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ABSTRACT: In this paper, we have analysed a two-warehouse inventory model for deteriorating items with
quadratic demand with time varying holding cost. The effect of permissible delay in payments is also
considered, which is usual practice in most of the businesses i.e. purchasers are allowed a period to pay back
for the goods brought without paying any interest. To make it more suitable to the present environment the effect
of inflation is also considered. Our objective is to minimize the average total cost per time unit under the
influence of inflation. Numerical examples are provided to illustrate the model and sensitivity analysis is also
carried out for the parameters.
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l. INTRODUCTION

The main problem in an inventory management is to decide where to stock the goods. Generally, when
the products are seasonal or the suppliers provide discounts on bulk purchase, the retailers purchase more goods
than the capacity of their owned warehouse (OW). Therefore, the excess units over the fixed capacity w of the
owned warehouse are stored in rented warehouse (RW). Usually, the unit holding charge is higher in rented
warehouse than the owned warehouse, as the rented warehouse provides a better preserving facility resulting in
a lower rate of deterioration in the goods than the owned warehouse. And thus, the firm stores goods in owned
warehouse before rented warehouse, but clears the stocks in rented warehouse before owned warehouse.

Inventory models for deteriorating items were widely studied in the past but the two-warehouse
inventory issue has received considerable attention in recent years. Hartley [10] was the first person to develop
the basic two-warehouse inventory model. Chung and Huang [5] proposed a two-warehouse inventory model for
deteriorating items under permissible delay in payments, but they assumed that the deteriorating rate of two
warehouses were the same. An inventory model with infinite rate of replenishment with two-warehouse was
considered by Sarma [12]. An optimization inventory policy for a deteriorating items with imprecise lead-time,
partially/fully backlogged shortages and price dependent demand under two-warehouse system was developed
by Rong et al. [18]. Lee and Hsu [13] investigated a two-warehouse production model for deteriorating items
with time dependent demand rate over a finite planning horizon.

Earlier, in Economic Order Quantity (EOQ), it was usually assumed that the retailer must pay to the
supplier for the items purchased as soon as the items were received. In the last two decades, the influence of
permissible delay in payments on optimal inventory management has attracted attention of many researchers.
Goyal [9] first considered a single item EOQ model under permissible delay in payments. Aggarwal and Jaggi
[1] extended Goyal’s [9] model to the case with deteriorating items. Aggarwal and Jaggi’s [1] model was further
extended by Jamal et al. [2] to consider shortages. Chung and Huang [7] further extended Goyal’s [9] model to
the case that the units are replenished at a finite rate under delay in payments and developed an easy solution
procedure to determine the retailer’s optimal ordering policy. A literature review on inventory model under
trade credit is given by Chang et al. [8]. Teng et al. [19] developed the optimal pricing and lot sizing under
permissible delay in payments by considering the difference between the selling price and the purchase cost and
also the demand is a function of price. For the relevant papers related to permissible delay in payments see
Chung and Liao [6], Liao ([14], [15]), Huang and Liao [11].

Recently, Kirtan Parmar and U. B. Gothi [16] have developed order level inventory model for
deteriorating items under time varying demand condition. Devyani Chatterji and U. B. Gothi [4] have developed
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an integrated inventory model with exponential amelioration and two parameter Weibull deterioration. Ankit
Bhojak and U. B. Gothi [3] have developed inventory models for ameliorating and deteriorating items with time
dependent demand and inventory holding cost.

Parekh R.U. and Patel R.D. [17] have developed a two-warehouse inventory model in which they
assumed that the demand is linear function of time t. They took different deterioration rates and different
inventory holding costs in both OW and RW under inflation and permissible delay in payments.

In this paper, we have tried to develop a two-warehouse inventory model under time varying holding
cost and quadratic demand under inflation and permissible delay in payments. In the present work we have
considered same deterioration rate and same linear holding cost throughout the period [0, T]. In this model t,
and T are taken as decision variables. Numerical examples are provided to illustrate the model and sensitivity
analysis of the optimal solutions for major parameters is also carried out. The purpose of this study is to make
the model more relevant and applicable in practice.

1. NOTATIONS
I(t) : Inventory level for the rented warehouse (RW) at time t.
I,(t) : Inventory level for the owned warehouse (OW) at time t.
w : The capacity of the owned warehouse.
D(t) : Demand rate.
0(t) : Rate of deterioration per unit time.
R :Inflation rate.
A : Ordering cost per order during the cycle period.
Cy : Deterioration cost per unit per unit time.
Cy : Inventory holding cost per unit per unit time.
: Order quantity in one cycle.
: Purchase cost per unit.
: Selling price per unit.
. Interest earned per year
. Interest charge per year.
: Permissible period of delay in settling the accounts with the supplier
: time at which the inventory level reaches zero in RW in two warehouse system.
: The length of cycle time.
. TCi: Total cost per unit time in the i"" case. (i = 1, 2, 3)
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Il.  ASSUMPTIONS
The demand rate of the product is D (t) = a + bt + ct* (where a, b, ¢ > 0).
Holding cost is a linear function of time and it is Cy, = h+rt (h, r > 0) for both OW and RW
Shortages are not allowed.
Replenishment rate is infinite and instantaneous.
Repair or replacement of the deteriorated items does not take place during a given cycle.
OW has a fixed capacity W units and the RW has unlimited capacity.
First the units kept in RW are used and then of OW.
The inventory costs per unit in the RW are higher than those in the OW.

N~ wWNE

V. MATHEMATICAL MODEL AND ANALYSIS
At time t = 0 the inventory level is S units. From these ‘w’ units are kept in owned warehouse (OW) and rest in
the rented warehouse (RW). The units kept in rented warehouse (RW) are consumed first and then of owned
warehouse (OW). Due to the market demand and deterioration of the items, the inventory level decreases during
the period [0, t] and the inventory in RW reaches to zero. Again with the same effects, the inventory level
decreases during the period [t;, T] and the inventory in OW will also become zero att=T.
The pictorial presentation is shown in the Figure — 1.
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Figure — 1: Graphical presentation of the inventory system

The differential equations which describe the instantaneous state of inventory at time t over the period [0, T] are
given by

dr, (1) 2

——+0I (t)=—(a+bt+ct’) (0<t<t,) (€N
dt

dil, ()

—+01,(t)=0 (0<t<t,) (2)
dt

dl
o(t)+610(t)=—(a+bt+ct2) (t, <t<T) 3)
dt

Under the boundary conditions I,(t;) = 0, 1,(0) = w, and 1,(T) = 0, solutions of equations (1) to (3) are given by

I,(t):a(tr—t)+(b+a9)(tr;7t)+(c+b9)(tr;t )+ce(t';t )—ae(tr—t)t—be(tr;t )t_ce(t’_; ! (4)

I, (t)=we " (5)

I, (t)= (T—t)+(b+ae)(T ! )+(c+b9)(T ;t )+c9(T ;t )—ae(T—t)t—be(T _Zt )t—ce(T ;t )t (6)

V. COSTS COMPONENTS
The total cost per replenishment cycle consists of the following cost components.

1) Ordering Cost
The operating cost (OC) over the period [0, T] is
OC=A )

2) Deterioration Cost
The deterioration cost (DC) over the period [0, T] is

t, t, T
DC:Cd{J‘e.lf(t)'e_tht+J‘ello(t)'e_tht-ﬁ-J‘e.Io(t).e_thtl
0 0 B
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3) Inventory Holding Cost
The inventory holding cost (IHC) over the period [0, t,] is

IHC = Holding cost during the cycle period T in RW [HC(RW)]
+ Holding cost during the cycle period T in RW [HC(OW)]

tl’
where, | c (rw ) = [(h+ re) -1, (1) e Nldt
0
‘( ;—h{48RA(a+btr+ctr2)—36R3(ae—b+bt,e+20tr+ctr29)+ 24R2(—b9+2c—2ctre)—24ceR}-H
}e R"} J48R4(at,+btrz+ct,3)+36R3(2a—aetr+3bt,—betr2+4ct,2—c9tr3) H
\ Hr \
‘ ‘L l+24R2(—3ae+3b—4bt,9+80tr—Sct,29)+24R (~2b0+4c-5ct,0)-120c0 | J‘\
\ \
1 5(12atr+6aetr2+6bt,2+4betr3-¢-4ctr3+309t,4)]
= HC(RW) = —i+h
12R°| [—8R“{6a+eaet,+2cetf+3bet,2}+36R3(ae—b)+ 24R7 (b0 - 2¢) + 24C0R | \
\ \
} (4R (12at, + 6a0t, 4 6bt, +4betr3+4ctr3+309t,4)7 }
}+rJ+ ~72R’a - 24R’c0t* -~ 36R *b0t,” - 72R “aot,) }
| \
‘l | +72R (20~ b)+ 48R (b0 - 2¢) +120¢0 ] J‘
t, T

-Rt

HC(OW) = I(h +rt) -1, (t) e

0

dt+[(h+ rt)-1,(t)-e "

tl

®

©)

(10)
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| | |24cOR + R*[24b0 + 48c(-1+10)]+R [36ae+36b(—1+tre)+36c(—2tr+t, e)]| |l
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| |h|+R [48a(—1+ 0t, —TO) + 24b(-2t, + 0t  ~T°0) +16c(-3t,°+0t° - T e)] | |l
| | | 2 2 2 3 2 2 | | ‘
| | | .[30a(-2t, +0t°+2T -2Tt 0+ T°0)+10b(-3t,"+ 0t +3T° -3T"t0] | |l
| +R 7| | \

| +2T%0) +5c(-4t°+0t “+4T°—4T7% 0 +3T"0) !
| | r r r | ‘
| | |l
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| o 1 \
| G_Rtr | 2 2 | ‘
| + — IR[48b6+24c(—4+5tr9—5T9)]+R [72a0 + 24b(-3 + 41,0) + 24c(-8t, +5t,°0) | }H
| 12R7 |
| | I+R3[36a(—2+3et,—2Te)+36b(—3tr+2etf—T29)+12c(—12tr2+5etf—2T3e)] }| ‘

| |

| [24a(-4t +30t2+2T —4Tt0+T20)+8b(-9t°+40t°+3T* 6Tt 0+2T°0)] |
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= +r|+R | |
| i | | +4c(-16t° +50t "+ 4T -8T 1,0 +3T"0) | \i \
| | ||
| : | [30a(-2t," +t’0+2Tt - 2Tt 0+ T°t,0) MI |
| |
I | I+R5|+10b(—3tr3+tr49+3thr—3T2tr26+2T3tr6)+50(—4tr4+t,56+4T3tr—4T3tr29|}| }
| | | ame H
| i I | +3T,0) JH }
I | [+120c6 1 }
I |[ [-24cOR + 24R’[-b0 + 2c(1-TO)] ﬂ| }
hl |
+ —af + - +C - + a+ +C
| | 36R°[-a0+b(1-TO)+c(2T -T?0)|+48R*(a+bT +cT?) |l \
| -RT ‘
e
I+ - |F24R(—2be+4c)+24R2[—3ae+b(3—4Te)+c(8T—5Tze)]T| }
12R° | |

I |+rI+36R3[a(2—T6)+b(3T—T26)+c(—T36+4cTZ)] I| }

| |
I { L+48R4[(aT+TZb+T3c)—120c9] JJ }

(11)

4) Interest Earned: There are two cases
Casel: M [I'T)
In this case, interest earned is:

M

IE,=p- Ie~J'(a +bt+ct®)t-e "dt
0
o1 [2R (b+3Mc)+2R"(a+2Mb+3M’c)]

= IE, = ——>>{e " | _2Rb-2R%a - 6¢c (12)

R [ L+3R3(Ma+M2b+Mac)+6c J J

Case2: (M>T)
In this case, interest earned is:
T
IE, = p-le[j(a +bht+ct’)t-e dt+(@a+bT +cTH)T(M = T)]

0
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J_“{ERT [2R(b+3cT)+2R"(a+ 20T +3¢T")+ 3R (aT + 6T +¢T")+ 6c | - 2aR " - 2bR —ec}}L
= IE,=p-I,{R
[+(a+bT +cTHT(M -T) J
(13)
5) Interest Payable: There are three cases described in figure-1
Casel:M Ut UT)
In this case, annual interest payable is:
[ g T 7
IP, = k-1 | j I(t)-e "dt+ j 1, (t)-e "'dt + j 1,(t)-e "'dt |
M M t
I[ I( ;—lZR[b9+Zc(—1+Me)]+24R2[ae+b(—1+Me)+c(Mze—2M)] H ]I
I : }+6R3[6a(—1—6t,+M9)+3b(—6t,2—2M)+20(—6t,3—3M2+M36)]H I
I . (24a[2t,+ 01" - 2M - 2Mot, + M 0] | I !
le="™ | [ |
I 1 j }+R4 +2b[12tr2+86tr3—12M6tr2—12M2+9Mze+4M39]L IL I
s | |
I“R | |+4c[4t7+30t, -~ aMot’ - am s M 0]+ 240 | 1 I
o | |
o I |
I | [12R[-bo+2c(-1,0)]+ 24R2[—ae+b(1—t,e)+c(2t,—tfe)]l | I
[+e 7" |
I | [+36R"(a+bt, +ct,’) - 24c ] | I
W(e—M(R+e)_e—t,(R+9))
= IP, = kIp +
| (R+0) |
i I(e’” I—12R[—b9+20(—9T +1)]+ 24R2[—ae+b(l—T9)+c(2T—Tze)]-I Wi
| : | +36R°(a+bT +¢cT7) J }I
| o ! |
I+ ! 54' \|12R[be+2c(—1+t,e)]+z4R2[ae+b(—1+t,e)+c(—2t,+tfe)} :}I
12R7 \ [ ]
I |+eR 4R [6a(-1+0t, - T0)+3b(-2t, + 0t~ T*0) + 26(-3t," + 0t,° = T°0) ] HI
| \ [
I | \ 4:_63(—2t(+9tr2+2T—2T9t,+T29)+2b(—3t(2+et,3+3T2—3T29tr+2T39).:| \I
+4R
| lt ‘L [+c(-4t >+ 0t " +4T°—4T 0t +3T"0) JHI
| |
| |
(14)
Case2: (t, I M [0 T)
In this case, interest payable is:
T
P, = k-1, [1,(t)-e "'dt
M
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12R[b9+2c( 1+ M6)]+24R*[a0+b(-1+MO)+c(-2M +M’0)]

(15)

fea(2T+T 0-2M -2MTO+M e)+2b( T —3MT29+2T39—3M2+M39)1
+4R ¢ |+24ce

(4T +3T0-4M*+ M 0-4MT e)

1
|
f 1|
| X
| X
| X
+e l+6R ~1-T0+M0)+3b(-T 0-2M +M26)+20(—T36—3M2+M39)} L
| \
| | |
| ||
t 1
]

Case3: (M [UT)
In this case, no interest charges are paid for the item and so

|P3 =0 (16)
Substituting values from equations (7) to (11) and equations (12) to (16) in equations (17) to (19), the retailer’s
total cost during a cycle in three cases will be as under:

1

TC,=—[A+HC(OW)+HC(RW)+DC+IP, - IE,] 17)
T

TC, = i[A+HC(OW)+HC(RW)+DC+IP ~IE,] (18)
T

TC3:—[A+HC(OW)+HC(RW)+ DC+IP, - IE,] (19)
T

Our objective is to determine the optimum values t* and T* of t, and T respectively so that TC; is minimum.
Note that t,* and T* can be obtained by solving the equations

aTC. aTC. )
=0 and -=0 (i=1,2,3) (20)
ot oT
(6TC\||(8TC\||(8TC\|—{ o]I
>
ot T ot oT
Cor Ler SR o | (21)
o’tc, | |
| >0 |
atr Jt,:t’;,TzT* J

The optimum solution of the equations (20) can be obtained by using appropriate software. The above
developed model is illustrated by the means of the following numerical example.

Numerical Example — 1

To illustrate the proposed model, an inventory system with the following hypothetical values is considered. By
taking A =150,w=100,a=8,b=05,¢c¢=02,k=10,p=15,6=0.2,h=1,r=0.5,R=0.06, M =10, Cy4 =4,
Ip = 0.15 and le = 0.12 (with appropriate units). The optimal values of t. and T are t* = 13.71456792,
T* =22.25988127 units and the optimal total cost per unit time TC = 3.346889173 units.

Numerical Example — 2

By taking A =150, w=100,a=8,b=0.5,¢c=0.2, k=10,p=15,6=0.2,h=1,r=0.5 R =0.06, M = 16, C4
=4, Ip = 0.15 and le = 0.12 (with appropriate units). The optimal values of t, and T are t;* = 13.51613807,
T* = 22.37726544 units and the optimal total cost per unit time TC = 3.345597534 units.

Numerical Example — 3

By taking A =150, w=100,a=8,b=0.5,c=0.2,k=10,p=1560=0.2,h=1,r=0.5 R=0.06, M = 25, C4
=4, Ip = 0.15 and le = 0.02 (with appropriate units). The optimal values of t, and T are t* = 13.18456160,
T*=21.82708029 units and the optimal total cost per unit time TC = 3.354324259 units.
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VI.  SENSITIVITY ANALYSIS
Sensitivity analysis depicts the extent to which the optimal solution of the model is affected by the
changes in its input parameter values. Here, we study the sensitivity for total cost per time unit TC with respect
to the changes in the values of the parameters A, w, a, b, k, p, 8, h, r, R, M, Cyq, Ip and le.

The sensitivity analysis is performed by considering variation in each one of the above parameters keeping all
other remaining parameters as fixed.

Table — 1: Partial Sensitivity Analysis Based Numerical Example — 1

Parameter % t, T TC
-20 13.71447314 22.25972159 3.346912472
-10 13.71452053 22.25980143 3.346900821
A +10 13.71461530 22.25996110 3.346877526
+20 13.71466269 22.26004094 3.346865879
- 20 13.71431025 22.25885504 3.347103806
-10 13.71443908 22.25936817 3.346996485
w +10 13.71467456 22.25995064 3.346673450
+ 20 13.71482346 22.26063452 3.346262374
-20 13.84152478 2241111398 3.343914723
-10 13.76345536 22.22684594 3.344374543
a +10 13.65129742 22.18409989 3.348403083
+ 20 13.58816752 22.10821091 3.349934358
-20 13.8042342 22.42534248 3.336424245
-10 13.7378448 22.25457424 3.346352560
b +10 13.65365824 22.16879359 3.356457972
+20 13.59333966 22.07839783 3.366016024
- 20 13.40809897 21.84679176 3.374305795
-10 13.57726226 22.07546066 3.359071177
c +10 13.74245234 22.24245492 3.327533453
+ 20 13.93224244 22.46575234 3.289724248
-20 13.67366618 22.27401292 3.346956312
- 10 13.69435261 22.26692751 3.346918734
k +10 13.72634634 22.25354735 3.346874345
+20 13.75234245 22.23045532 3.346844245
-20 13.69744424 22.23103278 3.347317011
-10 13.70601765 22.24547596 3.347104047
p +10 13.72309523 22.27424896 3.346672374
+20 13.74735242 22.30465234 3.344693510
-20 13.83833426 22.38734515 3.342301127
-10 13.77588804 22.32329591 3.344583519
h +10 13.70534424 22.25552357 3.346834535
+ 20 13.62068895 22.17354374 3.349345345
-20 13.20357242 22.59345423 3.327351645
- 10 13.53183825 21.99245885 3.338248686
r +10 13.87425830 22.49184150 3.354473847
+ 20 14.01504787 22.69505830 3.361185927
-20 13.58566195 22.14684808 3.347400392
-10 13.65213269 22.20358478 3.347388352
M +10 13.77312758 22.31551645 3.345980907
+20 13.89424234 22.38093463 3.343414543
- 20 13.89752709 22.42210880 3.151146989
-10 13.80659136 22.34812012 3.264790826
6 +10 13.62292868 22.16236931 3.407779167
+20 13.51435235 22.02543452 3.553623423
- 20 14.31247578 23.09785921 3.390785280
-10 14.00173743 22.66127789 3.367959896
Cy +10 13.44791651 21.88887087 3.327316573
+20 13.19928734 21.54435448 3.309038613
- 20 13.67366619 22.27401293 3.346956309
-10 13.69435261 22.26692751 3.346918732
Ip +10 13.71559399 22.25534246 3.346876232
+20 13.74230052 22.23734623 3.346834321
- 20 13.69744424 22.23103278 3.347317012
-10 13.70601764 22.24547596 3.347104047
le +10 13.72309523 22.27424897 3.346672377
+20 13.74455743 22.29057395 3.346042343
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Table — 2: Partial Sensitivity Analysis Based Numerical Example — 2

Parameter % tr T TC
- 20 13.51604909 22.37711758 3.345621306
-10 13.51609358 22.37719151 3.345609420
A +10 13.51618256 22.37733936 3.345585645
+20 13.51622705 22.37741330 3.345573756
- 20 13.51591199 22.37631039 3.345813273
-10 13.51602503 22.37678794 3.345705399
w +10 13.51625110 22.37774291 3.345489679
+20 13.51636414 22.37822034 3.345381840
-20 13.64333127 22.52035345 3.342216825
-10 13.57965806 22.44885384 3.343898291
a +10 13.45277320 22.30559047 3.347314233
+20 13.38956532 22.23383113 3.349048078
- 20 13.63481162 22.54865775 3.326087512
-10 13.57516715 22.46261813 3.335847649
b +10 13.45771684 22.29259521 3.355336689
+20 13.39989606 22.20860292 3.365064684
- 20 13.21581454 21.99050041 3.373941719
-10 13.38150471 22.20451234 3.358192800
c +10 13.62768352 22.51962059 3.335297864
+ 20 13.72160264 22.63894021 3.326720367
-20 13.52523031 22.39237401 3.345042694
- 10 13.52064253 22.38475036 3.345320005
k +10 13.51171465 22.36991547 3.345875258
+ 20 13.50737009 22.36269679 3.346153170
- 20 13.48614532 22.32743475 3.347000083
-10 13.50117694 22.35240706 3.346302662
p +10 13.53102955 22.40201124 3.344884651
+20 13.54585219 22.42664574 3.344163978
-20 13.63360874 22.49599813 3.340773135
- 10 13.57429871 22.43635440 3.343175195
h +10 13.45908327 22.31871718 3.348039373
+ 20 13.40309302 22.26069621 3.350500007
-20 13.09635691 21.86323698 3.326199607
- 10 13.32131908 22.13846509 3.336626683
r +10 13.68655241 22.58653786 3.353410265
+20 13.83692044 22.77152068 3.360283803
-20 13.28075404 21.98653331 3.342745114
-10 13.40434365 22.19159195 3.344844285
M +10 13.61670836 22.54444818 3.345332544
+20 13.70665010 22.69408388 3.344337937
- 20 13.7357502 22.58242423 3.123457239
-10 13.60291751 22.45823933 3.262047752
0 +10 13.42959475 22.28682626 3.407275777
+ 20 13.34412799 22.19014080 3.454355134
-20 13.79534277 22.75459060 3.367050204
-10 13.65323617 22.56236200 3.356125211
o' +10 13.38374436 22.19884321 3.335438851
+20 13.30585885 22.05758387 3.315277583
- 20 13.52523031 22.39237401 3.345042693
-10 13.52064253 22.38475036 3.345320005
Ip + 10 13.51171465 22.36991547 3.345875258
+20 13.50737009 22.36269679 3.346153170
- 20 13.48614532 22.32743476 3.347000084
- 10 13.50117694 22.35240706 3.346302664
le +10 13.53102956 22.40201124 3.344884652
+20 13.54585219 22.42664575 3.344163979
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Table — 3: Partial Sensitivity Analysis Based Numerical Example — 3

Parameter % t, T TC
- 20 13.18446186 21.82691502 3.354349092
-10 13.18451173 21.82699765 3.354336674
A +10 13.18461148 21.82716293 3.354311843
+20 13.18466134 21.82724556 3.354299426
- 20 13.18432625 21.82603960 3.354549367
-10 13.18467927 21.82760057 3.354211723
w +10 13.18479693 21.82812078 3.354099199
+20 13.18479693 21.82812078 3.354099198
- 20 13.31931477 21.98110765 3.350336381
-10 13.24755683 21.90558324 3.352374535
a +10 13.11733530 21.74978254 3.356341913
+20 13.05021083 21.67229643 3.358374908
- 20 13.31054574 22.01073005 3.333785661
-10 13.24726480 21.91859734 3.344061525
b +10 13.12242898 21.73617509 3.364573350
+20 13.06085992 21.64587791 3.374808297
-20 12.86485735 21.40993104 3.384654039
-10 13.04146032 21.64109189 3.367810636
c +10 13.20457248 21.90587584 3.334523534
+20 13.40229561 22.10781077 3.334085768
- 20 13.22525283 21.89451611 3.353281835
-10 13.20479079 21.86060235 3.353796635
p +10 13.16455998 21.79394096 3.354864818
+ 20 13.14478079 21.76117570 3.355418422
-20 13.30282615 21.94904273 3.349173527
- 10 13.24312262 21.88778028 3.351739476
h +10 13.12709971 21.76692854 3.356927110
+20 13.07069582 21.70731147 3.359547320
-20 12.68846444 21.18106899 3.338032570
-10 12.95550184 21.52931617 3.346696600
r +10 13.38337921 22.08494842 3.361083736
+20 13.55768506 22.31066367 3.367111872
- 20 13.05396416 21.61080343 3.336519252
- 10 13.11901453 21.71850074 3.345348582
M +10 13.25061016 21.93655146 3.363450676
+ 20 13.31716504 22.04692377 3.372732410
-20 13.34646353 22.79342342 3.195525833
-10 13.25268542 21.88025799 3.270702764
0 +10 13.11295366 21.75863725 3.415650030
+20 13.03955684 21.67944485 3.462226585
- 20 13.46399819 22.20643506 3.375664255
-10 13.32175500 22.01316892 3.364796485
o +10 13.05211161 21.64771033 3.344219928
+20 12.92412517 21.47464179 3.334458659
- 20 13.22525283 21.89451611 3.353281835
- 10 13.20479079 21.86060235 3.353796633
le +10 13.16455998 21.79394096 3.354864818
+ 20 13.14478079 21.76117570 3.355418421
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VIIl.  CONCLUSIONS

» From the Table — 1, we observe that as the values of the parameters a, b, h, r and 6 increase the average
total cost also increases and for the values of the parameters A, w, ¢, k, p, M, Cq, Ip and I, the average total
cost decreases.

» Table — 2 shows that as the values of the parameters a, b, k, h, r, 6, Ip and M increase the average total cost
also increases and for the values of the parameters A, w, ¢, p, Cq4 and I, the average total cost decreases.

» From the Table — 3, we note that as the values of the parameters a, b, p, h, r, M, 6 and le increase the
average total cost also increases and for the values of the parameters A, w, ¢ and C4 the average total cost
decreases.

» From the Figure — 2, we observe that the total cost per time unit is highly sensitive to changes in the values
of ¢, Cq4, moderately sensitive to changes in the values of b, r and less sensitive to changes in the values of
Ay W1 a! ky p: h! M1 Cdl Ip1 Ie-

» From the Figure — 3 we note that the total cost per time unit is highly sensitive to changes in the values of
¢, b, r, C4, moderately sensitive to changes in the values of a, h and less sensitive to changes in the values of
A w, p, MK Ip, L.

» Figure — 4 shows that the total cost per time unit is highly sensitive to changes in the values of b, ¢, M, r,
Cq, moderately sensitive to changes in the values of a, h and less sensitive to changes in the values of A, w,
P, le.
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