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ABSTRACT: We have recently introduced a technique called “scheduler test case” (STC) as a practical 

means for bridging the gap between scheduling algorithms and scheduler implementations in time-triggered 

embedded systems. The technique was originally applied to single-processor embedded designs employing 

“time-triggered co-operative” (TTC) architectures aimed at highly predictable real-time systems. It only makes 

sense to generalize the STC concept if its applicability in more complicated systems is proven. The study 

detailed in the present paper explores one way in which the STC technique can be adapted to assess the 

behaviour of time-triggered scheduling algorithms in multi-processor embedded systems. The particular systems 

considered are those which employ TTC schedulers (for task scheduling in each microcontroller node) and a 

“shared-clock” (S-C) scheduling protocol (for message scheduling) when system nodes are connected via 

Controller Area Network (CAN) protocol. In more detail, the paper proposes a set of generic “scheduler test 

cases” (STCs) for exploring the impact of various time-triggered S-C scheduler implementations when used on 

particular hardware. The results of the paper demonstrate that the STC concept developed previously is also 

useful (and can be adopted) when more sophisticated real-time scheduling algorithms are implemented in low-

cost embedded systems. 
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I. INTRODUCTION 
There are numerous ways in which we can classify the different architectures employed in embedded 

computer systems. The architecture which forms the focus of this paper is described as “time triggered” (TT); as 

opposed to “even-triggered” (ET) [1]. The ideal TT behaviour cannot be easily achieved in practice, since a 

complete knowledge about the system behaviour (at all time instants) is required. However, approximations of 

this model have been found to be useful in many practical systems. This model involves a collection of periodic 

tasks which operate co-operatively (or “non-pre-emptively”). Such a design is referred to as “time-triggered co-

operative” (TTC) architecture [2]–[6]. This architecture has sometimes been described as a “cyclic executive” 

(e.g. [7]–[9]). Unlike time-triggered pre-emptive algorithms – such as “rate monotonic” (RM), for example – 

systems with TTC architectures have highly predictable timing behaviour (manifested by the very low levels of 

task jitter)[6], [8]. Moreover, such systems can maintain their low-jitter characteristics even when sophisticated 

techniques such as “dynamic voltage scaling” (DVS) are employed to reduce system power consumption [10]. 

Previous work in the area of TT designs has considered the development of both single- and multi-

processor systems. For single-processor ones, extensive studies have been carried out in which they explored 

practical ways to improve the performance of the TT-based systems (especially those which employ TTC 

architectures (e.g. see [10]–[14]). In the case of multi-processor designs, it has been demonstrated that a 

“shared-clock” (S-C) message scheduling protocol – used in conjunction with TTC task scheduling algorithm – 

can provide a simple, flexible and predictable platform for many practical systems [2]. In such distributed 

designs, the Controller Area Network (CAN) protocol [15] provides high reliability communications at low cost 

[16]. Many researchers argue that control systems which require a high degree of determinism should be based 

on modern protocols other than CAN (which is considered an old-fashioned solution). Indeed, where costs are 

not an issue, or the bandwidth of the CAN network is insufficient, this may be an appropriate solution.  

However, experience gained with CAN over recent decades means that it is now possible to create extremely 

reliable networks using this protocol, if care is taken at the design and implementation stages (see [17], [18]). 
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Please note that CAN is a deep-rooted standard protocol which has been widely used in automotive and other 

industrial arenas, and as a consequence of its popularity, most modern microcontroller families have members 

with on-chip hardware support for this protocol. Since CAN is usually viewed as “event-triggered” protocol 

[19], the use of a S-C architecture along with CAN hardware helps to achieve a TT network operation [2]. For 

consistency with our previous studies, we will refer to this system as “TTC-SCC” algorithm[20]. 

The first two TTC-SCC protocols were introduced by Michael Pont in 2001 [2]. Later in 2007 [21], 

Devaraj Ayavoo developed two other TTC-SCC protocols and carried out a detailed comparison between all 

four versions of the S-C protocol. In our study published in 2012 [22], we developed a new implementation of 

the TTC-SCC protocol and show its advantages over the four previously-developed implementations. In [23], 

we developed a set of mathematical formulas for estimating (calculating) the message latencies between all 

communicating nodes in all five TTC-SCC scheduler implementations. 

While it is generally accepted that there is a „one-to-many‟ mapping between scheduling algorithms 

and scheduler implementations ([7], [24]–[27]), the process of translating between these two system 

representations has not been widely discussed (see [6], [20], [26]). Some researchers argued that that there is a 

wide gap between scheduling theory and its implementation in operating systems running on specific hardware 

platforms, and that such a gap must be bridged to achieve a meaningful validation of real-time applications([24], 

[28], [29]). To begin to address this issue, we have recently introduced an empirical approach which we referred 

to as a “scheduler test case” (STC). Such a technique was intended to be a practical means for assessing and 

comparing the behaviour of a wide range of representative TTC scheduler implementations employed in single-

processor embedded designs [26]. The aim with the designed “scheduler test cases” (STCs) was to facilitate 

empirical „black-box‟ comparisons of the different scheduler implementations so that the behaviour of these 

implementations can be assessed without the need to access (or fully understand) the underlying source code. As 

clearly pointed out, such a method allowed those implementing the system to gain a better understanding 

(during system construction, testing or maintenance) of the way in which a given TTC implementation can be 

expected to behave under a range of both normal and abnormal operating conditions. In the current study, we 

extend the STC technique developed in [26]to allow an evaluation of more complicated designs based on 

distributed embedded architectures. The study outlined here proposes an appropriate set of STCs to help 

assessing and hence distinguishing the behaviour of a representative implementation classes of the TTC-SCC 

scheduling protocol (as described in [22] and [23]). 

It is worth noting that the main focus of this paper is not on the implementation of a TTC scheduler in 

the individual nodes (which has already been addressed in the previous paper). Instead, we will focus on the S-C 

scheduling protocol when implemented along with TTC algorithm in order to manage the transmission of data 

messages between the different nodes in the system and explore the impact of its various implementations. Since 

such message transmission processes can be described theoretically using mathematical models, the output 

results from most of the STCs introduced here will have the form of mathematical equations. Please note that as 

the complexity of the scheduling algorithm – under test – increases, the use of theoretical (as well as empirical) 

results can help to provide wider information about the real-time behaviour of the system. 

Predictability is a key concern in the development process of time-triggered embedded systems. 

Therefore, it is used here as the main criterion against which each scheduler behaviour is weighed up. To be able 

to express predictability using quantitative measures, the following three criteria are considered: 1) transmission 

jitter; 2) message latencies in the communicating nodes; and 3) the ability of the scheduler to detect an 

unplanned error and begin to handle it (i.e. estimating the node-failure detection time by the network Master). In 

addition, memory overheads and network utilisation resulted from the implementation of each scheduler are 

used to allow a practical comparison between the various schedulers being investigated. 

The remainder of the paper is organised as follows. Section II provides an overview of the STC 

concept we previously developed. In Section III, we propose an appropriate set of STCs to use for multi-

processor TTC-SCC scheduling protocol. Section IV outlines the methodology used to obtain the results 

presented in this paper. In Sections V, we provide results from the employment of the STCs in all five 

implementation models of the TTC-SCC scheduling protocol. In Section VI, a case study is presented in which 

we perform a quantitative comparison between the compared schedulers in terms of their communication 

behaviour. Finally, we draw the paper conclusions in Section VII. 

 

II. SCHEDULER TEST CASE (STC) TECHNIQUE 
Unlike conventional testing approaches, the STC technique developed in [26] did not aim to check the 

correct functionality of the application software or evaluate its quality attributes. Instead, it was mainly 

developed to assess the actual behaviour of the system as a result of employing a particular software 

implementation of a scheduling algorithm on commercial-off-the-shelf microcontroller hardware. In another 

word, the technique provides a practical way to ensure that timing predictions made at early stages in the 
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development process (e.g. at the design stage) are maintained during and after the system implementation 

process. 

Since STC is a testing technique, an appropriate set of test cases must be designed which specify the 

system inputs, predicted results, and execution conditions. Also, only a selective subset of possible test cases 

can be used (since comprehensive testing is not viable). As with all testing methods, the feature of the system to 

be tested must be selected along with the inputs that will execute that feature, and the expected outputs of the 

test cases must be known in advance. All of these test case elements were considered in the process of 

developing the STCs applied in [26] and in the present paper.  

Moreover, the STC technique requires that the system behaviour must be tested under both normal and 

abnormal operating conditions. Normal operations refer to the situations where the scheduler operates in an 

absence of errors, while abnormal operations relate to the occurrence of errors. The error mode in any 

scheduling algorithm – for which the STCs are developed – must be defined by the developer and it should 

reflect a commonly encountered problem facing the developers of such an algorithm. For example, in TTC 

systems, “task overrun” is a major problem which may cause measurable degradation in the system performance 

or jeopardise the system functionality. Therefore, task overrun was used in our previous study to define the error 

mode of the TTC scheduler. The same concepts are applied for multi-processor scheduling systems. This is 

further discussed in the next section. 

 

III. DESIGN OF SCHEDULER TEST CASES (STCS) FOR MULTI-PROCESSOR TT 

EMBEDDED SYSTEMS 
Due to the relative complexity of multi-processor embedded designs, developing test cases for such 

systems cannot be seen as a trivial process. We therefore suggest that – along with empirical tests – each 

scheduler implementation will also be tested using test cases that allow evaluating the behaviour of the system 

by mathematical models. This is further discussed shortly. 

In this section, we present the various scheduler test cases used in this study to verify the different 

implementation options of the TTC-SCC schedulers. In all test cases, we assume that we have one Master and 

three Slaves connected via CAN fieldbus. Each node executes its tasks using TTC scheduling algorithm, 

however, only the Master node is driven by periodic interrupts generated from its on-chip timer. The Master 

Tick message is then used to drive the local time of each of the three Slaves whose timer interrupts are totally 

disabled. Such a process is illustrated in Fig.1(see [23] for further information about the TTC-SCC scheduler 

operation). 

 

 
Fig.1: Simple architecture of time-triggered shared-clock scheduler. 

 

3.1. STC A: Jitter Test 

STC A is developed to assess the jitter levels in the relative timing of Master and Slave ticks in a TTC-

SCC network. Such a transmission jitter is very important and can have a significant impact on the overall 

predictability of systems employing TTC-SCC protocol. Further details about the sources and consequences of 

such a jitter, and potential solutions to reduce its magnitude in practical designs are discussed in [4], [17]. Note 

that the results from STC A are all empirical. 

In STC A, the system has one task (Master_Task_A) running on the Master node and a 

corresponding task (Slave1_Task_A) running on one Slave node. Given that “Master_Task_A” sends 

random data to “Slave1_Task_A” every time it is called, jitter test assesses the variation in the time delay 

between these two communicating tasks. Please recall that all other Slaves will receive Master data at the same 

instant over the CAN bus[2]. Also note that the overheads of the Master and the Slave task schedulers do not 
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introduce any jitter [30] and, hence, the jitter observed is only caused by the communication protocol due to bit-

stuffing mechanism [31]. 

 

3.2. STC B: Master-to-Slave Message Latency 

STC B is developed to assess the communication latency between the Master node and any Slave node 

in the network. Since such a message latency can be described mathematically, the output results from this STC 

are in the form of mathematical equations.  

In this test case, the message latency between the Master and Slaves in all TTC-SCC protocols is 

calculated. The STC B evaluates the best-case (minimum) and the worst-case (maximum) message transmission 

times between the Master and the Slave node. 

 

3.3. STC C: Slave-to-Master Message Latency 

STC C is developed to assess the communication latency between any Slave node and the Master node 

in the network. Results from this STC are also in the form of mathematical equations.  

In this test case, the message latency between any Slave and the Master in all TTC-SCC protocols is 

calculated. The STC C evaluates the best-case (minimum) and the worst-case (maximum) message transmission 

times between the Slave and the Master node. 

 

3.4. STC D: Slave-to-Slave Message Latency 

STC D is developed to assess the communication latency between Slave „X‟ and Slave „Y‟ in the 

network. Results from this STC are also in the form of mathematical equations. 

In this test case, the message latency between any two Slaves in all TTC-SCC protocols is calculated. 

The STC D evaluates the best-case (minimum) and the worst-case (maximum) message transmission times 

between Slave „X‟ and Slave „Y‟. 

 

3.5. STC E: Node-Failure Detection Time (NFDT) 

As discussed in [26], the STC technique tests the system under both normal and abnormal operating 

conditions. Having considered that STCs B, C and D assess the behaviour of the TTC-SCCprotocol under 

normal conditions, STC E is developed to assess the system behaviour when an error takes place. In 

communication networks, node failure is a common error that can degrade the overall predictability of the 

system. The node failure describes a situation where one or more nodes do not respond to messages sent from 

other nodes due to hardware / software error occurred in the receiving node. 

The S-C protocol applies several error detection and recovery mechanisms. For example, the Master 

can easily detect an error on any Slave if no “Ack” message is received from a particular Slave within its 

sending time interval. Once an error is detected in the S-C network, appropriate handling mechanism(s) can be 

employed. For example, when a Master detects a failure in one of the Slaves, it can have three options: 1) enter 

a safe state then shut down the whole network; 2) reset the network; or 3) start a backup Slave (see [2] for 

further details).The STC E assesses the behaviour of a TTC-SCC protocol when one of the Slaves becomes 

temporarily out of order. This test case evaluates the worst-case time taken by the network-Master to detect the 

failure and hence begin to handle it. Results from this STC are also in the form of mathematical equations. 

 

3.6. Memory and Network Utilisation (NU) requirements 

Memory requirements are also reported here as a means for distinguishing the various TTC-SCC 

schedulers. Moreover, in communication network, the message utilisation of the available network bandwidth is 

a major concern that affects the network efficiency. Therefore, the message bandwidth utilisation in each TTC-

SCC scheduling protocol is also estimated. 

 

IV. METHODOLOGY 
The methodology used to obtain both the experimental and theoretical results is described in this 

section. 

 

4.1. Representative Examples of TTC-SCC Implementations 

In this study, all five TTC-SCC scheduling protocols developed previously have been considered; i.e. 

TTC-SCC1 and TTC-SCC2 [2], TTC-SCC3 and TTC-SCC4 [21], and TTC-SCC5 [22]. Such protocols can be 

viewed as a representative set of the wide range of possible implementation options of the S-C scheduling 

algorithm for which the test cases are developed. 

 

4.2. Hardware and Software Setup 
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The empirical measurements in this study (i.e. jitter) were conducted using Phytec boards supporting 

Infineon C167 microcontrollers. The C167 is a 16-bit microcontroller with a 20 MHz crystal oscillator. The 

C167 board has additional on-chip support for CAN protocol.  

The network nodes (one Master and three Slaves) were connected using a twisted-pair CAN link. The 

CAN baudrate used was 1 Mbit/sec, and 8-byte “Tick” messages were transmitted, with one byte reserved for 

the Slave ID, while the remaining data bytes contained random values. The tick interval used was 4 ms.  

Note that in [2], a complete set of codes required to implement the TTC-SCC protocol on an 8-bit 8051 

microprocessor hardware was provided. For the 16-bit system considered here, the 8051 design was ported to 

the C16x family. Finally, the codes were compiled using the Keil C166 compiler. 

 

4.3. JitterMeasurements 

To make transmission delay measurements, a pin on the Master node was set high (for a short period) 

at the start of the “Master_Task A”. Another pin on the Slave (initially high) was set low at the start of the 

“Slave1_Task_A”. The signals obtained from these two pins were then AND-ed (using a 74LS08N chip 

from Texas Instruments) to give a pulse stream with widths that represent the transmission delays. These widths 

were measured using a National Instruments data acquisition card „NI PCI-6035E‟ [32], used in conjunction 

with appropriate software LabVIEW 7 [33].  

The first set of timing results includes: maximum, minimum and average message transmission times. 

In addition, average jitter and difference jitter were recorded. The difference jitter is obtained by subtracting the 

best-case (minimum) transmission time from the worst-case (maximum) transmission time from the 

measurements in the sample set (this jitter is referred to by other authors as absolute jitter: see [34]). The 

average jitter is represented by the standard deviation in the measure of average message transmission time. 

Note that there are many other measures that can be used to represent the levels of task jitter, but these measures 

were felt to be appropriate for this study. 

 

4.4. Message Latency Calculations 

Here, we will consider the results presented in our previous publication (i.e. [23]). In summary, the 

message transmission delays (latencies) were calculated between the start of the tick in which data is generated 

and the tick in which data is received. For further details, refer to [23]. 

 

4.5. Node-Failure Detection Time Calculation 

To assess the behaviour of the scheduler in the event of node-failure error, it has been decided to 

calculate the worst-case time the Master processor would take to detect the failure and begin to react to it (see 

STC E).  

To obtain the worst-case scenario, it is assumed that the Slave fails immediately after it has talked (i.e. 

sent its Ack message) to the Master. The worst-case node-failure detection time will hence be calculated 

between this failure time and the start of the tick in which the Master checks the status of this Slave. 

 

4.6. Network Utilisation Tests 

Network utilisation in each protocol is also reported in this study. The network utilisation values are 

represented mathematically as functions of: 1) lengths of the various messages exchanged in the network; and 2) 

scheduler tick interval. Assuming 1 Mbit/s CAN speed, the message transmission time will be equal to the 

number of message bits. The network utilisation in each scheduler implementation is presented as the average 

„time‟ bandwidth per tick interval.  

 

4.7. Memory Test 

To reflect the scheduler complexity, the CODE (ROM) and DATA (RAM) memory values required to 

implement each of the compared scheduling protocols are recorded. These values are obtained directly from the 

“.map” file created when the source code is compiled on the Keil simulator. 

 

V. RESULTS 
In this section, the results from the implementation of the STCs in the various TTC-SCC scheduling 

protocols are presented. 

 

5.1. STC A: Jitter 

 

Table 1 shows the results obtained from the STC A (jitter test) implemented with all TTC-SCC 

scheduling protocols.  
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Table 1. Task jitter from all TTC-SCC schedulers (all values in µs). 
Scheduler TTC-SCC1 TTC-SCC2 TTC-SCC3 TTC-SCC4 TTC-SCC5 

Min transmission time 162.9 163 162.9 99.9 100 

Max transmission time 173 173.1 172.9 102 102.2 

Average transmission time 166.3 166 166.2 101 101.1 

Diff. Jitter 10.1 10.1 10 2.1 2.2 

Avg. Jitter 1.5 1.4 1.5 0.6 0.6 

 

It is clear from the results that in TTC-SCC4 and TTC-SCC5 – where Tick messages transmitted from 

the Master had fixed lengths – the difference jitter was reduced by approximately 80% when compared to the 

TTC-SCC1, TTC-SCC2 and TTC-SCC3 schedulers. Recall that jitter is a key factor which indicates (manifests) 

the predictability level of a system. 

 

5.2. STC B, STC C and STC D: Message Latencies 

This section presents the results obtained from the STC B, STC C and STC D implemented with all 

TTC-SCC scheduling protocols. To express the message latencies between any two communicating nodes in the 

network, the following parameters are defined: 

 M: is the Master Tick message length in TTC-SCC1 – TTC-SCC3 schedulers.  

 T: is the length of the tick interval.  

 TDMA1 – TDMA5: are the Time Division Multiple Access rounds for TTC-SCC1 – TTC-SCC5 schedulers 

(respectively). 

 N: is the number of Slaves in the network.  

 DXX: is the distance between successive ticks allocated for a given Slave. 

 DXY: is the shortest distance between Ack messages from any two communicating Slaves. 

 DXi Yi: is the “current” distance between the Ack message of the sending Slave and the Ack message of the 

receiving Slave. 

 DX(i+1) Y(i+1): is the “next” distance between the Ack message of the sending Slave and the Ack message of 

the receiving Slave. 

 m: is the number of Slaves replying per tick interval in TTC-SCC3, TTC-SCC4 and TTC-SCC5. 

 k: is the total number of ticks in the TDMA round. 

 MT is the Master Tick message length in TTC-SCC4 and TTC-SCC5 schedulers. 

 MD is the Master Data message length in TTC-SCC4 and TTC-SCC5 schedulers. 
 

For a detailed set of graphs showing the communication processes between different nodes and for the 

derivation of the formulasoutlined below, please refer to [23]. 

 

5.2.1. STC B: Master-to-Slave Message Latency 

 

Table 2 presents the equations for the best- and the worst-case message latencies between the Master 

and a given Slave in all TTC-SCC schedulers. 

As discussed in [23], TDMA rounds in all schedulers are calculated as follows: 

NTTDMA 1                                    (1) 

TNTDMA )22(2                          
(2) 

m

NT

m

TDMA
TDMA 

1
3

                     
(3) 

m

TN
TDMA

)1(
4




                           
(4) 

m

NT

m

TDMA
TDMATDMA 

1
35 (5)

 

 

Table 2: Master-to-Slave latency equations for all TTC-SCC schedulers. 

Scheduler Best-case latency Worst-case latency 

TTC-SCC1 T + M T + M 

TTC-SCC2 T + M T + M 

TTC-SCC3 T + M T + M 

TTC-SCC4 T + M T + M 
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TTC-SCC5 2T + MT 2T + MT 

 

5.2.2. STC C: Slave-to-Master Message Latency 

 

Table 3 presents the equations for the best- and the worst-case message latencies between a given Slave 

and the Master in all TTC-SCC schedulers. 

 

Table 3: Slave-to-Master latency equations for all TTC-SCC schedulers. 
Scheduler Best-case latency Worst-case latency 

TTC-SCC1 2T – M TDMA1 + T – M 

TTC-SCC2 2T – M DXX + T – M 

TTC-SCC3 2T – M TDMA3 + T – M 

TTC-SCC4 2T – M TDMA3 + T – M 

TTC-SCC5 2T – MT TDMA5 + T – MT 

 

5.2.3. STC D: Slave-to-Slave Message Latency 

 

Table 4 presents the equations for the best- and the worst-case message latencies between any two 

Slaves in all TTC-SCC schedulers. 

 

Table 4: Slave-to-Slave latency equations for all TTC-SCC schedulers. 
Scheduler Best-case latency Worst-case latency 

TTC-SCC1 

For DXY> T:  DXY + T For DXY> T:  DXY + TDMA1 

For DXY = T:  
2T + 

TDMA1 
For DXY = T:  T + 2 TDMA1 

TTC-SCC2 

For DXi Yi> T:  DXi Yi + T For DX(i+1) Y(i+1)> T:  DXi Y(i+1) 

For DXi Yi = T:  
DXi Y(i+1) + 

T 
For DX(i+1) Y(i+1) = T:  DXi Y(i+2) 

TTC-SCC3 2T TDMA3 + T 

TTC-SCC4 2T TDMA3 + T 

TTC-SCC5 2T TDMA5 + T 

 

5.3. STCE: Node-Failure Detection Time (NFDT) 

This section presents the results obtained from the STC E implemented with all TTC-SCC schedulers. 

Derivation of all formulas is provided in this study. 

 

5.3.1. Nfdt For Ttc-Scc1 

In TTC-SCC1, the Master node has to wait for a complete TDMA round before the status of all Slaves 

can bechecked. UsingFig.2,the worst-case failure detection time for the TTC-SCC1 scheduler is calculated as: 

NFDT1 = TDMA1 + T – M = (N+1) T – M (6) 

 

In the example shown in the figure, the Master would take four Tick intervals (i.e. TDMA plus one 

additional tick) to detect a failure on S1. The situation would become worse ifthe number of Slave nodes N 

increases. 

 

Tick Ack1

Time

Master

Tick
Slave

Tick

Tick Ack2 Tick Ack3 Tick Ack1 Tick

Failure on S1 just after it

sends its Ack1 message

Failure on S1 is

detected by Master

TDMA T

M

 
Fig.2: Failure detection time in TTC-SCC1. 

 

5.3.2. Nfdt For Ttc-Scc2 

In TTC-SCC2, the Master node has to wait until the status of the Slave is next checked. Using Fig.3, 

the worst-case failure detection time for the TTC-SCC2 scheduler is calculated as: 

NFDT2= DXX+ T – M          (7) 
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Tick Ack1

Time

Master

Tick
Slave

Tick

Tick Ack2 Tick Ack1TickAck1 Tick

Failure on S1 just after it

sends its Ack1 message

Failure on S1 is detected

by Master

Dxx T

M

 
Fig.3: Failure detection time in TTC-SCC2. 

 

In the example shown in the figure, the Master would take approximately three Tick intervals to detect 

a failure on S1. Failure detection time for a given node in TTC-SCC2 scheduler would depend on the number of 

Slaves in the network, length of the TDMA round, and the number of ticks – within the TDMA round – used to 

communicate with that Slave. In some cases, where (for example) TDMA2 is very long and the Slave is only 

checked once per TDMA round, detecting failure in such a Slave can be too long. This can have an adverse 

impact on the predictability of many networks. 
 

5.3.3. Nfdt For Ttc-Scc3 

The TTC-SCC3 allows the Master node to quickly receive Ack messages from the Slaves. For 

example, Fig.4 illustrates an example where S1 suffers a failure as soon as it has sent its Ack message. It is 

assumed here that the TDMA round is extended across two tick intervals. As a result, the longest possible time 

for the Master node to detect a failure on S1 node is calculated as follows: 

NFDT3 = TDMA3 + T – M = [(N / m)+ 1] T – M  (8) 

 

Remember that TDMA here equals to NT / m. When all Slaves are allowed to reply in one tick (i.e. N = m), 

then the worst-case failure detection time becomes equal to 2T – M.This duration is slightly less than two Tick 

intervals (which is significantly less than the corresponding time in TTC-SCC1 and TTC-SCC2 for non-trivial 

networks). 

Tick Ack1

Time

Slave

Tick

Ack2 Tick Ack3 Ack4 Tick Ack1 Ack2 Tick

Master

Tick

T

Failure on S1 just after it

sends its Ack1 message
Failure on S1 is

detected by Master

TDMA

M

 
Fig.4: Failure detection time in TTC-SCC3. 

 

5.3.4. Nfdt For Ttc-Scc4 

The results here are very similar to those obtained from the TTC-SCC3 scheduler. The only difference 

is that the Tick message here is extremely short, therefore the worst-case failure detection time for S1 in the 

example shown inFig.4 is calculated as follows: 

NFDT4 = TDMA4 + T – MT= [(N + 1) / (m + 1)] T – MT(9) 

 

Recall that N is the original number of Slaves and MT is the Master Tick message length: this is in order 

to distinguish it from the ordinary Tick message which contains data in its data field. 
 

5.3.5. Nfdt For Ttc-Scc5 

Fig.5 illustrates an example where S1 suffers a failure as soon as it has sent its Ack message. If the 

TDMA round is extended across two tick intervals, the longest possible time that the Master node takes to detect 

a failure on the Slave node is calculated as follows: 

NFDT5= TDMA5 + T – MT – MD = [(N/m)+1] T – MT – MD(10) 
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Fig.5: Failure detection time in TTC-SCC5. 

 

As in the TTC-SCC3 scheduler, when all Slaves areallowed to reply in one tick (i.e. N = m), then the 

worst-case failure detection time becomes equal to 2T – MT – MD. 

 

5.4. Network Utilisation (NU) 

This section presents mathematical formulas for calculating the network utilisation in all TTC-SCC 

schedulers. Recall that here we consider the utilisation of the network time-bandwidth. 

 

5.4.1. NU For TTC-SCC1 

Assume that all Ack messages are equal in length, and each one is represented by S (due to Slave 

sending this type of message), then the network utilisation in TTC-SCC1 can be calculated as follows: 

T

SM

NT

NSNM

TDMA

NSNM
NU










1
1 (11) 

 

Remember that the number of Tick messages in each TDMA round isequal to the number of Slaves. If 

the length of the Tick message is assumed equal to the length of Ack message, then (11) can be simplified as: 

T

M
NU

2
1  (12) 

5.4.2. NU For TTC-SCC2 

Assume that all Ack messages are equal and, where any Ack message is represented by S, k is the total 

number of ticks in the TDMA round, M is the Master Tick message length, then the network utilisation in TTC-

SCC2 can be calculated as follows: 

 
T

SM

kT

SMk
NU





2 (13) 

 

If the length of the Tick message is assumed equal to the length of Ack message, then (13) can be 

simplified as: 

T

M
NU

2
2  (14) 

5.4.3. NU for TTC-SCC3 

Again, assume that S is the length of any Ack message, then the network utilisation in TTC-SCC3 can 

be calculated as follows: 

T

mSM

m

NT

NSM
m

N

TDMA

NSM
m

N

NU


































3

3
(15) 

 

Remember that the number of Tick messages in each TDMA round is equal to the number of tick 

intervals (which is equal to N / m). If the length of the Tick message is assumed equal to the length of Ack 

message, then (15) can be simplified as: 

 
T

Mm
NU




1
3 (16) 

5.4.4. NU for TTC-SCC4 

Again, assume that S is the length of any Ack message, and MT is the length of the Master Tick 

message, then the network utilisation in TTC-SCC4 can be calculated as follows: 
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 

T

mSM

T
m

N
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m

N

NU T
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


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





 








 


1

1
1

4
(17) 

 

Remember that the Tick message is sent from a dedicated Master node, and the number of Slaves has 

increased by one: this is where the term (N+1) comes from. The length of the Master Tick message is assumed 

shorter than the length of Ack message since it contains no data, so S cannot be substituted by MT in the 

equation. 

 

5.4.5. NU for TTC-SCC5 

Again, assume that S is the length of any Ack message, then the network utilisation in TTC-SCC5 can 

be calculated as follows: 

T

mSMM

m
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m

N
M

m

N

NU DT
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
















5
(18) 

 

Remember that in each tick, the Master sends Tick message and Data message. The Master Tick 

message is assumed shorter that the Data message, since it contains no data. If the length of the Master Data 

message is assumed equal to the length of Ack message, then (18) can be simplified as: 

 

 
T

MmM
NU DT 


1

5 (19) 

5.5. Memory Requirements 

 

Table 5presents the memory overheads resulted from the implementation of all TTC-SCC scheduling 

protocols on the used C166 microcontroller hardware. 

 

Table 5: Memory overheads for all TTC-SCC schedulers (all values are in Byte). 
Scheduler Master Slave 

ROM RAM ROM RAM 

TTC-SCC1 1666 30 1590 108 

TTC-SCC2 1710 31 1590 108 

TTC-SCC3 1838 33 1722 116 

TTC-SCC4 1768 32 1722 116 

TTC-SCC5 1884 34 1760 118 

 

The table clearly shows that all Slaves required the same memory overheads in TTC-SCC1 and TTC-

SCC2, and in TTC-SCC3 and TTC-SCC4. This is because the Slave codes are identical in these cases. In the 

Master, it can be seen that the memory overheads increased as the scheduler incorporated more features. For 

example, TTC-SCC5 scheduler required the largest amount of memory overheads to be implemented on the 

used hardware platform. However, such increases in memory requirements can still be seen very small (i.e. 

approximately 12% in the ROM and RAM as compared to the basic TTC-SCC1 scheduler). 

 

VI. CASE STUDY: PRACTICAL COMPARISON BETWEEN TTC-SCC SCHEDULERS 
In this section, we seek to provide a practical comparison between the various schedulers considered 

here using a small case study. This is basically to allow the reader understand how the STC technique helps to 

provide a meaningful comparison between the behaviour of the various TTC-SCC schedulers when operated at 

real-time. Thus, we will use the same system described in [23]. Briefly, three Slave nodes are connected up in 

the network, CAN baudrate is 1 Mbit/s and the tick interval is 4 ms. Assuming “standard” CAN messages (i.e. 

11-bit identifier), “Tick” and “Ack” messages send seven “random” data bytes along with the Slave / Group ID 

byte (except in the Tick-only message which has no data), then the value of M, MD and S are equal to 135 s 

(with the worst-case level of bit-stuffing) and the value for MT is equal to 47 s (without data bytes and any bit-

stuffing). The configurations of the TTC-SCC schedulers used with this small network are presented inTable 6. 

The results obtained from this case study are summarised inTable 7. Again, as in [23], the following 

abbreviations are used: M-S (Master-to-Slave), S-M (Slave-to-Master), S-S (Slave-to-Slave), NFDT (Node-
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failure detection time), NU (Network utilisation), BC (Best-case) and WC (Worst-case).  

Table 6: TTC-SCC models used in the case study to allow a comparison between schedulers. 

Scheduler 
TDMA 

(Ticks) 

TDMA 

(s) 
Comments 

TTC-SCC1 3 12 
Three Slaves, where each Slave sends its Ack once in its 

allocated tick. 

TTC-SCC2 4 16 
S1 is allocated two ticks to send its Ack message, while S2 and 

S3 only send their Ack once. 

TTC-SCC3 1 4 Here, m = 3. All Slaves send their Ack in the same tick 

TTC-SCC4 1 4 
Here, m = 4. The number of Slaves increased by one. Tick 

message is very short compared to Slaves Ack messages. 

TTC-SCC5 1 4 
Here, m = 3. Tick message is also very short compared to 
Master Data and Slaves Ack messages. 

Table 7: Results from the case study used to compare between TTC-SCC schedulers. 

 

Scheduler 

M-S1 

Latencies 

(s) 

S1-M 

Latencies 

(s) 

S1-S2 

Latencies 

(s) 

NFDT (S1) 

(s) 

NU 

(%) 

BC WC BC WC BC WC 

TTC-SCC1 4.135 12.135 7.865 15.865 20 28 15.865 6.75% 

TTC-SCC2 4.135 8.135 7.865 11.865 20 24 11.865 6.75% 

TTC-SCC3 4.135 4.135 7.865 7.865 8 8 7.865 13.5% 

TTC-SCC4 8 8 8 8 8 8 7.953 14.675% 

TTC-SCC5 8.047 8.047 7.953 7.953 8 8 7.818 14.675% 

 

The results for message latencies have already been discussed thoroughly in [23]. One key observation 

is that the TTC-SCC1 results in comparatively long delays especially when worse-case scenarios are 

considered.However, it maintains high network efficiency (the network utilisation is less than 7%). The use of 

TTC-SCC2 helps to reduce the worst-case message latencies without compromising the network efficiency. 

Moreover, the TTC-SCC3 scheduler provides shorter Master-to-Slave latencies (by 50%) and slightly 

less network utilisation when compared to the TTC-SCC4 and TTC-SCC5.This of course does not imply that 

TTC-SCC3 is superior to TTC-SCC4 and TTC-SCC5 since jitter levels induced in TTC-SCC3 are quite high 

(see  

Table 1 above). In the same way, one can compare any two schedulers against a chosen criterion based 

on the results obtained here.Further criteria can also be considered for meaningful comparisons. 

 

VII. CONCLUSIONS 
The aim of this paper was to explore the applicability of the STC technique developed previously for 

single-processor architectures when implementing more complicateddesigns (e.g. systems which are based on 

multi-processor architectures). The paper proposed a set of scheduler test cases (abbreviated as STCs) to help 

evaluate the behaviour of multi-processor embedded systems when a representative set of appropriate time-

triggered scheduler implementations are employed. The discussions emphasised that the main focus was to 

assess the predictability behaviour of CAN-based TT systems implemented using TTC-SCC scheduling 

protocols. The criteria considered in such an evaluation process included: the levels of jitter in the relative 

timing of Master and Slave ticks, message latencies between any two communicating nodes, node-failure 

detection time, and practical resource requirements (i.e. memory overheads and network utilisation). 

The methodology used to obtain the results from each TTC-SCC implementation when the STCs are 

applied was outlined. The results suggested that there is no prefectimplementation which can fit all applications. 

However, according to the features concerned with in this study for multi-processor embedded designs, it can be 

concluded that the TTC-SCC5 scheduler can be an attractive solution for a wide range of applications due to its 

low-jitter characteristics, short message latencies and short node-failure detection time along with low resource 

requirements. Of course, in other occasions, the user may decide to implement any of the four other schedulers 

(or a combination of them) according to their system-specific requirements. 

Overall, the results presented in this paper has practically demonstrated that the use of STC concept is 

not limited to simple software architectures. Instead, it can easily be adapted to evaluate the implementations of 

scheduling systems with more complex software architectures such as, and not limited to, the S-C scheduling 

protocols considered in this study. However, the complexity of the test case design process for a particular 

system would increase as the system‟s complexity increases. 
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