 

(F2,G2) < (F1,G1) then Prop1(F2,G2).  
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Let us show that Prop1(F1,G1). 

Suppose F1ZmaxG1. Hence, for all antecedents F2 of F1, there exists an antecedent G2 of G1 such that 

F2ZmaxG2, and conversely. Seeing that the tree is finite, then (F2,G2) < (F1,G1). 

By induction hypothesis, Prop1(F2,G2). Since F2ZmaxG2, then bisim(F2,G2) returns true. As a result, 

one sees that bisim(F1,G1) returns true.  

 

Proof of Lemma 3. It suffices to demonstrate that the binary relation Z defined as follows between 

Datalog goals is a bisimulation: F1ZG1 iff bisim(F1,G1) returns true. Let F1,G1 be Datalog goals such that 

F1ZG1. 

Hence, bisim(F1,G1) returns true. Thus, obviously, F1 is without antecedent iff G1 is without 

antecedent, and the first condition characterizing bisimulations holds for Z. Now, suppose that F2 is a 

descendant of F1. Since bisim(F1,G1) returns true, then there exists a descendent G2 of G1 such that 

bisim(F2,G2) returns true, i.e. F2ZG2. As a result, the second condition characterizing bisimulations holds for 

Z. The third condition characterizing bisimulations holds for Z too, as the reader can quickly check. Thus Z is a 

bisimulation. _ 

 

As a consequence of lemmas 1 – 3, we have: 

Theorem 1. Algorithm is a sound and complete decision procedure for (π). 

 

It follows that (π) is decidable. Moreover, 

 

Theorem 2. (π) is in 2EXPTIME. 

Proof. Let P be a restricted Datalog program and G be a goal. Let n be the maximal number of atoms in 

the clauses of P or in G, p be the number of predicate symbols in P, a be the maximal arity of the predicate 

symbols in P, and c be the number of constants in P. Thus, the number of variables in P is about n × a, the 

number of ground atoms is bounded by p × c
a
 and the total number of atoms is bounded by p×(c+n×a)

a
. 

Moreover, as the number of goals of size n is bounded by p
n
 × (c + n × a) 

n × a
 , the number of pairs of goals of 

size n is bounded by p
2×n 

× (c + n × a)
2×a×n

. We conclude that the maximal depth D of a branch in the tree 

cannot exceed p
n
 × (c + n × a) 

n × a
. Remark that our algorithm uses twice two nested loops. In fact, for a 

maximal depth D, the time complexity of the algorithm is approximately equal to 2 × (the time complexity of 

the algorithm for a depth D − 1) which is in turn equal to 4 × (the time complexity of the algorithm for a depth 

D − 2). Thus, by iterating the same operation until depth 1, one can show that for a depth D, the time 

complexity of our algorithm is about 2D ≤                        
  

 

V. CONCLUSION 
In this paper, we have introduced the concept of bisimulation between datalog goals relatively to a 

Datalog program equipped with a bottom-up evaluation technique: two Datalog goals are bisimilar with respect 

to a given program when their trees are bisimilar. As proved in Section III, deciding whether two given goals are 

bisimilar with respect to a given general Datalog program is decidable in 2EXPTIME. Future work can be 

dedicated to the study of the flow detection using the resulting resolution tree from a Datalog program using a 

bottom up evaluation technique.  
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