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ABSTRACT: The present investigation is to study the plane wave propagation and reflection ofplane waves in 

a homogeneous transversely isotropic viscothermoelastic medium with two temperature and rotation in the 

context of GN type-II and type-III (1993) theory of thermoelasticity. It is found that, for two dimensional 

assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), 

quasi-transverse wave (QTS) and quasi -thermal waves (QT). The different characteristics of waves like phase 

velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted 

graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally 

insulated boundary is investigated. Theratios of the amplitudes of the reflected waves to that of incident waves 

are calculated as a non-singular system of linear algebraic equations. These amplitude ratios are used further 

to calculate the shares of different scattered waves in the energy of incident wave. The conservation of energy at 

the free surface is verified. The effect of viscosity on the energy ratios are depicted graphically and discussed. 

Some special cases of interest are also discussed. 

Keywords: Phase velocity, Attenuation coefficients, Energy ratios, Penetration depth, viscothermoelasticity. 

 

I. INTRODUCTION 

The problem of elastic wave propagation in different media is an important phenomenon in the field of 

seismology, earthquake engineering and geophysics. The elastic wave propagating through the earth (seismic 

waves) have to travel through different layers and interfaces. These waves have different velocities and are 

influenced by the properties of the layer through which they travel. The signals of these waves are not only 

helpful in providing information about the internal structures of the earth but also helpful in exploration of 

valuable materials such as minerals, crystals and metals etc. This technique is one of the most suitable in terms 

of time saving and economy. 

As the importance of anisotropic devices has increased in many fields of optics and microwaves, wave 

propagation in anisotropic media has been widely studied over in the last decades. The anisotropic nature 

basically stems from the polarization or magnetization that can occur in materials when external fields pass by. 

Mathematical modeling of plane wave propagation along with the free boundary of an elastic half-space has 

been subject of continued interest for many years. Keith and Crampin (1977) derived a formulation for 

calculating the energy division among waves generated by plane waves incident on a boundary of anisotropic 

media. Wave propagation in a microstretch thermoelastic diffusion solid has been investigated by Kumar 

(2015). Reflection of plane waves at the free surface of a transversely isotropic thermoelastic diffusive solid 

half-space has been discussed by Kumar and Kansal (2011).Wave propagation has remained thestudy of concern 

of many researchers (Marin Marin (2013),Kumar and Mukhopadhyay(2010), Lee and Lee (2010),Kumar and 

Gupta (2013), Othman (2010),Kaushal, Kumar and Miglani(2011), Kumar, Sharma and Ram (2008),Kaushal, 

Sharma and Kumar(2010)). 

The theoretical study and applications in viscoelastic materialshavebecomeanimportanttaskforsolidmechanics 

with the rapid development of polymer science and plastic industry as well as with the wide use of materials 

under high temperature in modern technology and application of biology and geology in engineering.  
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Freudenthal (1954) pointed out that most solids when subjected to dynamic loading exhibit viscous effects. The 

Kelvin -Voigt model is one of the macroscopic mechanical models often used to describe the viscoelastic 

behaviour of a material. This model represents the delayed elastic response subjected to stress where the 

deformation is time dependent. Iesan and Scalia (1989) studied some theorems in the theory of 

thermoviscoelasticity. Borrelli and Patria (1991) investigated the discontinuity of waves through a linear 

thermoviscoelastic solid of integral type. Corr et al. (2001) investigated the nonlinear generalized Maxwell fluid 

model for viscoelastic materials. Effect of viscosity on wave propagation in anisotropic thermoelastic medium 

with three-phase-lag model was discussed by Kumar, Chawlaand Abbas (2012). Abd-Alla and Mahmoudstudied 

Magneto-Thermo-Viscoelastic Interactions in an Unbounded Non-homogeneous Body with a Spherical Cavity 

Subjected to a Periodic Loading .Effect of rotation, magnetic field and a periodic loading on radial vibrations 

thermo-viscoelastic non-homogeneous media was investigated by Basyouni, Mahmoud and Alzahrani 

(2014).Harry (2014) analysed coupled longitudinal 1–d thermal and viscoelastic waves in media with 

temperature dependent material properties. 

Kumar R and Sharma N (2008), Kumar R, Sharma K.D and Garg S.K (2012), Ahmed S, El –Karamany, Magdy 

A and Ezzat (2015), Kumar R, Sharma K.D and Garg S.K, (2015), investigated different types of problems in 

viscothermoelastic media by considering various mathematical models. 

Yadav, Kalkal and Deswal (2015) investigated a state problem of Two-Temperature generalized 

thermoviscoelasticity with fractional order strain subjected to moving heat source. Surface waves problem in a 

thermoviscoelastic porous half-space were analysed by Chiriţă (2015).  

Chen and Gurtin (1968), Chen et al. (1968) and Chen et al. (1969) have formulated a theory of heat conduction 

in deformable bodies which depends upon two distinct temperatures, the conductive temperature 𝜑 and the 

thermo dynamical temperature T. For time independent situations, the difference between these two 

temperatures is proportional to the heat supply, and in absence of heat supply, the two temperatures are 

identical. For time dependent problems, the two temperatures are different, regardless of the presence of heat 

supply. The two temperatures T, 𝜑 and   the strain are found to have representations in the form of a travelling 

wave plus a response, which occurs instantaneously throughout the body (Boley and Tolins (1962)).The wave 

propagation in two temperature theory of thermoelasticity was investigated by Warren and Chen (1973). 

Green and Naghdi (1991) postulated a new concept in thermoelasticity theories and proposed three models 

which are subsequently referred to as GN-I, II, and III models. The linearized version of model-I corresponds to 

classical thermoelastic model (based on Fourier's law). The linearized version of model-II and III permit 

propagation of thermal waves at finite speed. Green-Naghdi's second model (GN-II), in particular exhibits a 

feature that is not present in other established thermoelastic models as it does not sustain dissipation of  thermal 

energy (1993) .In this model, the constitutive equations are derived by starting with the reduced energy equation 

and by including the thermal displacement gradient among other constitutive variables. Green-Naghdi’s third 

model (GN-III) admits dissipation of energy. In this model the constitutive equations are derived by starting 

with the reduced energy equation, where the thermal displacement gradient in addition to the temperature 

gradient, are among the constitutive variables. Green and Naghdi (1992) included the derivation of a complete 

set of governing equations of a linearized version of the theory for homogeneous and isotropic materials in 

terms of the displacement and temperature fields and a proof of the uniqueness of the solution for the 

corresponding initial boundary value problem. 

A comprehensive work has been done in thermoelasticity theory with and without energy dissipation and 

thermoelasticity with two temperature. Youssef (2011), constructed a new theory of generalized thermoelasticity 

by taking into account two-temperature generalized thermoelasticity theory for a homogeneous and isotropic 

body without energy dissipation. Quintanilla (2002) investigated thermoelasticity without energy dissipation of 

materials with microstructure. Several researchers studied various problems involving two temperature e.g. 

(Youssef and AI-Lehaibi (2007); Youssef (2006); Youssef (2011); Ezzat and Awad (2010); Sharma and Marin 

(2013); Sharma and Bhargav (2014); Sharma, Sharma and Bhargav (2013); Sharma and Kumar (2013); Abbas 

et al. (2014)). 

In view of the fact that most of the large bodies like the earth, the moon and other planets have an angular 

velocity, as well as earth itself behaves like a huge magnet, it is important to study the propagation of 

thermoelastic waves in a rotating medium under the influence of magnetic field. So, the attempts are being made 

to study the propagation of finite thermoelastic waves in an infinite elastic medium rotating with angular 

velocity. Several authors (Das and Kanoria (2014); Pal, Das and Kanoria (2015); Atwa and Jahangir (2014)) 

have studied various problems in generalized thermoelasticity to study the effect of rotation. 

Here in this paper, we analyse the reflection of plane waves incident at the stress free, thermally insulated 

surface of a homogeneous, transversely isotropic magnetothermoelastic solid with two temperature along with 

rotation in the context of GN type-II and type-III theory of thermoelasticity. The graphical representation is 

given for amplitude and energy ratios of various reflected waves to that of incident waves for different values of 
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incident angle. Also phase velocity and attenuation coefficients of plane waves are computed and presented 

graphically for different values of wave frequency𝜔. 

 

II. BASIC EQUATIONS 
The simplified Maxwell's linear equation of electrodynamics for a slowly moving and perfectly conducting 

elastic solid are 

curl 𝑕  =  𝐽 + 𝜀0
𝜕𝐸  

𝜕𝑡
     (1) 

curl𝐸   = −𝜇0
𝜕𝑕   

𝜕𝑡
     (2) 

𝐸  = −𝜇0  
𝜕𝑢   

𝜕𝑡
× 𝐻0
           (3) 

div𝑕  = 0     (4) 

Maxwell stress components are given by 

𝑇𝑖𝑗 = 𝜇0(𝐻𝑖𝑕𝑗 + 𝐻𝑗𝑕𝑖 − 𝐻𝑘𝑕𝑘𝛿𝑖𝑗 )     (5) 

where𝐻0
     is the external applied magnetic field intensity vector, 𝑕  is the induced magnetic field vector, 𝐸   is the 

induced electric field vector, 𝐽   is the current density vector, 𝑢   is the displacement vector, 𝜇0𝑎𝑛𝑑𝜀0are the 

magnetic and electric permeability respectively, 𝑇𝑖𝑗   are  the components  of Maxwell stress tensor and 𝛿𝑖𝑗  is the 

Kronecker delta. 

The constitutive relations for a transversely isotropic thermoelastic medium are given by   

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇     (6) 

Equation of motion for a transversely isotropic thermoelastic medium rotating uniformly with an angular 

velocity𝜴 = 𝛺𝑛, where n is a unit vector representing the direction of axis of rotation and taking into account 

Lorentz force 

𝑡𝑖𝑗 ,𝑗 + 𝐹𝑖  = 𝜌{𝑢 𝑖 +  𝜴 ×  𝜴 × 𝑢  
𝑖

+ (2𝜴 × 𝑢 )𝑖        (7) 

The heat conduction equation following Chandrasekharaiah (1998) and Youssef (2006) is  

𝐾𝑖𝑗𝜑,𝑖𝑗 + 𝐾𝐼𝐽
∗𝜑 𝑖𝑗 = 𝛽𝑖𝑗𝑇0𝑒𝑖𝑗 + 𝜌𝐶𝐸𝑇      (8) 

 The strain displacement relations are 

𝑒𝑖𝑗 =
1

2
 𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 𝑖, 𝑗 = 1,2,3 

where𝐹𝑖 = 𝜇0(𝐽 × 𝐻0
     )𝑖    are the components of Lorentz force. 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝛼𝑖𝑗 And𝑇 = 𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗  

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗  ,  𝐾𝑖𝑗
∗ = 𝐾𝑖

∗𝛿𝑖𝑗  ,𝑖 is not summed 

𝐶𝑖𝑗𝑘𝑙 (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 )  are elastic parameters,𝛽𝑖𝑗  is the thermal tensor,𝑇 is the temperature, 𝑇0is the 

reference temperature,𝑡𝑖𝑗  are the components of stress tensor,𝑒𝑘𝑙   are the components of strain tensor,𝑢𝑖  are the 

displacement components, 𝜌 is the density, 𝐶𝐸  is the specific heat,𝐾𝑖𝑗 is the materialistic constant,  𝐾𝐼𝐽
∗ is the 

thermal conductivity, 𝑎𝑖𝑗  are the two temperature parameters,𝛼𝑖𝑗  is the coefficient of linear thermal expansion,𝛺 

is the angular velocity of the solid . 

 

III. FORMULATION AND SOLUTION OF THE PROBLEM 

Considering a homogeneous perfectly conducting transversely isotropic magnetothermoelastic medium with two 

temperature and rotation in the context of GN type-II and type-III theory of thermoelasticity initially at a 

uniform temperature𝑇0 . The origin of rectangular Cartesian co-ordinate system(𝑥1, 𝑥2 , 𝑥3) is taken at any point 

on the plane horizontal surface. We take 𝑥3 −axis along the axis material symmetry and pointing vertically 

downwards into the medium, which is thus represented by𝑥3 ≥ 0. The surface (𝑥3=0) is subjected to stress free, 

thermally insulated boundary conditions. We choose 𝑥1 −axis in the direction of wave propagation so that all 

particles on a line parallel to 𝑥2 −axis are equally displaced. Therefore, all the field quantities will be 

independent of 𝑥2 −co-ordinate. Following Slaughter (2002), using appropriate transformations, on the set of 

equations (6)-(7), we derive the basic equations for transversely isotropic thermoelastic solid. The components 

of displacement vector 𝑢   and conductive temperature 𝜑 for the two dimensional problem have the form 

𝑢   𝑥1, 𝑥3 , 𝑡 = (𝑢1, 0, 𝑢3) ,   and  𝜑 =𝜑(𝑥1 , 𝑥3, 𝑡)       (9) 

We also assume that  

𝛀 =  0, Ω, 0           (10) 

From the generalized Ohm's law  

𝐽2 = 0           (11)   

The current density components 𝐽1 and 𝐽3  are given as  



American Journal of Engineering Research (AJER) 2016 
 

 
 
w w w . a j e r . o r g  

 
Page 171 

𝐽1 = −𝜀0𝜇0𝐻0
𝜕2𝑢3

𝜕𝑡2           (12) 

𝐽3 = 𝜀0𝜇0𝐻0
𝜕2𝑢1

𝜕𝑡2          (13) 

 Equations (7) and (8) with the aid of (9)-(13), yield 

 

𝑐11

𝜕2𝑢1

𝜕𝑥1
2 + 𝑐13

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3

+ 𝑐44  
𝜕2𝑢1

𝜕𝑥3
2 +

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3

 − 𝛽1

𝜕

𝜕𝑥1

 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥1
2 + 𝑎3

𝜕2𝜑

𝜕𝑥3
2  − 𝜇0𝐽3𝐻0 =         

𝜌  
𝜕2𝑢1

𝜕𝑡2 − 𝛺2𝑢1 + 2𝛺
𝜕𝑢3

𝜕𝑡
                       (14) 

   

(𝑐13 + 𝑐44)
𝜕2𝑢1

𝜕𝑥1𝜕𝑥3

 + 𝑐44

𝜕2𝑢3

𝜕𝑥1
2 + 𝑐33

𝜕2𝑢3

𝜕𝑥3
2 − 𝛽3

𝜕

𝜕𝑥3

 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥1
2 + 𝑎3

𝜕2𝜑

𝜕𝑥3
2  + 𝜇0𝐽1𝐻0 = 

𝜌  
𝜕2𝑢3

𝜕𝑡2 − 𝛺2𝑢3 − 2𝛺
𝜕𝑢1

𝜕𝑡
          (15)

    

 𝑘1 + 𝑘1
∗ 𝜕

𝜕𝑡
 

𝜕2𝜑

𝜕𝑥1
2 +  𝑘3 + 𝑘3

∗ 𝜕

𝜕𝑡
 

𝜕2𝜑

𝜕𝑥3
2 = 𝑇0

𝜕2

𝜕𝑡 2  𝛽1
𝜕𝑢1

𝜕𝑥1
 + 𝛽3

𝜕𝑢3

𝜕𝑥3
 + 𝜌𝐶𝐸𝑇     (16) 

 

and𝑡11 = 𝑐11𝑒11 + 𝑐13𝑒33 − 𝛽1𝑇         (17) 

𝑡33 = 𝑐13𝑒11 + 𝑐33𝑒33 − 𝛽3𝑇         (18) 

𝑡13 = 2𝑐44𝑒13            (19) 

where𝑇 = 𝜑 −  𝑎1
𝜕2𝜑

𝜕𝑥1
2 + 𝑎3

𝜕2𝜑

𝜕𝑥3
2  

𝛽1 = (𝑐11+𝑐12 )𝛼1 + 𝑐13𝛼3 ,       𝛽3 = 2𝑐13𝛼1 + 𝑐33𝛼3 

In the above equations we use the contracting subscript notations (11 → 1,22 → 2,33 → 3,23 → 4,31 →
5,12 → 6) to relate 𝑐𝑖𝑗𝑘𝑙 𝑡𝑜𝑐𝑚𝑛  

In order to account for the material damping behavior the material coefficients 𝑐𝑖𝑗  are assumed to be a function 

of time operator D =
𝜕

𝜕𝑡
  , i.e.     

𝑐𝑖𝑗 = 𝑐𝑖𝑗
∗where𝑐𝑖𝑗

∗ = 𝑐𝑖𝑗 (𝐷)      (*) 

Assuming that the viscoelastic nature of the material is described by the Voigt model of linear viscoelasticity 

(Kaliski (1963)), we write 

𝑐𝑖𝑗  𝐷 = 𝑐𝑖𝑗  1 + 𝜏0
𝜕

𝜕𝑡
 ,    (**) 

where𝜏0 is the relaxation time assumed to be identical for each 𝑐𝑖𝑗 . 

To facilitate the solution , following dimensionless quantities are introduced: 

 

𝑥1 ′ =
𝑥1

𝐿
 ,  𝑥3′ =

𝑥3

𝐿
  ,  𝑢1′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢1,  𝑢3′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢3,  𝑇 ′ =

𝑇

𝑇0
 , 𝑡 ′ =

𝑐1

𝐿
𝑡 , 𝑡11

′ =
𝑡11

𝛽1𝑇0
 , 

 

𝑡33
′ =

𝑡33

𝛽1𝑇0
,  𝑡31

′ =
𝑡31

𝛽1𝑇0
, 𝜑′ =

𝜑

𝑇0 
 , 𝑎1

′ =
𝑎1

𝐿
 , 𝑎3

′ =
𝑎3

𝐿
, 𝑕′ =

𝑕

𝐻0
  ,Ω′ =

𝐿

𝐶1
Ω      (20)   

 

Making use of (20), (*), (**) in equations (14)-(16), after suppressing the primes, yield 

 

𝜕2𝑢1

𝜕𝑥1
2 + 𝛿4

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3

+ 𝛿2  
𝜕2𝑢1

𝜕𝑥3
2 +

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3

 −
𝜕

𝜕𝑥1

 𝜑 −  
𝑎1

𝐿

𝜕2𝜑

𝜕𝑥1
2 +

𝑎3

𝐿

𝜕2𝜑

𝜕𝑥3
2  

=  
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1 

𝜕2𝑢1

𝜕𝑡2
− 𝛺2𝑢1 + 2𝛺

𝜕𝑢3

𝜕𝑡
 

            (21) 

𝛿1
𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
+ 𝛿2

𝜕2𝑢3

𝜕𝑥1
2 + 𝛿3

𝜕2𝑢3

𝜕𝑥3
2 −

𝛽3

𝛽1

𝜕

𝜕𝑥3
 𝜑 −  

𝑎1

𝐿

𝜕2𝜑

𝜕𝑥1
2 +

𝑎3

𝐿

𝜕2𝜑

𝜕𝑥3
2  =  

𝜀0𝜇0
2𝐻0

2

𝜌
+ 1 

𝜕2𝑢3

𝜕𝑡2 − 𝛺2𝑢3 − 2𝛺
𝜕𝑢1

𝜕𝑡
(22) 

            

𝜀1  1 +
𝜀3

𝜀1

𝜕

𝜕𝑡
 

𝜕2𝜑

𝜕𝑥1
2 + 𝜀2  1 +

𝜀4

𝜀2

𝜕

𝜕𝑡
 

𝜕2𝜑

𝜕𝑥3
2 = 𝜀5

′𝛽1
2 𝜕2

𝜕𝑡 2  
𝜕𝑢

𝜕𝑥1
+

𝛽3

𝛽1

𝜕𝑢3

𝜕𝑥3
  +  

𝜕2

𝜕𝑡 2   𝜑 −
𝑎1

𝐿

𝜕2𝜑

𝜕𝑥1
2 +

𝑎3

𝐿

𝜕2𝜑

𝜕𝑥3
2   (23)

         

 

𝛿1 =
(𝑐13

∗+𝑐44
∗)

𝑐11
∗       ,𝛿2 =

𝑐44
∗

𝑐11
∗      ,𝛿3 =

𝑐33
∗

𝑐11
∗ ,  𝛿4 =

𝑐13
∗

𝑐11
∗,𝜀1 =

𝑘1

𝜌𝐶𝐸𝑐1
2,𝜀2 =

𝑘3

𝜌𝐶𝐸𝑐1
2,𝜀3 =

𝑘1
∗

𝐿𝜌𝐶𝐸𝑐1
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𝜀4 =
𝑘3

∗

𝐿𝜌𝐶𝐸𝑐1
,𝜀5

′ =
𝑇0

𝜌2𝐶𝐸𝑐1
2 

IV. PLANE WAVE PROPAGATION 

 

we seek plane wave solution of the equations  of the form 

 

𝑢1

𝑢3

𝜑
 =  

𝑈1

𝑈3

𝜑∗
 exp⁡{𝑖 𝜔𝑡 − 𝜉 𝑥1𝑠𝑖𝑛𝜃 − 𝑥3𝑐𝑜𝑠𝜃  }       (24) 

where (𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃) denotes the projection of the wave normal onto the 𝑥1 , 𝑥3 plane, 𝜉 and 𝜔 are respectively 

the wave number and angular frequency of plane waves  propagating in 𝑥1 − 𝑥3 plane.  

Upon using (24) in (21)-(23) and then eliminating 𝑈1 , 𝑈3𝑎𝑛𝑑𝜑
∗ from the resulting equations yields the 

following characteristic equation 

 

𝐴𝜉6 + 𝐵𝜉4 + 𝐶𝜉2 + 𝐷 = 0         (25) 

 

where 𝐴 = 𝜁4𝜁5𝜁6 − 𝑐𝑜𝑠2𝜃𝜁2𝜁7𝑝1 − 𝛿1𝜁8
2𝜁1𝜁4 + 𝜁2𝜁7𝜁8 +  𝜁2𝜁7𝜁8

2𝜁1 

𝐵 = −𝜁1𝜁4𝜁6 − 𝜁1𝑐𝑜𝑠
2𝜃𝜁2𝜁7𝑝1 + 𝜔2𝜁6𝜁5 − 𝜁4𝜁5𝜁1 + 𝜁5𝑐𝑜𝑠

2𝜃𝜁7𝑝1 − 𝛿1𝜁4𝜁3𝜁8 + 𝜁2𝜁7𝜁8 − 𝛿1𝜔
2𝜁1𝜁8

2

+ 𝜁3𝜁8𝜁1𝜁4 − 𝜁18
2𝜁1𝜁7 − 𝜁2𝜁8𝜁3𝜁7 + 𝛿1𝜁8𝜁7 + 𝑝1𝜁7𝜁6𝑠𝑖𝑛

2𝜃 − 𝑠𝑖𝑛2𝜃𝜁2𝜁7𝑝1 

𝐶 = −𝜁5𝜁1𝜔
2 − 𝜁1𝜁6𝜔

2 + 𝜁1
2𝜁4 − 𝜁1𝑐𝑜𝑠

2𝜃𝜁7𝑝1 − 𝜁3𝛿1𝜔
2𝜁8 + 𝜁3

2𝜁4 + 𝜁8𝜁3𝜁1𝜔
2 − 𝜁1𝜀5

′𝛽1
2𝜔2𝑠𝑖𝑛2𝜃 

𝐷 = 𝜔2(𝜁1
2 − 𝜁3

2) 

𝜁1 =  
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1 𝜔2 + 𝛺2, 𝜁2 =

𝑎1

𝐿
𝑠𝑖𝑛2𝜃 +

𝑎3

𝐿
𝑐𝑜𝑠2𝜃, 𝜁3 = 2𝑖𝜔Ω, 𝜁4 = 𝜁2𝜔

2 − 𝑠𝑖𝑛2𝜃 𝜀1 + 𝑖𝜀3 −

𝑐𝑜𝑠2𝜃 (𝜀2 + 𝑖𝜀4),𝜁5 = 𝑠𝑖𝑛2𝜃 + 𝛿2𝑐𝑜𝑠
2𝜃, 𝜁6 = 𝛿2𝑠𝑖𝑛

2𝜃 + 𝛿3𝑐𝑜𝑠
2𝜃,𝜁7 = 𝜀5

′𝜔2𝛽1𝛽3,   𝜁8 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃, 𝑝5 =
𝛽3

𝛽1
 

The roots of equation (25) gives six values of, in which we are interested to those roots whose imaginary parts 

are positive. Corresponding to these roots, there exists three waves corresponding to decreasing orders of their 

velocities, namely quasi-longitudinal, quasi-transverse and quasi-thermal waves. The phase velocities, 

attenuation coefficients, specific loss and penetration depth of these waves are obtained by the following 

expressions 

(4.1) Phase velocity 

The phase velocity is given by 

𝑉𝑗 =  
𝜔

 𝑅𝑒(𝜉𝑗 ) 
 ,    j=1, 2, 3 

where 𝑉𝑗 , j=1,2,3 are the phase velocities of QL, QTSand QTwaves respectively. 

(4.2) Attenuation coefficient 

The attenuation coefficient is defined by 

 

𝑄𝑗 = 𝐼𝑚(𝜉𝑗 ), j=1, 2, 3 

where𝑄𝑗  , j=1, 2,3 are the attenuation coefficients of  QL, QTS and QT waves respectively. 

(4.3) Specific loss 

The specific loss is the ratio of energy (∆𝑤) dissipated in taking a specimen through a stress cycle, to the elastic 

energy (w) stored in the specimen when the strain is maximum. The specific loss is the most direct method of 

defining internal fraction of a material. For a sinusoidal plane wave of small amplitude, the specific loss  
∆𝑤

𝑤
  

equals 4𝜋 times the absolute value of the imaginary part of 𝜉 to the real part of 𝜉 ,i.e. 

𝑅𝑖 =  
∆𝑤

𝑤
 
𝑗

= 4𝜋  
𝐼𝑚(𝜉𝑗 )

𝑅𝑒(𝜉𝑗 )
 ,  j=1, 2, 3 

where𝑅1, 𝑅2, 𝑅3 are the specific losses of QL, QTS  and QT waves respectively. 

(4.4) Penetration depth 

The penetration depth is defined by𝑆𝑗 =
1

 𝐼𝑚(𝜉𝑗 ) 
 , j=1, 2, 3 

where𝑆1, 𝑆2 , 𝑆3 are the penetration depths of QL, QTS and QT waves respectively. 

 

 

V. REFLECTION AND TRANSMISSION AT THE BOUNDARY SURFACES 

we consider a homogeneous transversely isotropic viscoelastic half-space occupying the region 𝑥3 ≥ 0. Incident 

quasi-longitudinal or quasi-transverse or quasithermal waves at the stress free , thermally insulated  surface 

(𝑥3 = 0) will generate reflected QL,reflected QTS and reflected  QTwaves in the half-space 𝑥3 > 0. The total 

displacements , conductive temperature are given by 
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𝑢1 =  𝐴𝑗𝑒
𝑖𝑀𝑗6

𝑗=1 ,         𝑢3 =  𝑑𝑗𝐴𝑗𝑒
𝑖𝑀𝑗6

𝑗=1 ,     𝜑 =  𝑙𝑗𝐴𝑗𝑒
𝑖𝑀𝑗6

𝑗=1  ,    j=1,2.........,6               (26)  

where 

𝑀𝑗 = 𝜔𝑡 − 𝜉𝑗 (𝑥1𝑠𝑖𝑛𝜃𝑗 − 𝑥3𝑐𝑜𝑠𝜃𝑗 ),      j=1, 2, 3 

𝑀𝑗 = 𝜔𝑡 − 𝜉𝑗 (𝑥1𝑠𝑖𝑛𝜃𝑗 + 𝑥3𝑐𝑜𝑠𝜃𝑗 ),      j=4, 5, 6 

Here subscripts j=1, 2, 3 respectively denote the quantities corresponding to incident QL, QTS and QT-mode, 

whereas the subscripts j=4, 5, 6 denote the corresponding reflected waves. 

 

𝑑𝑗 =
𝜉𝑗

4 𝜁8𝑗𝜁2𝑗𝜁7𝑗−𝛿1𝜁8𝑗𝜁4𝑗  +𝜉𝑗
2𝜁8𝑗  𝜁7𝑗−𝛿1𝜔

2 +𝜁3𝑗𝜔
2(1+𝜁4𝑗 )

−𝜉𝑗
4 𝜁6𝑗𝜁4𝑗+𝜁7𝑗 𝜁2𝑗 𝑐𝑜𝑠𝜃𝑗

2𝑝1 +𝜉𝑗
2(𝜁4𝑗 𝜁1𝑗−𝜁7𝑗 𝑐𝑜𝑠𝜃𝑗

2𝑝1−𝜔
2𝜁6𝑗 )

, j=1, 2, 3 

 

𝑙𝑗 =
−𝑖𝜉𝑗

3𝜁7𝑗  𝜁8𝑗 𝑐𝑜𝑠 𝜃𝑗𝛿1−𝑝1𝜁6𝑗 𝑠𝑖𝑛 𝜃𝑗  +𝑖𝜉𝑗 𝜁7𝑗  𝜁3𝑗 𝑐𝑜𝑠𝜃𝑗+𝑝1𝑠𝑖𝑛𝜃𝑗 𝜁1𝑗  

−𝜉𝑗
4 𝜁6𝑗𝜁4𝑗+𝜁7𝑗𝜁2𝑗 𝑐𝑜𝑠 𝜃𝑗

2𝑝1 +𝜉𝑗
2(𝜁4𝑗𝜁1𝑗−𝜁7𝑗 𝑐𝑜𝑠𝜃𝑗

2𝑝1−𝜔
2𝜁6𝑗 )

  , j=1, 2, 3 

 

𝑑𝑗 =
𝜉𝑗

4 −𝜁8𝑗𝜁2𝑗𝜁7𝑗+𝛿1𝜁8𝑗 𝜁4𝑗  −𝜉𝑗
2𝜁8𝑗  𝜁7𝑗−𝛿1𝜔

2 +𝜁3𝑗𝜔
2(1+𝜁4𝑗 )

−𝜉𝑗
4 𝜁6𝑗𝜁4𝑗+𝜁7𝑗 𝜁2𝑗 𝑐𝑜𝑠𝜃𝑗

2𝑝1 +𝜉𝑗
2(𝜁4𝑗 𝜁1𝑗−𝜁7𝑗 𝑐𝑜𝑠𝜃𝑗

2𝑝1−𝜔
2𝜁6𝑗 )

, j= 4, 5, 6 

 

𝑙𝑗 =
−𝑖𝜉𝑗

3𝜁7𝑗  −𝜁8𝑗 𝑐𝑜𝑠𝜃𝑗𝛿1−𝑝1𝜁6𝑗 𝑠𝑖𝑛𝜃𝑗  +𝑖𝜉𝑗 𝜁7𝑗  −𝜁3𝑗 𝑐𝑜𝑠𝜃𝑗+𝑝1𝑠𝑖𝑛𝜃𝑗 𝜁1𝑗  

−𝜉𝑗
4 𝜁6𝑗 𝜁4𝑗+𝜁7𝑗 𝜁2𝑗 𝑐𝑜𝑠𝜃𝑗

2𝑝1 +𝜉𝑗
2(𝜁4𝑗 𝜁1𝑗−𝜁7𝑗 𝑐𝑜𝑠 𝜃𝑗

2𝑝1−𝜔
2𝜁6𝑗 )

  , j=4, 5, 6  

 

 
 

VI. BOUNDARY CONDITIONS 

 

Thedimensionless boundary conditions at the free surface𝑥3 = 0, are given by 

(i) 𝑡33 = 0           (27) 

(ii) 𝑡31 = 0           (28) 

(iii) 
𝜕𝜑

𝜕𝑥3
=0           (29) 

Making use of (26) into the boundary conditions (27)-(29), we obtain 

 (−𝑖𝜉𝑗 𝑠𝑖𝑛𝜃𝑗
3
𝑗=1

(𝑐13
∗

𝜌𝑐1
2 + 𝑖𝑑𝑗 𝜉𝑗

𝑐33
∗

𝜌𝑐1
2 − 𝑝1𝑙𝑗 (1 + 𝑎1𝜉𝑗

2𝑠𝑖𝑛𝜃𝑗
2 + 𝑎3𝑐𝑜𝑠𝜃𝑗

2)) 𝐴𝑗𝑒
𝑖𝑀𝑗  𝑥1 ,0 +  (−𝑖𝜉𝑗 𝑠𝑖𝑛𝜃𝑗

6
𝑗=4

(𝑐13
∗

𝜌𝑐1
2 −

𝑖𝑑𝑗 𝜉𝑗
𝑐33

∗

𝜌𝑐1
2 − 𝑝1𝑙𝑗 (1 + 𝑎1𝜉𝑗

2𝑠𝑖𝑛𝜃𝑗
2 + 𝑎3𝑐𝑜𝑠𝜃𝑗

2)) 𝐴𝑗𝑒
𝑖𝑀𝑗  𝑥1 ,0 = 0        (30)

    

 (−𝑖𝜉𝑗 𝑠𝑖𝑛𝜃𝑗
3
𝑗=1 + 𝑖𝑑𝑗 𝜉𝑗 𝑐𝑜𝑠𝜃𝑗 ) 𝐴𝑗𝑒

𝑖𝑀𝑗 (𝑥1 ,0) +  (−𝑖𝜉𝑗 𝑠𝑖𝑛𝜃𝑗
6
𝑗=4 − 𝑖𝑑𝑗 𝜉𝑗 𝑐𝑜𝑠𝜃𝑗 ) 𝐴𝑗𝑒

𝑖𝑀𝑗 (𝑥1 ,0)=0  (31)                       

 (𝑖𝜉𝑗 𝑐𝑜𝑠𝜃𝑗
3
𝑗=1 𝑙𝑗 + 𝑕1𝑙𝑗 ) 𝐴𝑗𝑒

𝑖𝑀𝑗 (𝑥1 ,0) +  (−𝑖𝜉𝑗 𝑐𝑜𝑠𝜃𝑗
6
𝑗=4 𝑙𝑗 + 𝑕1𝑙𝑗 ) 𝐴𝑗𝑒

𝑖𝑀𝑗 (𝑥1 ,0) = 0   (32)                         

 

The equations (30)-(32) are satisfied for all values of 𝑥1 , therefore we have, 
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𝑀1 𝑥1 , 0 = 𝑀2 𝑥1 , 0 = 𝑀3 𝑥1 , 0 = 𝑀4 𝑥1 , 0 = 𝑀5 𝑥1 , 0 = 𝑀6(𝑥1 , 0)    (33) 

From equations (26) and (33), we obtain 

𝜉1𝑠𝑖𝑛𝜃1 = 𝜉2𝑠𝑖𝑛𝜃2 = 𝜉3𝑠𝑖𝑛𝜃3 = 𝜉4𝑠𝑖𝑛𝜃4 = 𝜉5𝑠𝑖𝑛𝜃5 = 𝜉6𝑠𝑖𝑛𝜃6     (34) 

which is the form of Snell's law for stress free, thermally insulated surface of transversely isotropic viscoelastic 

medium with rotation. Equations (30)-(32) and (34) yield 

 𝑋𝑖𝑞𝐴𝑞 +  𝑋𝑖𝑗𝐴𝑗 = 0,6
𝑗=4

3
𝑞=1   (i=1, 2, 3)                                             (35) 

where 

𝑋1𝑞 = −𝑖𝜉𝑞𝑠𝑖𝑛𝜃𝑞
(𝑐13

∗

𝜌𝑐1
2 + 𝑖𝑑𝑞𝜉𝑞

𝑐33
∗

𝜌𝑐1
2 − 𝑝1𝑙𝑞(1 + 𝑎1𝜉𝑞

2𝑠𝑖𝑛𝜃𝑞
2 + 𝑎3𝑐𝑜𝑠𝜃𝑞

2
) , 𝑞 = 1,2,3 

𝑋2𝑞 = −𝑖𝜉𝑞𝑠𝑖𝑛𝜃𝑞 + 𝑖𝑑𝑞𝜉𝑞𝑐𝑜𝑠𝜃𝑞    , 𝑞 = 1,2,3 

𝑋3𝑞 = 𝑖𝜉𝑞𝑐𝑜𝑠𝜃𝑞 𝑙𝑞 + 𝑕1𝑙𝑞  ,       𝑞 = 1,2,3 

𝑋1𝑗 = −𝑖𝜉𝑗 𝑠𝑖𝑛𝜃𝑗
(𝑐13

∗

𝜌𝑐1
2 − 𝑖𝑑𝑗 𝜉𝑗

𝑐33
∗

𝜌𝑐1
2 − 𝑝1𝑙𝑗 (1 + 𝑎1𝜉𝑗

2𝑠𝑖𝑛𝜃𝑗
2 + 𝑎3𝑐𝑜𝑠𝜃𝑗

2
 ,    j=4, 5, 6 

𝑋2𝑗 = −𝑖𝜉𝑗 𝑠𝑖𝑛𝜃𝑗 − 𝑖𝑑𝑗 𝜉𝑗 𝑐𝑜𝑠𝜃𝑗  ,    j=4, 5, 6 

𝑋3𝑗 = −𝑖𝜉𝑗 𝑐𝑜𝑠𝜃𝑗 𝑙𝑗 + 𝑕1𝑙𝑗    , j=4, 5, 6        (36) 

 

(6.1)Incident QL-wave 

In case of quasi-longitudinal wave, the subscript q takes only one value, that is q=1, which means𝐴2 = 𝐴3 = 0. 

Dividing the set of equations (35) throughout by𝐴1, we obtain a system of three homogeneous equations in three 

unknowns which can be solved by Cramer's rule and we have 

𝐴1𝑖 =
𝐴𝑖+3

𝐴1
=

∆𝑖
1

∆
, i=1, 2, 3          (37) 

 

(6.2)Incident QTS-wave 

In case of quasi-transverse wave, the subscript q takes only one value, that is q=2, which means𝐴1 = 𝐴3 = 0. 

Dividing the set of equations (35) throughout by𝐴2, we obtain a system of three homogeneous equations in three 

unknowns which can be solved by Cramer's rule and we have 

A2i =
A i+3

A2
=

∆i
1

∆
, i=1, 2, 3          (38) 

     

(6.3)Incident QT-wave 

In case of quasi-thermal wave, the subscript q takes only one value, that is q=3, which means𝐴1 = 𝐴2 = 0 . 
Dividing the set of equations (35) throughout by𝐴3, we obtain a system of three homogeneous equations in three 

unknowns which can be solved by Cramer's rule and we have 

𝐴3𝑖 =
𝐴𝑖+3

𝐴3
=

∆𝑖
1

∆
  , i=1, 2, 3          (39) 

where 𝑍𝑖(i=1,2,3) are the amplitude ratios of the reflected QL, reflected QTS, reflected QT -waves to that of the 

incident QL-(QTS or QT) waves respectively. 

Here ∆=   𝐴𝑖𝑖+3 3×3 and ∆𝑖
𝑝

 (i=1,2,3 ) can be obtained by replacing , respectively ,the 1
st
, 2nd and 3rd columns 

of ∆ by  −𝑋1𝑝  , −𝑋2𝑝  , −𝑋3𝑝 
𝑡
. 

Following Achenbach (1973), the energy flux across the surface element that is the rate at which the energy is 

communicated per unit area of the surface is represented as 

𝑃∗ = 𝑡𝑙𝑚𝑛𝑚𝑢 𝑙            (40) 

Where𝑡𝑙𝑚  is the stress tensor, 𝑛𝑚  are the direction cosines of the unit normal and 𝑢 𝑙  are the components of the 

particle velocity. 

The time average of  𝑃∗ over a period, denoted by < 𝑃∗ >, represents the average energy transmission per unit 

surface area per unit time and is given at the interface 𝑥3 = 0 as 

< 𝑃∗ > =< 𝑅𝑒 𝑡13 . 𝑅𝑒 𝑢 1 + 𝑅𝑒 𝑡33 𝑅𝑒 𝑢 3 >       (41)  

Following Achenbach (1973), for any two complex functions f and g, we have 

< 𝑅𝑒 𝑓 >< 𝑅𝑒 𝑔 > =
1

2
𝑅𝑒 𝑓𝑔  .         (42) 

The expressions for energy ratios 𝐸𝑖 , (𝑖 = 1,2,3)for reflected QL, QT, and QTH-wave are given as 

(i) In case of incident QL- wave, 

𝐸1𝑖 =
<𝑃𝑖+3

∗ >

<𝑃1
∗>

,   i=1, 2, 3          (43) 

(ii)  In case of incident QTS- wave, 

𝐸2𝑖 =
<𝑃𝑖+3

∗ >

<𝑃2
∗>

,   i=1, 2, 3          (44) 
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(iii)  In case of incident QT- wave, 

𝐸3𝑖 =
<𝑃𝑖+3

∗ >

<𝑃3
∗>

,   i=1, 2, 3          (45) 

where < 𝑃𝑖
∗ > , i=1,2,3 are the average energies transmission per unit surface area per unit time corresponding 

to incident QL, QTS, QT  waves respectively and < 𝑃𝑖+3
∗ > , i=1,2,3 are the average energies transmission per 

unit surface area per unit time corresponding to  reflectedQL, QTS, QT waves respectively. 

 

VII. PARTICULAR CASES 
(7.1) If 𝑘1

∗ = 𝑘3
∗ = 0, then  we obtain the resulting expressions for transversely isotropic viscothermoelastic 

solid with rotation and without energy dissipation and with two temperature. 

(7.2) If𝛺 = 0, then we obtain the resulting expressions for transversely isotropic viscothermoelastic solid with 

and without energy dissipation and with two temperature without rotation. 

(7.3) If 𝑎1 = 𝑎3 = 0, then we obtain the corresponding expressions for displacements, and stresses and 

conductive temperature for transversely isotropic viscothermoelastic solid with rotation and with and 

without energy dissipation.  

 

VIII. NUMERICAL RESULTS AND DISCUSSION 

For the purpose of numerical calculation, we consider the cases of incident QL, QTS, QT waves respectively 

and take the stress free thermally insulated boundary conditions. Copper material is chosen for the purpose of 

numerical calculation with numerical values as  

𝑐11 = 18.78 × 1010𝐾𝑔𝑚−1𝑠−2,  𝑐12 = 8.76 × 1010𝐾𝑔𝑚−1𝑠−2 ,  𝑐13 = 8.0 × 1010𝐾𝑔𝑚−1𝑠−2𝑐33 = 17.2 ×
1010𝐾𝑔𝑚−1𝑠−2, 𝑐44 = 5.06 × 1010𝐾𝑔𝑚−1𝑠−2 ,𝐶𝐸 = 0.6331 × 103𝐽𝐾𝑔−1𝐾−1𝛼1 = 2.98 × 10−5𝐾−1, 

𝛼3 = 2.4 × 10−5𝐾−1, 𝜌 = 8.954 × 103𝐾𝑔𝑚−3, 𝐾1
∗ = 0.433 × 103𝑊𝑚−1𝐾−1, 𝐾3

∗ = 0.450 ×
103𝑊𝑚−1𝐾−1.𝐾1 = 0.02 × 102𝑁𝑠𝑒𝑐−2𝑑𝑒𝑔−1  , 𝐾3 = 0.04 × 102𝑁𝑠𝑒𝑐−2𝑑𝑒𝑔−1. 

The values of two temperatures, frequency, rotation𝛺, magnetic effect𝐻0, are taken as 

0.03, 0.06, 10𝑆−1, 4.0, 1.2 respectively.  

The software Mat lab 8.4.0 has been used to determine the values of phase velocity, attenuation coefficient, 

specific loss, penetration depth and energy ratios of reflected QL, QTS and QT waves with respect to incident 

QL, QTS, and QT waves respectively.  The variations of phase velocity, attenuation coefficients, specific loss 

and penetration depth with respect to frequency are shown in figures 2-13.The variation of magnitude of energy 

ratios of reflected waves subject to incident waves have been plotted in the figures 14-22 with respect to angle 

of incidence.  

A comparison has been made to show the effect of viscosity on the various quantities.  

(i) Solid line corresponds to the case 𝜏0=0 

(ii) Small dashed line corresponds to case 𝜏0=1 

 

(8.1)Phase Velocity 

Figs.2-4 indicate the variations of phase velocities 𝑉1, 𝑉2  , 𝑉3 with respect to frequency 𝜔 respectively. From 

Fig2.we notice that corresponding to the case 𝜏0=0, the variations of phase velocity 𝑉1 decrease for the range 

1 ≤ 𝜔 ≤ 4 and increase monotonically in the rest. Corresponding to 𝜏0=1, the values of 𝑉1 decrease for the 

range 1 ≤ 𝜔 ≤ 4 followed by an increase for the range4 ≤ 𝜔 ≤ 10, then decrease monotonically in the 

rest.Fig3 exhibits the variations of phase velocity  𝑉2 with respect to frequency𝜔. Here, we notice that 

corresponding to 𝜏0=0,   variations steadily decrease and approach boundary surface with increase in wave 

number whereas corresponding to 𝜏0=1, variations are similar with a change in slope of tangent.Fig4.shows 

variations of phase velocity 𝑉3 with respect to frequency𝜔. Here we notice that the values of phase velocity are 

increasing monotonically corresponding to 𝜏0=0, whereas decrease steadily corresponding to 𝜏0=1. 

 

(8.2)Attenuation Coefficients 

Fig.5 shows that the values of attenuation coefficient  𝑄1 increase monotonically with respect to frequency 𝜔 

corresponding to 𝜏0=1whereas corresponding to 𝜏0=0, a sharp decrease is noticed for the range 2 ≤ 𝜔 ≤ 4  

followed by a smooth decrease approaching the boundary surface.Fig6. exhibits the trends of attenuation 

coefficient  𝑄2 with respect to frequency 𝜔.Corresponding to both the cases, the values of 𝑄2 increase 

monotonically with a change in the slope. Fig7.represents the variations of attenuation coefficient 𝑄3with 

respect to frequency 𝜔.Here, corresponding to both the cases,variations increase monotonically  with a change 

of slope with maximum variations corresponding to 𝜏0=0.   
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(8.3)Specific Loss  

Fig8.exhibits the variations of Specific loss 𝑅1 with respect to frequency. Here, we notice that the variations 

increase monotonically corresponding to𝜏0=0 whereas corresponding to 𝜏0=1, the variations increase sharply for 

the range 2 ≤ 𝜔 ≤ 8 followed by a decrease for the range 8 ≤ 𝜔 ≤ 10 with a fall at 𝜔 = 11 and decrease 

slowly and smoothly for the rest.Fig9.shows Variations of   Specific loss 𝑅2 with respect to frequency𝜔 . Here, 

we notice that corresponding to 𝜏0=0, there is a sharp decrease for the range 1 ≤ 𝜔 ≤ 3,and then a small 

increase is noticed for the range 3 ≤ 𝜔 ≤ 4  followed by slow and smooth decrease for the rest. Corresponding 

to 𝜏0=1, we notice a small increase for the range 1 ≤ 𝜔 ≤ 6 followed by a small decrease for the range 6 ≤
𝜔 ≤ 11with a high rise at 𝜔 = 11 and then decrease for the rest.Fig10.shows Variations of Specific loss 𝑅3 

with respect to frequency𝜔. Here, we notice that, variations increase monotonically corresponding to the case 

𝜏0=0 for the whole range whereas corresponding to 𝜏0=1, the variations increase for the range 1 ≤ 𝜔 ≤ 4  and 

remain stationary for the rest. 

 

(8.4)Penetration depth 

Fig11.shows the variations of penetration depth 𝑆1 with respect to  frequency 𝜔.Here,we notice that  initially , 

there is a sharp decrease in the values of 𝑆1  corresponding to the case 𝜏0=0,  followed by a smooth decrease 

approaching the boundary surface for the rest. Corresponding to 𝜏0=1, the variation increase monotonically with 

vibrations for the whole range. Fig12.shows the variations of penetration depth 𝑆2 with respect to frequency𝜔. 

We notice that, there is a sharp decrease for the range 1 ≤ 𝜔 ≤2 and the values lie upon the boundary surface 

for the rest whereas corresponding to 𝜏0=1, a sharp decrease in the values for the range 1 ≤ 𝜔 ≤ 4   is followed 

by a smooth decrease approaching the boundary surface.  

 

(8.5)Energy Ratios 

(8.5.1)Incident QL Wave 

Fig.14.depicts the Variations of Energy ratio𝐸11with respect to angle of incidence𝜃. It shows that the values of 

𝐸11  decrease slowly and smoothly along with vibrations corresponding to both the cases for the whole range 

with a change of slope.Fig15.shows the variations of energy ratio 𝐸12with respect to angle of incidence𝜃 . Here 

the variations increase sharply with vibrations  corresponding to both the cases with change of 

slope.Fig.16.depicts the Variations of Energy ratio𝐸13  with respect to angle of incidence𝜃. It is noticed that the 

values of 𝐸13follow opposite trends as discussed in the Fig.14. 

 

(8.5.2)Incident QTS Wave 

Fig17.depicts the Variations of Energy ratio𝐸21with respect to angle of incidence𝜃. Here corresponding to both 

the cases, we notice similar slowly decreasing trends with difference in magnitudes for the whole range. 

Fig18.depicts the variations in Energy ratio𝐸22with respect to angle of incidence𝜃. Here corresponding to both 

the cases, the variations increase monotonically and smoothly for the whole range with a change in magnitude. 

Variations of Energy ratio𝐸23  with respect to angle of incidence 𝜃are shown in Fig19.Here, we notice that the 

trends are decreasing monotonically with vibrations in the whole range corresponding to both the cases. 

 

(8.5.3)Incident QT Wave 

Figs.20-22.depict the Variations of Energy ratios𝐸31 , 𝐸32 ,𝐸33  with respect to angle of incidence 𝜃respectively. 

Here in the Fig.20the variations are decreasing monotonically and smoothly corresponding to both the cases 

whereas opposite trends are noticed in the Fig21. Fig22.depicting the variations of 𝐸33  exhibits that the 

variations are decreasing slowly and smoothly for the whole range. 

 

IX. CONCLUSION 
From the graphs, we observe that while investigating the surface of earth having different layers (anisotropy) 

and interfaces, elastic waves propagating through the earth have different velocities and are influenced by the 

properties of the layer through which they travel .Frequency of waves produced in the material have significant 

impact on the phase velocity, attenuation coefficients, specific loss and penetration depth of various kinds of 

waves. Also the magnitude of energy ratios are in the impact of angle of incidence. Variations are vibrating 

when QL wave is incident whereas increase or decrease smoothly in the rest of the cases. The signals of these 

waves are not only helpful in providing information about the internal structures of the earth but also helpful in 

exploration of valuable materials such as minerals, crystals and metals etc.  
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