
American Journal of Engineering Research (AJER) 2016

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

Volume-5, Issue-11, pp-70-75

www.ajer.org

Research Paper Open Access

w w w . a j e r . o r g

Page 70

A Mean Point Based Convex Hull Computation Algorithm

Digvijay Singh1, Hemang Sarkar2, L N Das3
1,2(Department of Applied Mathematics, Delhi Technological University, India)

3(Associate Professor, Department of Applied Mathematics, Delhi Technological University, India)

ABSTRACT: The optimal solution of a Linear Programming problem (LPP) is a basic feasible solution and

all basic feasible solutions are extreme or boundary points of a convex region formed by the constraint

functions of the LPP. In fact, the feasible solution space is not always a convex set so the verification of extreme

points for optimality is quite difficult. In order to cover the non-convex feasible points within a convex set, a

convex hull is imagined so that the extreme or boundary points may be checked for evaluation of the optimum

solution in the decision-making process. In this article a computer assisted convex hull computation algorithm

using the Mean Point and Python code verified results of the designed algorithm are discussed.

Keywords: Boundary points, Convex set, Convex hull, Extreme points, Mean Point, LPP

I. INTRODUCTION

In Euclidean space, a convex set is the region such that, for every pair of points within the region,

every point on the straight-line segment that joins the pair of points is also within the region. The convex hull or

convex envelope of a set X of points in the Euclidean plane or Euclidean space is the smallest convex set that

contains X. The domains and ranges of the functions for many linear programming problems’ constraints are

hyper-planes which are convex sets. The solution processes of optimization problems are computed by

improving the finite set of feasible points by means of a suitable iterative algorithm. The set of feasible points in

many situations are not defined in the convex set forms. Therefore, a minimum convex set containing the

feasible solution set in the form of a convex hull is computed first to decide the possible convex polyhedron that

contain the basic feasible solution (BFS) as its vertices.

In computational geometry, several algorithms are proposed for the computation of the convex hull of a

finite set of points with various computational complexities. The convex hull computation is the framing of a

convex shape that can represent the required convex feasible region for the constrained optimization problem.

The time complexity of the corresponding algorithm is usually estimated in terms of - the number of input

points of the finite set and/or - the number of points on the boundary of the convex-hull. If the time

complexity depends on , then the algorithm is output sensitive. There are several algorithms available in the

convex- hull computation algorithm literature.

The notable algorithms are Gift wrapping planar algorithm of Jarvis [1], Graham Scan algorithm [2],

Chan’s algorithm [3], The ultimate planar convex hull algorithm of Kirkpatrick & Seidel [4] and Akl-Toussaint

heuristic algorithm [5]. In section II, we present the pseudocode of the algorithm. Then in section III, we give a

step by step description of the algorithm. Section IV presents the analysis of the computational complexity of

the algorithm followed by section V where the outputs of the Python code for the algorithm are presented.

II. PSEUDOCODE OF THE PROPOSED ALGORITHM

check_counter_clockwise(prev, nxt, curr)

1- value = (nxt.x - prev.x)*(curr.y - prev.y) - (nxt.y - prev.y)*(curr.x - prev.x)

2- if value > 0:

http://www.ajer.org/

American Journal of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 71

3- return False

4- else:

5- return True

convexhull(list A):

1- mean_x = mean x-coordinate in list A

2- mean_y = mean y-coordinate in list A

3- M = [mean_x, mean_y]

4- max_point = point in list A with maximum x coordinate (take the first instance in case of multiple

instances)

5- min_point = point in list A with minimum x coordinate

6- Initialise empty lists Q1 = [], Q2 = [], Q3 = [], Q4 = []

7- for i = 1 to n:

8- If i doesn’t correspond to max_point or min_point:

9- d = distance between A[i] and M

10- a = positive angle in degrees that the line joining A[i] with M makes with the line joining M with

max_point in the counterclockwise direction

11- Append [A[i].x, A[i].y, d, a] to Q1, Q2, Q3 or Q4 according to the quadrant of A[i] with respect to M

12- Sort Q1, Q2, Q3 and Q4 according to distance parameter stored at each index

13- = length(Q1), = length(Q2), = length(Q3) and = length(Q4)

14- Initialise circular linked as convex_hull and insert max_point and min_point in it

15- while max(, , ,) > 0:

16- Take out the last element from each of Q1, Q2, Q3 and Q4 (if it exists) and insert it in sorted order with

respect to angle parameter in convex_hull

17- prev = convex_hull.head, curr = prev.next, nxt = curr.next

18- while curr is not convex_hull.head:

19- if check_counter_clockwise(prev, nxt, curr) is false:

20- curr = nxt

21- nxt = nxt.next

22- prev.next = curr

23- else:

24- prev = prev.next

25- curr = curr.next

26- nxt = nxt.next

27- Print convex_hull to get the points on the boundary of the convex hull in counterclockwise direction

III. DESCRIPTION OF THE ALGORITHM

(1) The input is a list of pairs which denotes the set of input points on the X-Y plane for which we

have to find the convex hull.

(2) Find the mean - coordinate and the mean - coordinate. Label this point as M[mean_x, mean_y]. This is

the mean point.

(3) Since the two points with the maximum coordinate and the minimum coordinate have to be a part of

the convex hull, we find them both and store them in max_point and min_point respectively.

(4) Initialise four lists labeled as Q1, Q2, Q3 and Q4 which denote the four quadrants when we draw imaginary

X-Y axes by setting the origin at the point M. The positive direction of this X axis is the extension of the

line segment joining M to the point max_point.

(5) The points- max_point and min_point are not put in any of these lists. Put every other input point in

exactly one of these four lists by comparing their coordinates and coordinates with that of point M.

(6) Each value in these four lists is of the form [coordinate, coordinate, distance, angle]. Here distance is

American Journal of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 72

the distance of the point from M. The angle is found as the inverse tangent of the ratio of length of

component (of line joining point to the M) with the component (of the same line joining point to M) in

degrees, and the points are considered from all four quadrants Q1, Q2, Q3 and Q4. We then add 360º to the

values that are negative in order to store all angles as positive values.

(7) Sort the values in the four lists individually according to the distance parameter.

(8) Initialize a circular linked list called convex_hull and insert in it the two points: max_point and

min_point. The head of the linked list points to the node corresponding to max_point. The node for

max_point points to the node containing min_point which, in turn points to the head. This linked list at

the end of the algorithm will have all the vertices of the convex hull in anti-clockwise direction starting at

max_point. The nodes in this linked list will also be of the form [coordinate, coordinate, distance,

angle]. Suppose curr is a node then curr.next gives us the node that comes after curr in the linked list.

(9) Let , , and be the number of points in Q1, Q2, Q3 and Q4 respectively. Repeat the steps (10) to

(12) while .

(10) Remove the last element from each list (if it exists otherwise pass) and store it in a new list temp_list. The

last element is the current element with the maximum distance from M in that list. Whenever we remove

an element, we decrease the corresponding variable , , or .

(11) The number of elements in temp_list will be at most 4. We now insert these points into convex_hull

based upon the angle parameter. The convex_hull list must always be in sorted order with respect to angle

of the nodes starting at the first node (max_point with angle 0°). We insert a node with angle B between

nodes with angles A and C if A< B < C. Note that a node might have to be inserted after the last node and

before the head node if its angle is greater than every value in the list.

(12) After the insertion of the new nodes, we test whether the points can be a part of the boundary of the

convex hull or not. In convex_hull, we start from the head node (max_point) and take three consecutive

nodes at a time. These three points are in the counterclockwise direction since we inserted them in sorted

order. Let these points be , and in this order. These may be a part

of the convex hull if and only if

(1):

 If this value comes out to be negative, we delete the node curr denoting the point and set

, and

 Otherwise, , and

 This step is terminated when we go around the list once and reach the head of convex_hull again.

(13) After the while loop in from steps (9) to (12) ends, print the values in convex_hull starting from the head

to get the vertices of the convex hull boundary in counter clockwise direction. These points are on the

boundary of the convex hull.

IV. DESCRIPTION OF COMPUTATIONAL COMPLEXITY OF ALGORITHM AND

INFERENCE

If we consider basic mathematical operations to run in constant time, we can see that the execution

time of steps (2) to (6) is . Using a sorting algorithm like the merge sort or the quick sort, step (7) runs in

 time. This is so because we can argue that on average, one quadrant as defined above will have

number of points.

The while loop started in step (9) executes as long as or or or . The

average number of times the while loop will run is thus .

In each iteration of the while loop, we extract at most one point from each of the four quadrants and

insert these points at their appropriate positions into convex_hull. After this, we iterate over this circular linked

list considering three consecutive points at a time. Assume that we are at the ith iteration and let the length of the

American Journal of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 73

circular linked list be .

(2):

We insert 1, 2, 3 or 4 points into this linked list in sorted order. Let be the number of points

inserted into the linked list in the ith iteration.

We have to count the average (expected) number of comparisons that are done for each of these

insertions. For the first insertion, the expected number of comparisons will be . For the second insertion,

the expected number of comparisons will be . Similarly, we can find the expected number of comparisons

for the other two points. Hence the average number of comparisons will be:

(3):

where the function is defined as:

(4): otherwise

Since we are looking for an upper-bound to the number of comparisons, we assume that we make all

four insertions in each case. The length of the list now is and we also see that the number of

comparisons on average is from (3).

After the insertions are done, we go around the list once and delete some point(s) based on the

inequality (1). This adds to more operations. The number of the operations in the while loop started

in step (9) of the algorithm is:

(5): +

Whenever we have points, in the worst case we can delete of them when we iterate around

the list taking three consecutive points at a time. The minimum number of points deleted here can be 0. The

expected number of deletions will be thus . We also defined - as the number of points which form the

boundary of the convex hull. Assuming uniform distribution, we can claim that after iterations, we will have

 number of points in our convex_hull which are a part of the boundary. These can’t be deleted when we

make a transition from the iteration to the iteration of the while loop.

 The expected length of the list after the deletion will be

(6):

(7):

Putting values of from to in (7) and adding the equations vertically, we get:

(8): =

Using (8) with (5), we can see that the average runtime of the algorithm will be

 . This algorithm is thus output sensitive. In cases where , the

runtime will be .

American Journal of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 74

The worst case occurs when all of the input points lie on the boundary of the convex hull, because then

no point is deleted as we go from the ith iteration to the (i+1)th iteration as discussed above and then we can show

that the runtime is achieved by setting to get .

V. VERIFICATION OF CONVEX HULL COMPUTATIONAL ALGORITHM IN PYTHON

CODE

We have encoded the above described algorithm in Python version 3.4 and used “matplotlib” to plot

the geometric shape of the computed circular linked list of the points that forms the boundary shape of the

convex hull. The set of input points were generated by pseudo random number generator function in the random

module of Python. Instance outputs for the algorithm at and are shown in Fig.1, Fig.2 and

Fig.3 respectively. The point shown in red colour is the Mean Point for the input set. The dashed vertical and

horizontal lines drawn through this point denote the imaginary X and Y axes required to separate the input set

into Q1, Q2, Q3 and Q4. The points on the boundary of the convex hull region (both vertices and non-vertices)

are shown in green colour and the interior points are shown in blue colour.

Fig. 1

Fig. 2

American Journal of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 75

Fig. 3

VI. CONCLUSION

The discussed convex hull computation algorithm uses the mean point to find the polar angles and

distances of all the input points and then with the help of a circular linked list implementation keeps track of all

the points on the boundary of the convex hull. The average case time complexity of the algorithm is .

Thus, the runtime of the algorithm is the same as that of Jarvis [1].

REFERENCES
[1]. R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform. Process. Lett., 2:18–21, 1973.

[2]. Graham, R. L.: An efficient algorithm for determining the convex hull of a finite planar set. Information processing letters1, 132-

133 (1972)

[3]. Chan, T.M. Discrete Comput Geom (1996)16: 361. doi:10.1007/BF02712873

[4]. Kirkpatrick, D. G., Seidel, R. (1986) The ultimate planar convex hull algorithm, SIAM journal on Computing 15 (1), 287-299,

doi:10.1137/0215021

[5]. Selim G. Akl, & G. T, Toussaint, (1978) A fast convex hull algorithm, Information Processing Letters, vol 7, pp 219-222.

