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ABSTRACT: Genetic Algorithms and Particle Swarm Optimization are two of the most popular heuristic 

optimization techniques. They belong to the same group of population-based methods and are often regarded as 

competitors. While there have been previous attempts to compare the two, both methods performances depend 

heavily on the selection of their parameters. This paper presents a study in which the critical parameters are 

varied for both techniques and only the best performing sets are compared. The optimization problem chosen as 

the comparison framework is a benchmark problem in the structural optimization field. The results show that 

the Genetic Algorithms are generally better than the Particle Swarm Optimization with regard to all 

performance indicators. 
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I. INTRODUCTION 
Heuristic optimization is not a new concept. The first Genetic Algorithm (GA) has been developed in 

1975 [1], while the Particle Swarm Optimization (PSO) has first been proposed in 1995 [2], but they are 

considered modern techniques, as shown in [3]. These are two of the most iconic representatives of the most 

exotic group of optimization techniques, most of them inspired from natural phenomena. They are usually 

employed for nonlinear problems with large and complex design spaces, or with discontinuous objective 

functions, problems that are very difficult or impossible to tackle with classic methods. 

Both GA and PSO are population-based techniques, working with a group of candidate solutions to the 

given problem, leading them towards an optimum. GA simulates the natural evolution of species, using bio-

evolution mechanisms such as crossover, mutation and selection based on fitness. PSO is based on the social 

behavior or large groups, such as flying flocks of birds or fish schools. 

Structural optimization deals with finding the optimum geometry for a structure that needs to withstand 

certain loads and has some prescribed boundary conditions. The use of GA [3-9] and PSO [3], [9], [10-12] in 

structural optimization problems has been an increasingly present preoccupation of researchers in recent years. 

There are previous efforts to compare the efficiency of GA and PSO in structural optimization [9], [13-15]. 

However, there are a number of parameters that strongly influence the behaviour of these methods, their choice 

being critical to the method’s success. This paper proposes a study where these critical parameters are varied 

over a certain range and only the best performing configurations of both methods are compared for performance. 

It is worthy mentioning that certain studies explore the possibility to mix GA and PSO in a single 

algorithm and thus take advantage of both the evolutionary aspects of GAs and the data exchange capabilities 

between individuals specific to PSO [14], [15]. As reported by the authors, this integrated approach can lead to 

more efficient techniques. 

 

II. METHODOLOGY 
In both GA and PSO, a group of solutions is randomly generated as the starting point of the algorithm. 

Each solution in the group (called population) is an individual and is represented by a series of values: the 

problem parameters. 

GA evolves the population over several generations by using specific genetic operators. The most 

important operator is the mutation, which allows the exploration of the design space in search of fitter 

individuals. Mutation basically produces random or pseudo-random changes in the individuals. It can be 

implemented in several ways, but a unified mathematical formulation has been proposed in [16], in the form: 
( 1) ( )
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In equation(1) above, the parameter k selected for mutation in generation t+1 changes its value based 

on 3 values: the sign s which indicates the direction of mutation, f(u,p) which is a function depending on the 

actual mutation used and R, the feasible range of the parameter. 

In PSO, each solution is represented by an individual in a moving group. The group is moving inside 

the design space in a number of increments, in each step (i) each individual’s position (pi) being updated 

considering its current speed (vi), its best known previous position (pOi) and the groups global known best 

position (gOi). A position inside the design space represents a solution, its optimality being assessed with the aid 

of an objective function. 

   x x x x x x
i i p p i i g g i i

x x x
i i i

v v r pO p r gO p

p p v

      

 

 (2) 

In equation (2) the coefficients rp and rg and random numbers in the (0,1) interval. The influence of 

each component of the speed is weighted with the parameters ω, φp, φg. Their choice is of critical importance for 

the effectiveness of the algorithm. 

A more detailed theoretical description of both methods is given in [3], [13]. 

 

 
Fig. 1. Benchmark structural optimization problem [13] 

 

The comparative study was performed on the very popular structural optimization benchmark problem 

described in [5], [9]. It consists in the mass minimization of the aluminum truss depicted in Fig. 1, under the 

constraints of limit stress (130 MPa) and deformation (50.8 mm). 

The optimization tool used for both algorithms is the OOGA MATLAB framework [17], [18]. The 

framework was developed for the implementation and study of genetic algorithms, but its flexibility and the 

similarities between the two algorithms allowed the adaptation and implementation of PSO under the same 

paradigm. Considering OOGA has an object oriented architecture, inherently flexible and extensible, PSO was 

implemented by extending the key classes of GA, the ones representing the equivalent concepts: 

 PSO - main class and start point of the algorithm (inherited from SOGA); 

 Particle – class representing a particle (inherited from IndividualW); 

 InitializationMixedRndPSO – class for the random initialization of particles in the first iteration (inherited 

from InitializationBase); 

 ReproductionPSO – class responsible for advancing the algorithm over the iterations, calculating the speed 

and updating positions (inherited from ReproductionBase); 

 PSOGraphBestParticleScore – helping class for plotting the evolution of the best solution over iterations 

(inherited from GraphBase); 

For GA, 3 distinct mutation operators were used. The parameter choices and their ranges, for the 

mutation and the GA itself, are described in [16]. For PSO, the considered population size is 50 and the 

maximum number of iterations is 51 (including the initial one, randomly generated). These options are 

consistent with the ones used for the GA implementation. 

As stated above, the values of the 3 PSO parameters is crucial for the algorithm success. In order to 

explore all feasible parameter choices, PSO parameters was configured with the values listed in Table 1. 
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Table 1. Parameter values for PSO 
Parameter Values 

ω 0.5 0.7 0.8 0.9 1 

φp 0.5 1 1.5 2  

φg 0.5 1 1.5 2  

 

All parameter combinations were considered, leading to a total of 80 (5x4x4) configurations. 

Taking into account that both GA and PSO are stochastic techniques, each configuration was run 50 times to 

compensate for the inherent randomness of the methods. Thus, the obtained results can be considered 

statistically reliable. 

 

III. RESULTS 
The performance of the algorithms was evaluated using three criteria [16], [19]: 

 reliability – the average best score of all runs of a given configuration (a measure of the algorithm’s 

capability to reach good solutions consistently); 

 accuracy – the average best score of the best 20% runs of a given configuration (the algorithm’s capability 

to obtain the best solutions); 

 efficiency – the total computational time of a given configuration (a measure of how fast the algorithm 

runs); 

As stated above, the GA was considered in 3 variants [16]. As such, there were a total of 4 algorithm choices: 

 GA with uniform mutation; 

 GA with polynomial mutation; 

 GA with Gaussian mutation; 

 PSO; 

After sorting the results only the best 9 configurations were considered for comparison. Figures 2-4 

plot the performance scores for these best 9 configurations of each of the algorithms. 

 

 
Fig. 2.The average scores of all simulations for the best 9 GA and PSO configurations (reliability) 

 

 
Fig. 3.The average scores of the top 20% simulations for the best 9 GA and PSO configurations (accuracy) 
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The best fitness scores are the actual masses of the optimum structures while the run times are measured in 

seconds (total time needed to run all 50 simulations for each configuration). 

 

 
Fig. 4.Total run time for the best 9 GA and PSO configurations 

 

IV. DISCUSSION AND CONCLUSIONS 
The graphs plotted in Fig. 2 and Fig. 3 show that for both reliability and accuracy all 3 GA 

implementations outperform the PSO in all the best configurations. The difference is obvious especially in the 

case of reliability, the most important efficiency indicator for the situations where the optimization procedure 

can’t be run multiple times due to the high computational effort required by the fitness function evaluation. This 

is often the case in structural optimization where the fitness is computed using a FEA simulation. 

By observing the dynamics of the swarm in the best configurations of the PSO, it was observed that the 

less fit solutions are due to the fact that the algorithm tends to get stuck in local minima and doesn’t have 

enough kinetic energy to escape them. Higher values of the inertia parameter ω can somehow help the swarm 

escape local minima but then this fails to properly explore the promising solutions. 

By comparing the execution times as well, which show PSO is two times slower than GA, it can be 

concluded that genetic algorithms are superior to the particle swarm optimization for structural optimization 

problems, at least in what concerns truss structures. It is also notable that all 3 mutation operators have similar 

performances, all consistently better that PSO. 
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