American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN: 2320-0936

Volume-5, Issue-4, pp-174-181

www.ajer.org

Research Paper

Open Access

Effective Machine Layout to Minimize the CM for T-shirt & Polo-shirt

Abu Yousuf Mohammad Anwarul Azim, Farhana Momotaz, Eshita Datta, Mushfika Tasnim Mica

Lecturer (Fashion & Design), Bangabandhu Textile Engineering College, Tangail, Bangladesh Lecturer, Dept of Textile Engg, Khulna University of Engineering & Technology Lecturer, Dept of Textile Engg, Bangladesh University of Business & Technology Dept of Wet Process Engg, Bangladesh University of Textiles

Abstract: In this work we have studied about the production environment variables that may or may not affect the production process & costing of the product. No costing of a product can be prepared without CM (cost of making) & in order to calculate the CM efficiently we have to know about machine layout, or line balancing. Unquestionably, separate CM cost is calculated for different styles to find out the lowest possible costing value to get the order from the buyer in the competitive local & international market. Every manufacturer should exercise with appropriate line balancing based on the type of product to have the most effective line layout with maximum production along with the possible lowest man power involvement in production, which will ultimately ensure the maximum productivity, thus come lowest CM. So we have to employ effective line balancing to make the CM lowest & ensure business more lucrative as well.

Keywords: Cost of Making, layout, SMV

I. INTRODUCTION

In modern competitive international market, it seems very arduous to grasp the commanding position apropos to the other competitors. We are conversant of that our maximal foreign currency comes from the Ready Made Garments Sector. However, if we lose the international market as well as buyer, our economy would be collapsed down very shortly. To buttress our economy and keep garment sector going on grandly, we have to grab buyers more than our competitive countries. In order to seize the overseas buyers, we have to offer the lowest rational price to them ensuring the revenue of the manufacturers. For executing this successfully, we have to ensure that the CM (Cost of Making) would be as less as possible. CM can undoubtedly be curtailed using best fitting machine lay out & line balancing with technical parameters as well as employing lowest man power for a particular process to increase the productivity under perfect production ambience. In this project, we have worked to find out the best process sequence along with proper line balancing & a way to abridge the CM for Tee-shirt and Polo-shirt production.

II. REQUIREMENTS TO FIND OUT THE OBJECT

We have taken the machine layout of standard T-shirt & Polo-shirt as sample product; with the intention of finding out the proper line layout and lowest CM for that particular type of garment. To find out what we need, we have to consider the following things first.

1. Determine SMV of the garment

SMV calculation:

Average time allowed for 1 cycle of an operation that would measure over a typical day if we had-a skilled worker-plenty of suitable work-output of correct level of quantity.

$$SMV = \frac{\text{Total required time to finish a process (sec)}}{60} + Allowance (15\%) \quad (minute)$$

2. Calculate average line efficiency (Line Balancing)

Example of line balancing:

Step	1: layout	according	to sty	yle:
------	-----------	-----------	--------	------

Process #1	production	40 pcs by	1 m/c,	end production 40 pcs
Process #2	production	45 pcs by	1 m/c,	end production 40 pcs
Process #3	production	75 pcs by	1 m/c,	end production 40 pcs
Process #4	production	80 pcs by	1 m/c,	end production 40 pcs
Process #5	production	50 pcs by	1 m/c,	end production 40 pcs

Before balancing the production of line is 40 pcs

Step 2: layout according to style (after balancing):

Process #1	production	40 pcs by	2m/c,	end production 80 pcs
Process #2	production	45 pcs by	2 m/c,	end production 80 pcs
Process #3	production	75 pcs by	1 m/c,	end production 75 pcs
Process #4	production	80 pcs by	1 m/c,	end production 75 pcs
Process #5	production	50 pcs by	2 m/c,	end production 75 pcs

After line balancing per hour production is 75 pcs

III. CM MEASUREMENT FOR A PARTICULAR TYPE OF GARMENT:

After following all these steps we can finally find out the CM for a particular garment using the following formula

CM calculation using SMV

CM = SMV of the garment * Cost per SMV

To calculate the CM we need SMV of that particular garment & cost per SMV for that garment. As cost per SMV is confidential we are assuming the value of cost per SMV as "x".

Cost of making	ng using SMV			
Sample	Factory	SMV	Cost per SMV	CM
T shirt	Oeco	5.77	X	5.77x
	Mondol	5.77	X	5.77x
	Aps	5.56	X	5.56x
Polo shirt	Oeco	15.46	X	15.46x
	Mondol	14.89	X	14.89x
	APS	13.32	X	13.32x

Table 1: CM of T-Shirt using SMV of different factory

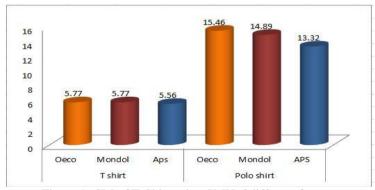


Figure 1: CM of T-Shirt using SMV of different factory

From the above graph it is clear that "APS Group" has the lowest CM for producing both T shirt &Polo shirt. CM using the M/C cost:

$$CM = \frac{\text{Total No. of machine * Machine cost per day}}{\text{Production per Hour * Total working hour per day}}$$

In this case we will need the machine cost per day data to find out the CM for relevant garment, which is also a confidential data & it was not provided by the factory to us. So we are assuming that the "machine cost per day" is x.

Page 175

Cost of n	Cost of making using M/C cost per Day												
	Factory	Total no.	Machine cost	Production per	Total working	CM	CM						
		of machine	per day	hour	hour		*						
							1000(for chart)						
T shirt	Oeco	16	X	148	11	0.0098x	9.8x						
	Mondol	16	X	153	11	0.0095x	9.5x						
	Aps	14	X	150	11	0.0085x	8.5x						
Polo	Oeco	34	X	121	11	0.0255x	25.5x						
shirt	Mondol	30	X	124	11	0.0220x	22.0x						
	APS	27	X	104	11	0.0236x	23.6x						

Table 2: CM of T-Shirt using machine cost of different factory

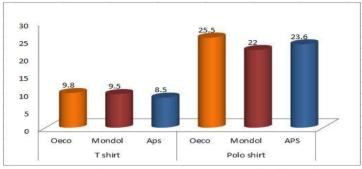


Figure 2: CM of T-Shirt using machine cost of different factory

In order to compare the data of the above table we have multiplied the CM with 1000 so that it be easier for us to compare them. Here we can see that the lowest CM is - of "APS Group" for the tee shirt& "Mondol Group" for Polo shirt.

CM calculation using Line cost:

$$CM = \frac{Line cost per day}{Production per day}$$

In this method we will use x in case of "line cost per day" to find out the CM of the product.

Cost of mal	cing using Line	cost			
Sample	Factory	Production per day	Line cost per day	CM	CM * 10000(for chart)
T shirt	Oeco	1633	X	0.00061x	6.1x
	Mondol	1687	X	0.00059x	5.9x
	Aps	1653	X	0.00060x	6.0x
Polo shirt	Oeco	1337	X	0.000674x	7.5x
	Mondol	1365	X	0.00073x	7.3x
	APS	1146	X	0.00087x	8.7x

Table 3: CM of T-Shirt using line cost of different factory

Graphical chart of the above data:

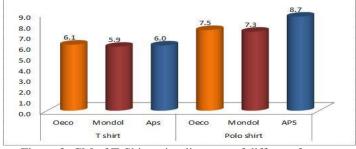


Figure 3: CM of T-Shirt using line cost of different factory

Here again to compare the data of the above table we have multiplied the CM with 10,000 so that it be easier for us to compare them. Comparing those data we can come to a conclusion that "Oeco Group" has lowest CM for T shirt& "Mondol Group" has the lowest CM for Polo shirt.

www.ajer.org Page 176

IV. DISCUSSION

Regarding T-shirt, Analyzing the table 1, 2 & 3 we can finally come to the conclusion that "APS group" has the lowest CM for producing T Shirt. On the other hand "Oeco Group" has the highest CM for T-shirt production. So the layout of "APS Group" can be more preferable than the other two layouts.

Regarding Polo Shirt, table 1, 2 & 3 give us information for the most suitable machine layout for the Polo Shirt production. All of the formulas give us a result focusing on the exact layout for Polo Shirt production. The "Mondol Group" has the minimum CM for producing Polo Shirt on the other hand the "Oeco Group" has the highest CM cost for the process. So the layout of "Mondol Group" is more suitable one for Polo Shirt production.

V. CONCLUSION

Admittedly, garments sector of our country is developing very rapidly, more factories & industries are being built to advocate the increasing global demand. Personnel & the authority of these factories have to produce product with rational price to survive in the global market against the giant competitors. To grab the authoritative position over the comprehensive RMG market, there is no way but find out the way to produce products more professionally & certainly offer the products to the buyer with possible lowest price. Antecedently, there is no other way but analyzing the manufacturing process to get the highest productivity with the lowest expenditure which will ensure not only the lowest cost of making and maximum profit for the manufacturer but also enormous revenue for our beloved country.

REFERENCES

- [1] Data from IE Department, APS Group
- [2] Data from IE Department, Mondol Group
- [3] Data from IE Department, Oeco Group
- [4] www.chrmglobal.com [Date: 03/11/2015]
- [5] www.onlineclothingstudy.com [Date: 016/12/2015]
- [6] Prof M A Kashem, *Garments & Technology* (Gronthonir 2009)
- [7] M A Sayeed, Production Plannig & Control (2014)

APPENDIX Table4: Comparison of T- Shirt Making Process from Different Factory

	OEKO-TE	X						APS					MONDOL GROUP						
Sl.							Operatio	e	l. / Mi	Tas k Tim e (sec)		Tr g/ Hr	Operation	Hel. / M/c	N 0.	Tas k Ti me (sec	SM V	Tr g/ Hr	
1	Back & fro Matching		HP	1	17	0.33	18 4	Back front Matching		·	18	0.35	4	Back & front Matching		2	19	0.36	16 5
2	Shoulder jo		O/L	1	13	0.25	24 1	Shoulder join	1	i I -	12	0.23	1	Shoulder join	O/L	1	11	0.21	28 5
3	Neck rib tu	ck	S/N	1	11	0.21	28 5	Neck tuck	rib S		12	0.23	26 1	Neck rib tuck	S/N	1	13	0.25	24 1
4	Neck joint		O/L	1	16	0.31	19 6	Neck join	/	L	17	0.33	18 4	Neck joint	O/L	2	19	0.36	16 5
5	Back ta joint	ape	F/L	1	16	0.31	19 6	Back ta	ape I		15	0.29	20 9	Back tape joint	F/L	1	14	0.27	22 4
6	Lbl jo mark	int	HP	1	10	0.19	31 3	Lbl jo mark	int F		9	0.17	34 8	Lbl joint mark	HP	1	9	0.17	34 8
7	Back ta t/s+ Lbl join		S/N	1	19	0.36	16 5	Back ta t/s+ J joint	ape S Lbl N		18	0.35	17 4	Back tape t/s+ Lbl joint	S/N	2	21	0.40	14 9
8	Neck t/s		F/L	1	15	0.29	20 9	Neck t/s	I	. -	14	0.27	4	Neck t/s	F/L	1	15	0.29	20 9
9	Sleeve hem	1	F/L	1	19	0.36	16 5	Sleeve he	I	.	16	0.31	19 6	Sleeve hem	F/L	1	18	0.35	17 4
10	Sleeve matching		HP	1	15	0.29	20 9	Sleeve matching	I F		18	0.35	17 4	Sleeve matching	HP	1	16	0.31	19 6
11	Sleeve join		O/L	2	30	0.58	10 4	Sleeve joi	in C		28	0.54	11 2	Sleeve join	O/L	2	27	0.52	11 6
12	Side Seam	O/L	2	3	6	0.69	87	Side Seam	O/L	2	34	0.6	92	Side Seam	O/L	2	35	0.67	89
13	Sleeve in tuck	S/N	1	1	5	0.29	20 9	Sleeve in tuck	S/N	1	16	0.3	196	Sleeve in tuck	S/N	1	18	0.35	174
14	Press tack	S/N	1	1	7	0.33	18 4	Press tack	S/N	1	16	0.3	196	Press tack	S/N	1	15	0.29	209
15	BTM hem	F/L	1	1	3	0.25	24 1	BTM hem	F/L	1	12	0.2	261	BTM hem	F/L	1	13	0.25	241
16	Thread trimming	HP	3		9	0.75	80	Thread trimming	HP	2	35	0.6 7	89	Thread trimmin	HP	3	38	0.73	82
			22			5.77				20		5.5 6				23		5.77	

w w w . a j e r . o r g Page 177

Table 5: Comparison of Polo Shirt Making Process from Different Factory

Sl.	OEKO)-TEX						APS							MONDO	OL GRO	OUP				
no	Opera n		He l./ M/ c	R e q. n o.	Tas k Tim e (sec)	S M V	Trg. /Hr			Hel. / M/c	Red		S M V	g/ H r	Operation		Hel. M/c	/ Req.	sk	SMV	Tr g/ Hr
1	Back Front matchi		He l.	2	24	0.4 6	130	Back Front matching	& Part	Hel.	1	18	0.3 5	1 7 4	Back & Part mate		Hel.	1	24	0.46	13 0
2	Should		O/ L	1	22	0.4	142	Shoulder join		O/L	1	19	0.3 6	1 6	Shoulder	r join	O/L	1	18	0.35	17 4
3	ÖL	side &	O/ L	2	30	0.5	104	Plkt side & Mark	OL	O/L	1	20	0.3	5 1 5 7	Plkt sid & Mark	le OL	O/L	1	18	0.35	17 4
4	Mark Placke attach mark	t	He l.	1	20	0.3	157	Placket attach ma		Hel.	1	16	0.3	1 9 6	Placket mark	attach	Hel.	1	17	0.33	18 4
5	Plkt at	tach	S/ N	2	26	0.5	120	Plkt attacl	h	S/N	1	22	0.4	1 4	Plkt attac	ch	S/N	1	23	0.44	13 6
6	Plktlin g attac		He l.	1	16	0.3	196	Plktlinnin attach	g :	Hel.	1	18	0.3 5	1 7 4	Plktlinni attach	ng	Hel.	1	18	0.35	17 4
7	Plkt m	ark	He l.	1	20	0.3	157	Plkt mark	: :	Hel.	1	22	0.4	1 4	Plkt mar	k	Hel.	1	21	0.40	14 9
8	Plkt rolling T/S(Lo		S/ N	2	26	0.5	120	Plkt rol T/S(Lowe	lling er)	S/N	1	24	0.4 6	1 3 0	Plkt T/S(Low	rolling ver)	S/N	1	25	0.48	12 5
9	r) Plkt rolling T/S(U	pper	S/ N	1	20	0.3	157	Plkt rol T/S(Uppe		S/N	1	18. 2	0.3	1 7 2	Plkt T/S(Upp	rolling er)	S/N	1	20	0.38	15 7
10) Plkt tack	end	S/ N	2	26	0.5	120	Plkt end t	ack	S/N	1	24	0.4 6	1 3	Plkt end	tack	S/N	1	23	0.44	13 6
11	Collar Make		S/ N	2	38	0.7	82	Collar Ma	ake	S/N	2	36	0.6	8 7	Collar M	lake	S/N	2	38	0.73	82
Sl.	OEKO-			<u>'</u>	<u> </u>	.'	<u>'</u>	APS					<u>'</u>	<u>.</u>	MONDO				'	'	
no	Oper ation	He l./ M/ c	Re q. no.	k Ti	im	SM V	Trg. /Hr	Operatio n	Hel. / M/c	Red no.	k Tin e	m N		Trg/ Hr	Operat ion	Hel. /	M/c	Re q. no.	Tas k Tim e	SM V	Trg / Hr
12	Collar turn	He l	1	22 22	ec)).42	142	Collar turn over	Hel	1	(se			157	Collar turn	Hel		1	(sec) 21	0.40	149
13	Over Collar edge cut	O/ L	2	25	5 ().48	125	Collar edge cut	O/L	1	24	6		130	over Collar edge cut	O/L		2	27	0.52	116
14	Collar join cut mark	Hel	1	20) ().38	157	Collar join cut mark	Hel.	1	22	2		142	Collar join cut mark	Hel.		1	23	0.44	136
15	Collar join to body	S/ N	2	36	5 ().69	87	Collar join to body	S/N	2	38	3		82	Collar join to body	S/N		2	39	0.75	80
16	Collar neck exces s cut	O/ L	1	18	3 ().35	174	Collar neck excess cut	O/L	1	15	9		209	Collar neck excess cut	O/L		1	16	0.31	196
17	Neck	F/L	1	18	3 ().35	174	Neck	F/L	1	17			184	Neck	F/L	\neg	1	17	0.33	184
18	Neck piping T/S with size	S/ N	2	33	3 ().63	95	Neck piping T/S with size LBL	S/N	2	35			89	Neck piping T/S with size	S/N		2	38	0.73	82
19	SLV open	F/L	1	19) ().36	165	SLV open hem	F/L	1	18	5		174	SLV open	F/L	+	1	18	0.35	174
20	hem Care Label	S/ N	1	24	1 ().46	130	Care Label	S/N	1	20	0		157	hem Care Label	S/N		1	16	0.31	196
21	Make Sly gather ing	S/ N	1	23	3 ().44	136	Make Sly gathering	S/N	1	20	0		157	Make Sly gatheri ng	S/N		1	21	0.40	149

www.ajer.org Page 178