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ABSTRACT: The beginning of the 21
st
 century sees auto makers pursuing research in advanced features like 

collision warning and avoidance system into their product. Automotive cruise control system has been 

undergoing development in EU since the PROMETHEUS programme in the late 1980’s, and has currently 

metamorphous into Adaptive Cruise Control (ACC) technology which is presently emerging in the automotive 

market as a convenience function intended to reduce driver workload. Adaptive cruise control is the first of the 

new generation of advanced driver’s assistance devices to reach the market, which partially automates the 

driver’s task and bringing the drivers comfort into perspective. It allows the host vehicle to maintain a set speed 

and distance from preceding vehicles by a forward object detection sensor. The forward object detection sensor 

is the focal point of the ACC system, which determines and regulates vehicle acceleration and deceleration 

through a powertrain torque control system and an automatic brake control system. This study presents 

overview of adaptive cruise control system, operation principles and the advantages of integrating ACC system 

in automobiles. Also, the system must be stable for optimum performance, and stability of a close loop system 

which the cruise system is an example, was determined by calculating the controller gain (K1, K2, K3) and 

substituting into the characteristic equations. The stability of a close loop system for the values of K1, K2 and K3 

when substituted into the characteristic equation produced a negative real part. To achieve stability in close 

loop systems, all the poles must have negative real values and this is in line with the values obtain for p1, p2 and 

p3. From the pole zero plots of 𝑝1 = (-7 ± 7.14), 𝑝2 = (-7 ± 11.60) and 𝑝3 = (-0.08 and -13.91), stability of the 

system was achieved. 
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I. INTRODUCTION 
Adaptive cruise control also known as speed control or autocruise is a system that adequately maintains 

the driver's desired set speed, without any intervention by the driver, by actuating and controlling the throttle 

accelerator pedal linkage. In other words, the system takes over the throttle of the car and maintains a steady 

speed limit desired by the driver. Depending on the driver’s choice of speed, cruise control system can controls 

the speed of a vehicle the same way a driver does, by adjusting the throttle position [3]. According to Hunter [2], 

adaptive cruise control (ACC) system when activated in a vehicle takes into consideration the traffic condition 

and controls the car accordingly. ACC system does not only operate by maintaining the pre-set of a car like 

conventional cruise control systems, but also maintains a constant distance between the car and the vehicle 

ahead by adapting to the traffic condition of the road.  When the setting is programmed to operate on a certain 

set point (desired speed) as shown in the control loop block diagram in Figure 1, further response (illustrated by 

the dotted and bold arrows in the Figure 1) occurs sequentially to fully provide the necessary feedback needed to 

initialise the operation.   
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Figure 1: Car Cruise control Loop Block Diagram [1] 

Cruise control actuates the throttle valve by a cable connected to an actuator. The throttle valve 

controls the power and speed of the engine by limiting how much air the engine takes in [7]. As shown in Figure 

2, two cables can be seen connected to a pivot that moves the throttle valve. One cable comes from the 

accelerator pedal, and one from the actuator. 

 

 
Figure 2: Cruise Control Acceleration and Deceleration [4] 

 

When the cruise control is engaged, the actuator moves the cable connected to the pivot, which adjusts 

the throttle; but it also pulls on the cable that is connected to the gas pedal. Hence, this is why the pedal in a 

vehicle moves up and down when the cruise control is engaged. According to Nice [4], Cruise control is very 

essential in automobile, as long distance journeys would be more tiresome or boring for drivers or people who 

are suffering from fatigue or lead-foot syndrome. Cruise control is far more common in American cars than 

European cars, because the road network in America is wide and straight compared to road network in most 

European countries [6]. However, with increasing traffic condition, cruise controls may be less useful, but 

instead of becoming obsolete and ineffective, cruise control systems are adapting to this new reality which is the 

main objective of adaptive cruise control systems [5]. Nowadays, the new generation cars are designed with 

adaptive cruise control system otherwise known as autonomous or active cruise control, which by means of 

sensors allows the car to follow other cars in the queue while constantly adjusting the speed to maintain a safe 

distance. Adaptive cruise control system does not only maintain a set speed or distance when the vehicle is in 

operation, but can also prevent road accident in high ways [6] 

 

II. METHODOLOGY 
Considering the close loop transfer function of a typical ACC system as shown in Figure 3, the stability 

of a close loop system was calculated for K1, K2 and K3 and the values obtained were substituted into the 

characteristic equation to generate real values to determine whether or not the ACC close loop system in this 

study is stable. This was carried out for peak overshoot with a step of 15% and Damping ratio of 𝜉 = 0.7. 
 

2.1. Close loop ACC System 

 
Figure 3: Close Loop Transfer Function of a Typical ACC 
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From figure 3, 

𝐺1(𝑆) = Transfer function of an actuator 

𝐺2 𝑆  = Transfer function of a plant 

H (S) = Transfer function of a measurement plant  

𝐺𝑂(S) = Open loop transfer function 

𝐺𝑐𝑙  = close loop transfer function 

The transfer function of the closed loop is: 

𝐺𝑐𝑙 = 
𝑌(𝑆)

𝑋(𝑆)
 = 

𝐾𝐺1(𝑆)𝐺2(𝑆)

1+ 𝐾𝐺1(𝑆)𝐺2𝐻(𝑆)
               (1) 

Where 𝐺1 𝑆  = 
1

𝑆+12
      𝐺2 𝑆 =  

10

𝑆+2
       H(S) = 1 

Substituting the following values in equation (1) we have; 

𝐺𝑐𝑙  = 
𝑌(𝑆)

𝑋(𝑆)
  = 

𝐾  
1

𝑆+12
  

10

𝑆+2
  

1 + 𝐾  
1

𝑆+12
  

10

𝑆+2
 ×1 

    = 
10𝐾

𝑆2+2𝑆 12𝑆+24
÷ 1 + 

10𝐾

𝑆2+2𝑆+12𝑆+24
  

 = 
10𝐾

𝑆2+14𝑆+24
 ÷  

𝑆2+14𝑆+24+10𝐾

𝑆2+14𝑆+24
 =   

10𝐾

𝑆2+14𝑆+24
 ×  

𝑆2+14𝑆+24

𝑆2+14𝑆+24+10𝐾
  

𝐺𝑐𝑙  =  
10𝐾

𝑆2+14𝑆+24+10𝐾
               (2) 

 

2.2. Damping ratio of 𝝃 = 𝟎. 𝟕 

Using this equation G(S) = 
𝐾

𝑆2+2𝜉𝜔𝑛 𝑆+𝜔𝑛
2           (3) 

And comparing it with equation (2), we have 

2ξ𝜔𝑛= 14                 (4) 

𝜔𝑛
2 = 24 + 10k                            (5) 

Substituting a damping value of ξ = 0.7 in equation (4) we have;     

2(0.7) × 𝜔𝑛  = 14  

1.4𝜔𝑛  = 14 

𝜔𝑛  = 
14

1.4
= 10   by substituting the value of  𝜔𝑛  in equation (5) we have 

10K = 𝜔𝑛
2 − 24 = 102 − 24 = 76 

K1 =  
76

10
= 7.6 

 

2.3. Peak overshoot of 15% step 

Peak overshoot = 𝑒𝑥𝑝  
−𝜋𝜉

 1− 𝜉2
                 (6) 

0.15 = 𝑒𝑥𝑝  
−𝜋𝜉

 1− 𝜉2
  by taking logarithm of both sides we have; 

In0.15 =  
−𝜋𝜉

 1− 𝜉2
  = 

−𝜋𝜉

 1−𝜉2
     by cross multiplying we have 

 

In0.15 ( 1 − 𝜉2) =  −𝜋𝜉 

 

3.5991(1 − 𝜉2) =  −𝜋𝜉 2 

 

3.5991 – 3.5991𝜉2 = 𝜋2𝜉2 by collecting like terms we have 

  

3.5991 =  𝜋2𝜉2 + 3.5991𝜉2 = 𝜉2(𝜋2 + 3.5991) 

 

𝜉2= 
3.5991

𝜋2+3.5991
  =  

3.5991

13.469
 = 0.2672 

 

ξ = 0.2672  = 0.5169             

 

𝜉 = 0.5169 by substituting the value of   𝜉 = 0.5169 in equation (4)  

 

We have   2(0.5169)𝜔𝑛  = 14 

 

1.033𝜔𝑛  = 14      

 

𝜔𝑛  = 
14

1.033
= 13.55 
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By substituting the value of 𝜔𝑛  = 13.55 in equation (5) we have; 

 

𝜔2 = 24 + 10K  

10K = 𝜔2 - 24 

 

K = 
13.552−24

10
 =          K2 = 15.96 

Settling time of 4 seconds within 2% accuracy of the steady-state value for a system with damping ratio of 0.7 

Using the equation  𝑡𝑠 = 
3

𝜉𝜔𝑛
             (7) 

Making 𝜔𝑛  the subject of the formula we have; 

𝜔𝑛 =
3

4×0.7
 = 1.071 

Substituting the value of 𝜔𝑛 = 1.071 in equation (5) we have;  

𝜔𝑛 
2 = 24+10K         ∴ K = 

𝜔𝑛
2 −24

10
   =  

1.0712  − 24

10
 =     

Therefore, K3 = -2.285 

 

2.4. Steady state error for a unit step 

𝑒𝑠𝑠  = lim𝑠→0  
1

1+𝐺𝑜 (𝑠)
               (8) 

The open loop transfer function is: 

𝐺𝑜(𝑠) = 
10𝐾

𝑆2+14𝑆+24
              (9) 

𝑒𝑠𝑠  = lim𝑠→0  
1

1+ 
10𝑘

𝑆2+14𝑆+24

  = lim𝑠→0  
1

1+ 
10𝑘

(0)2+14(0)+24

  =  
1

1+ 
10𝑘

24

  =  
1

24+10𝑘

24

  = 
24

24+10𝑘
 

𝑒𝑠𝑠  = 
24

24+10𝑘
 

Substituting into the steady-state error of the system the three values of ‘’K’’ obtained above in No 2 of section 

2 above we have;  

(a) K1 = 7.6 

(b) K2 = 15.96 

(c) K3 =  -2.285 

 

For the first, second and third value of K we have; 

(a) 𝑒𝑠𝑠  = 
24

24+10(7.6)
 = 

24

100
  =  0.24 

(b) 𝑒𝑠𝑠  = 
24

24+10(15.96)
 =

24

183.6
  0.131 

(c) 𝑒𝑠𝑠  = 
24

24+10(−2.285)
 = 

24

1.15
 = 20.86 

 

2.5. Using Routh-Hurwitz to determine K  

𝐺𝑐𝑙  =  
10𝐾

𝑆2+14𝑆+24+10𝐾
             

From the equation 𝑆2 + 14𝑆 + 24 + 10𝐾  

𝑎0 = 1                                      

𝑎1 = 14 

𝑎2 = 24 

𝑎3 = 10k 

𝑆
𝑆1

𝑆0

2

 

1                     24
14                   10𝐾

 
14 ×24−10𝐾

14
                 

   

The value of K is: 

24 - 
10𝐾

14
 > 0               

10𝐾

14
 > 24              10K > 336           K >  

336

10
  > 33.6         K > 33.6 

The system is stable since the first column of the Routh–Hurwitz is positive 

 

2.6. The poles of a closed loop system 

 𝑆2 + 14𝑆 + 24 + 10𝐾 = 0  

Substituting the value of 𝐾1 = 7.6,  𝐾2 = 15.96, 𝐾3 =  −2.285  in the characteristic equation we have; 

 𝑆2 + 14𝑆 + 24 + 10𝐾 = 0    

For  𝐾1 = substitute in   the equation below 
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𝑆2 + 14𝑆 + 24 + 10(7.6)  = 𝑆2 + 14𝑆 + 100 = 0 

The root of an equation is given by; 

Root =   
−𝑏± 𝑏2−4𝑎𝑐

2𝑎
    and so the root of the denominator of the transfer function are; 

𝑝1 = 
−1 ±   142−4 ×1×100 

2×1
 = 

−14 ±   −204 

2
 = −7 ± 7.14𝑗 

𝑝1 = −7 ± 7.14𝑗            
For     𝐾2 = 15.96   we have    

𝑆2 + 14𝑆 + 24 + 10 × (15.96) =  𝑆2 + 14𝑆 + 183.6 = 0 

𝑝2 = 
−14 ±   142−4 ×1×183.6 

2×1
 = 

−14 ±  196−734.4

2
 = -7 ± 11.60𝑗 

𝑝2 = -7 ± 11.60𝑗  
For 𝐾3 = - 2.285   we have from the characteristics equation 

𝑆2 + 14𝑆 + 24 + 10 ×  −2.285  =  𝑆2 + 14𝑆 + 1.15 = 0      

By using the almighty formula pole 𝑝3 becomes 

𝑝3 = 
−14±   142−4 ×1×1.15 

2×1
 = 

−14 ±   196−4.6 

2
 = 

−14 ±  191.4

2
  

= 
−14 ± 13.83

2
  

𝑝3 = -0.08 and -13.91 

Creating the Pole-Zero Plot on the Complex Plane (S-Plane), we have; 

(a) 𝑝1 = -7 ± 7.14    

(b) 𝑝2 = -7 ± 11.60   

(c) 𝑝3 = -0.08 and -13.91 

Pole-Zero Plot on the Complex Plane (S-Plane) is graphically represented as shown in Figure 4, 5 and 6.

 

 
Figure 4: Pole-Zero Plots on the S-Plane P1 = -7 ± 7.14 

 

 
Figure 5: Pole-Zero Plots on the S-Plane P2 = -7 ± 11.6 



American Journal Of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g  

 
Page 29 

 
Figure 6: Pole-Zero Plots on S-Plane P3 = -0.08 & -13.91 

 

III. DISCUSSION 
The stability of a close loop system for the values of K1, K2 and K3 when substituted into the 

characteristic equation produce a negative real part with no zeros .For stability to be achieved, all the poles must 

have a negative real values which is in line with the values obtain 𝑝1, 𝑝2, and 𝑝3. Observing pole zero plots 

for 𝑝1, 𝑝2 and 𝑝3. The system is stable. 

 

IV. CONCLUSION 
The history of automotive intelligent cruise system gave an insight to how research that have started 

close to a decade ago, in the area of assisting tired drivers travelling over long distance arrive their destinations 

safely without road accidents. It has also given opportunity for discovery in such systems that aid driving. 

Systems such as Adaptive cruise control and intelligent cruise control adapts to traffic condition and road 

network and enable drivers adjust a set speed range for the car to drive by itself without colliding with the cars 

in front, provided the control loops of the cruise system is stable. This study has showed that, the Close Loop 

System in Adaptive Cruise Controls is stable when all the poles 𝑝1 , 𝑝2 and 𝑝3. have negative real values. 

However, the ACC close loop system must remain stable for proper performance, and this study has given an 

insight on the risk of instability of the system and how to go about achieving the system. 
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