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ABSTRACT: The present investigation deals with the response of thermomechanical sources in a
thermoporoelastic medium. Laplace and Hankel transforms are applied to investigate the problem. As an
application of the approach concentrated source and source over circular region in the time domain and
frequency domain are taken to illustrate the utility of the approach. The expressions for displacement
components, stress components, pore pressure and temperature change are obtained in the transformed domain.
To obtain the resulting quantities in the physical domain,a numerical inversion techniques are applied. Effect of
porosity is shown on the resulting quantities. A particular case of interest is also deduced from the present
investigation.

Keywords: thermoporoelastic medium, Laplace transform, Hankel transform, concentrated source , source
over circular region.

l. INTRODUCTION
The effect of temperature on the behaviour of medium is a crucial problem and is important for several branches
of engineering. Some of the important cases are the disposal of high-level radioactive waste, the extraction of oil
or geothermal energy, the storage of hot fluid, and the road subgrade or the furnace foundation, which are
usually subjected to cyclic changes of temperature. In addition, the case of underground nuclear explosion, the
case of sudden heat radiation due to accidents involving nuclear waste buried in the ground are the other
applications of the thermodynamics in engineering.

For the thermoporoelastisity problems, coupled thermal and poro-mechanical processes play an important role
in a number of problems of interest in the geomechanics such as stability of boreholes and permeability
enhancement in geothermal reservoirs. A thermoporoelastic approach combines the theory of heat conduction
with poroelastic constitutive equations and coupling the temperature fields with the stresses and pore pressure.
Biot [1] proposed a general theory of three dimensional deformations of liquid saturated porous solid. Liu et al.
[2] discussed the thermo-elastodynamic response of a spherical cavity in saturated poroelastic medium.They
also discussed mode of a spherical cavity’s thermo-elastodynamic response in a saturated porous medium for
non-torsional load [3]. Abousleiman and Ekbote [4] obtained the solutions for the inclined borehole in a
porothermoelastic transversely isotropic medium.

Kumar and Hundal [5] discussed the symmetric wave propagation in a fluid saturated incompressible porous
medium. Kumar and Rupender [6] discussed the elastodynamics of axi-symmetric deformation in magneto-
micropolar generalized thermoelastic medium. Bai and Li [7] obtained the solution for cylindrical cavety in a
saturated thermoporoelastic medium. Bai [8] also discussed the thermal response of saturated porous spherical
body containing a cavity under several boundary conditions. Jabbari and Dehbani [9] obtained an exact
solution for classic coupled thermoelasticity in axisymmetric cylinder.They also obtained an exact solution for
quasi-static poro- thermoelastic problem in spherical coordinate [10]. Jabbari et.al. [11] also discuss thermal
buckling analysis of functionally graded thin circular plate made of saturated porous materials.

Belotserkovets and Prevost [12] discussed the thermoporoelastic response of a fluid saturated porous sphere.
Hou,et. al. [13] discussed the three dimensional green’s function for transversely isotropic thermoporoelastic
biomaterial. Gelet et. al. [14]discussed the borehole stability analysis in a thermoporoelastic duel-porosity
medium. Li et al. [15] obtained the general steady state solution for transversely isotropic thermoporoelastic
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medium in three dimension . Mukhopadhyay and Kumar [16] discuss the analysis of phase-lag effects on wave
propagation in a thick plate under axisymmetric temperature distribution.

Mixed variation principal for dynamic response of thermoelastic and poroelastic continua was discussed by
Apostolakis and Dargus [17]. Hou, et. al. [18] discussed the three dimensional Green’s function for transversely
isotropic thermoporoelastic biomaterial. He et al.[19] studied the dynamic simulation of landslide based on
thermoporoelastic approach. Nguyen et al.[20] discussed the analytical study of freezing behaviour of a cavity in
thermoporoelastic medium. Wu et al. [21] presented a refined theory of axisymmetric thermoporoelastic circular
cylinder.

In the present paper, we obtain the components of displacement, stress, pore pressure and temperature change
due to concentrated source and source over circular region in the time domain and frequency domain in
thermoporoelastic medium with incompressible fluid. Laplace and Hankel transforms are used to investigate the
problem. Numerical inversion techniques are applied to obtain the resulting quantities in a physical domain. The
resulting quantities are shown graphically to depict the effect of porosity.

I1.  GOVERNING EQUATIONS

Following Jabbari and Dehbanl [22], the field equations are
A+ WVV.U + uV?Uu — aVp — BVT = p at;‘ , (1)
%V p—app—YT—adwuzo , 2)
KV2T — ZT,T + YT,p — BTodivii = 0 3)
gy = Muexdy; + p(u + ;) — apdy — BTy, 4)

S

where 4 is the displacement component, p is the pore pressure, p is the bulk mass density , a =1 —% is the

Biot’s coefficient , C; = 3(1 — 2v;)/E, is the coefficient of volumetric compression of solid grain , with E;
and v, being the elastic modulus and Poisson’s ratio of solid grain, C = 3(1 — 2v)/E is the coefficient of
volumetric compression of solid skeleton , with E and v being the elastic modulus and Poisson’s ratio of solid

skeleton , T, is initial reference temperature , 8 = —= is the thermal expansion factor , a, is the coefficient of

linear thermal expansion of solid grain ,Y = 3(naw + (@ —n)a,) and a, = n(C, — C;) + aC; are coupling

parameters , a,, and C,, are the coefficients of linear thermal expansion and volumetric compression of pure

water , n is the porosity , k is the hydraulic conductivity , ,, is the unit of pore water and Z = H)pscTM is
0
coupling parameter , p,, and p, are densities of pore water and solid grain and C,, and C, are heat capacities of

pore water and solid grain and K is the coefficient of heat conductivity.

1. FORMULATION AND SOLUTION OF THE PROBLEM
We consider a homogeneous, incompressible fluid saturated thermal conducting poroelastic medium at uniform
temperature T, in the undeformed state. We take cylindrical polar coordinate system (r,6,z) and consider a two
dimensional axi-symmetric problem with symmetry about z-axis, so that all the quantities are remain

independent of & and % = 0. The complete geometry of the problem is shown in the figure 1(a),1(b). Since

we are considering two dimensional problem, so we assume the components of displacement vector u of the
fom

U= (u,0,u,) . ()

Equations (1)-(3) with the aid of (5) can be written as:

[P = e+ P 0[S 2 ) (22 )

r ar r 0z
dp 6T 0“u 0“u
a[a —ez] B —er ]_ [atzrer atzzez] =0 )
ko’ 1w a_P . _yor_ [" ur | 10ur _f’z“z] =
yw Lor?2  ror 922 P at Y atar + r oot + azat | — 0(7)
aZT 10T . 82T ap [a up  1ou, 92 uz]
K[ cor T azz] ZTO YTO BTo [omr + 7% Yo =08
We defme the non- dlmen3|onal quantltles
/_w_* _w_ _ w* r_ P 2 _ AM2u - T .
r Clrz Clz,ur Cur,uz Cuz P 3T ,Ci - t w't, T To,azz
%, o, = % (9) where w* is the constant having the dimensions of
0 0
frequency.

Using dimensionless quantities defined by (9), in the equations (6)-(8) yield
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a aT 8%u,

Be p

ar (V* - _)ur azo-—as ;; a5 : (10)

a aT 9%u,
g + alvzuza— a, B—IZ;T— azg =ay, aruZ , (11)
e
blvzp—bz—p—b35—5=0 , (12)
a a
by V2T — b5 +b6£—£=0 : (13)
where
_ e __aBTy _ BTy _pct _ kw*BTo _ apfTy

al_kﬂl’az_k+u'a3_k+u'a4_k+u' 1_ywac% 'bz_ a

YT Kw* ZT,

b3=TO, 42%,b5=?0,b6=YT(2), i
_ 6ur 1 du, 2_ li 0_ . .
and _e t-ou + ol Vo= 2t Tt (14) To simplify the
problem, we mtroduce the potentlal functions as:
P ik v
P =T uz=a—+—+— (15)

Using (14) and (15) egs. (10)-(13) become
1+ a))V?® —ay,p — asT — ay aa;f =0 |, (16)
alvzlzI—j—;su a4‘;tl§l—0 , 17)
blvzp - b2 b3———[V2CD] =0 y (18)
b, V2T — b55+b6———[vzd>] =0. (19)
We define the Laplace and Hankel transforms as follows:
f(s) = [, f®)e™ dt, (20)
f&zs) = [, f(r,29)r],@Odr, (21)

where ], (X) is the Bessel function of the first kind of index n.
Applymg mtegral transforms defined by (20) and (21) on (16)-(19), we obtain

—§<p+ —Ap—A,T— A0 =0 , (22)
—gtp+—— AP=0 (23)
—&2 '+—— Bsi ¢ - B3 Blp BT =0, (24)

_ _ ass? _ ﬁ _ bas b3s s _ bss bgs _
where Al— ~ Ay = —1+a1 A3—1+a1,A4— £ By =" .By="" By=iBy=7" Bs =7 B =
bLs
by _

Eliminating 5 and T from above equations, we obtain
d6
[%+Dld4+D2d2+D3]<D—O (26)
d
(5-¢)P-aF=0 |, 27)
where
D; = —38* — (B + By) — A3 — A{B; — A;B¢ D, = -3¢* -

2By + By + (B1By — ByBs) + 2A38% + (By + By)Az + 24,438 — A (B, B — B3B,) + 24,B4E% —
Ay(B3Bs — By Be),

=& — (By + By)&" — & (ByB, — ByBs) — (By + B ASE — A3&* — A3(ByBy — ByBs) — A1 A58 +
A8 (ByBs — B3By) — A BsE" + A,87(B3Bs — By By).
Solving (26) and (27) and assuming that ?,¥ pand T -0 asz— o we obtain the value of 2,7, p and Tas

d = Ele_"”z + Eze_mzz + Ege_m?’z ) (28)
lll_l = E4e_m4z y (29)
p= =n Ele_"”z + T'zEZe_mZZ + T3E39_m3z , (30)

72" = S]_ Ele_mlz +52E28_m22 +S3E3e_m3z (31)
where m,, m,, my are the roots of the equation (26) found with the help of cardon method and
my = WAS
where As =& +ay
and the coupling constants are given by
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B3(m? —EZ)Z +(3236—B3B4)(mi2—§2)

.= 32
l (miz—52)2—(51+B4)(mi2—§2)+(3134—3235) (32)
Bo(m? ~c2)" +(B3Bs—B1Be) (m? ~£%)
L7 2 c2y2 2 2 (33)
(m7—¢%)"—(B1+B4)(m{—£")+(B1B4—B;Bs)

(i=1,2,3) .
The displacement components i, and %, are obtained with the aid of (20)-(21) and (28)-(29) as
U, = —EEe” ™% — E,fe™ ™% — E e ™37 + Eymye” ™7 (34)
uzz = —Elmle_mlz - Ezmze_mzz - E3m3e_m3z + E4§e_m4z(35)

BOUNDARY CONDITIONS
The boundary conditions at z = 0 are

aT
0, = —FF(rt),0, = —-FF(rt),p = FF(r, t),a =F,F(r,t) (36)
whereF;, F, are the magnitudes of the forces , F; is the constant pressure applied on the boundary and F,is the

constant temperature applied on the boundary. F(r, t) isa known function of rand t.
Applying Laplace and Hankel transforms defined by §20)and (21) on (36) and with the aid of (9) , we obtain

0 = ~RF () 5 = ~RFEs). 5= RBFEs) 5 = RFEs) atz=0(37)

where
G =R R —ap =T (38)
0, =Rz [;; - &\uz] (39)
_ L — A2 — n
and R, = BTy’ 2 BTy ' 3 T BTo

Case 1: for normal force F, = F;, =F, =0

Case 2: for shear force F; = F3 =F, =0

Case 3: For pressure source F; = F, =F, =0

Case 4: For thermal source F; = F, =F; =0

Substituting the values of u,,u, ,p and Tfrom(34),(35) and (30),(31) in the boundary condition (37) and with
help of (38) and (39), after some simplifications, we obtain

Oz = %[dlAﬂ:"_le + dyAye™ M + d3Aze”™ ™3 + dyAe™ ™) (40)
O = %[dsAle'mlz + delye™ ™27 + d;Aze” 37 4+ dghge” ], (41)
p= %[T1A1€_mlz + 10,6727 + 1303737 (42)

T = %[slAle_mlz + sy0,e7 ™27 + g53Aze” ™37 (43)
where

A= d;dg(—mg3r;s3 + myrss;) — dydg(—mg3rys3 + myrssy) + dzdg(—myrys; + myrys;) — dyds(—mgsrys; +
m2r3s2—d4d6—m3rls3+mlr3sl1-d4d7-m2rils2+milr2s1,

di = _Rléz + Rzmlz —ar; — §; Where (|=1,2,3) y d4 = E_,m4(R1 - Rz)

d; = 26m;R; where (j=5,6,7) , dg = —Rs(m} + &%),

and Aq, Ay, Az, A, are obtained by replacing[—F;, —F,, F3, F4]7 in A.

APPLICATIONS:

TIME DOMAIN:

CASE 1.CONCENTRATED SOURCE:

The solutions due to concentrated source is obtained by substituting

F(TI t) = Fl (T)n(t)' (44)
where
Fy(r) = -—8(r). (45)

Applying Laplace and Hankel transform on (44) and (45), we obtain
F(&5) = 5-7i(s)

CASE 2:SOURCE OVER CIRCULAR REGION:
The solution due to source over the circular region of non-dimensional radius a is obtained by setting F(r,t) =

Fy(rn(o),
where
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1
Fi(r) = mH(a —7).
Applying Laplace and Hankel transforms on these quantities, we obtain,

F(gs) = =1 (a®)ii(s)

nag

In both the cases, we have taken n(t) = H(t), so Laplace transform of n(t) gives, 7(s) = 1/s.

FREQUENCY DOMAIN:

In this case we assume the time harmonic behaviour as

(ur: Uz, p, T) (7", Z, t) = (urv Uz, p, T)(Tv Z, t)eimt '

In frequency domain, we take 1(t) = e,

The expressions for displacement, stress and pore pressure and thermal source in frequency domain can be
obtained by replacing s by iw in the expressions of time domain (40) - (43) along with 77(s) to be replaced by
e'®t for concentrated source.

SPECIAL CASE
In the absence of porosity effect, we obtain the stress components and temperature change as

O'lzz = AL [dgAse_msz + leAGe_m6z + d4A4e_m4z] , (46)
10
Oy = i [di1Ase™ 5% + dyAge™ ™67 + dgAye” 4] (47)
T= AL [s5A5e~ ™57 + sgAge™ 67 (48)
10
where

Ajp= sgmedgdg + ssmsdgdyg — Sgmedydy + Ssmsdypdy

dg = —R;& + Rym? —s5 , djg = —R; & + Rym? — 56, dy = Emy(R; — R,)

dy; = 2&mgR; , dy; = 2EmgR3, dg = —R3(mﬁ + éz)a

and Ag, Ag, A, are obtained by replacing[—F;, —F,, F,]7 in Aq,.

Taking F, =F, =0, F,=F,=0,F, =F, =0 in equations (46)-(48) respectively , we obtain the stress
components and temperature change for normal force, tangential forces and thermal source respectively.

INVERSION OF THE TRANSFORM
The transformed displacements, stresses, pore pressure and temperature are functions of the parameters of the

Laplace and Hankel transforms s and & respectively and hence are of the form f (&,2,5).To obtain the solution
of the problem in the physical domain, we invert the Laplace and Hankel transforms by using the method
described by Kumar and Deswal [23].

V. NUMERICAL RESULTS AND DISCUSSION
With the view of illustrating the theoretical results and for numerical discussion we take a model for which the
value of the various physical parameters are taken from Jabbari and Dehbani [22]:
E=6x10°,v=0.3,Ty, =293 ,K, =2x10"° K, =5x10°,K =05,
a, =15x10"° ,ayy =2%x107* ¢, =08 ,¢, =42 ,p, =2.6%x10° ,p, =1x10° ,a=1, F, =F, =
Fy,=F =1.
The values of components of stress a,, , g, , pore pressure p and temperature change T for incompressible
fluid saturated thermoporoelastic medium (FSTM) and empty porous thermoelastic medium (EPM) are shown
due concentrated source and source applied over the circular region. The computation are carried out for two
values of dimensionless time t=0.1 and t=0.5 at z=1 in the range 0 < r < 10.

The solid lines either without central symbols or with central symbols represents the variations for t=0.1,
whereas the dashed lines with or without central symbols represents the variations for t=0.5.Curves without
central symbols correspond to the case of FSTM whereas those with central symbols corresponds to the case of
EPM.

TIME DOMAIN NORMAL FORCE

Fig. 2 shows the variation of normal stress component a,, w.r.t distance r due to concentrated force. The value
of g,, starts with initial increase and then oscillates for FSTM as r increases for both values of time. In case of
EPM, the value of g, increases for the range 0 < r < 1.5 and then oscillates oppositely as r increases for both
values of time.
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Behaviour of shear stress component o, w.r.t distance r due to concentrated force is shown in figure 3. The
value of g, increases for the range 0 < r < 2.5 and then oscillates for FSTM as r increases whereas in case of
EPM, its value oscillates oppositely as r increases for both values of time.

Fig. 4 shows the variation of pore pressure p w.r.t distance r due to concentrated source. The value of p
decreases for the range 0 < r < 2.5 and then start oscillating for FSTM as r increases for both values of time.
Fig. 5 depicts the variation of temperature T w.r.t distance r due to concentrated source. The value of T
decreases for the range 0 < r < 2.4 and then start oscillating for time t=0.1 whereas for the time t=0.5 its value
converges near the boundary surface for FSTM as r increases. In case of EPM, the value of T oscillates
oppositely as r increases for both values of time.

Fig. 6 shows the variation of normal stress a,, w.r.t distance r due to force over circular region. The value of
g, start with initial increase and then oscillates for FSTM and EPM as r increases for both value time.

Fig. 7 shows the variation of shear stress component g,, w.r.t distance r due to force over circular region. The
value of g, first increases and then starts oscillates for FSTM and the value of o,, for EPM oscillating
oppositely as r increases for both value time .

Behaviour of pore pressure p w.r.t distance r due to force over circular region is shown in figure 8. The value of
p decreases for the range 0 < r < 2.4 and then starts oscillates for FSTM as r increases for time t=0.1 whereas
for the time t=0.5 its value first decreases and then converges near the boundary surface as r increases.
Behaviour of temperature T w.r.t distance r due to force over circular region is shown in figure 9. The value of
T for the time t=0.1 first decreases and then starts oscillates whereas for the time t=0.5 its value with initial
increase converges near the boundary surface for FSTM. The value of T for EPM oscillates oppositely as r
increases for both values time.

PRESSURE SOURCE

Fig. 10 shows the variation of normal stress component g, w.r.t distance r due to concentrated force. The value
of a,, decrease sharply for the range 0 < r < 2.2 and then oscillates for FSTM as r increases for time t=0.1
whereas for the time t=0.5 the value of g,, shows initial decrease and then converges near the boundary surface.
Behaviour of shear stress component g, w.r.t distance r due to concentrated force is shown in figure 11. The
value of g, decrease sharply for the range 0 < r < 2.3 and then oscillates for FSTM as r increases for time
t=0.1 whereas for the time t=0.5 the value of g,, first increases and then oscillates as r increases.

Fig. 12 depicts the variation of pore pressure p w.r.t distance r due to concentrated force. The value of p
increases sharply for the range 0 < r < 2.4 and then oscillates for FSTM as r increases for both values of time.

Fig. 13 shows the variation of temperature T w.r.t distance r due to concentrated force. The value of T increase
sharply for the range 0 < r < 2.7 and then oscillates for FSTM as r increases for time t=0.1 whereas for the
time t=0.5 the value of T start with initial increase and then oscillates as r increases.

Fig. 14 shows the variation of normal stress component a,, w.r.t distance r due to force over circular region.
The value of g,, decrease sharply for the range 0 < r < 2.2 and then oscillates for FSTM as r increases for
time t=0.1 whereas for the time t=0.5 the value of o,,shows initial decrease and then converges near the
boundary surface.

Fig. 15 shows the variation of shear stress component o, w.r.t distance r due to force over circular region. The
value of g, first decreases and then oscillates for FSTM as r increases for time t=0.1 whereas for the time t=0.5
the value of g, increases for the range 0 < r < 4.5 and then oscillates as r increases.

Fig. 16 depicts the variation of pore pressure p w.r.t distance r due to force over circular region. With initial
increase, the value of p oscillates for FSTM as r increases for time t=0.1 whereas for the time t=0.5 the value of
p increases sharply for the range 0 < r < 2.5 and then oscillates as r increases.

Fig. 17 depicts the variation of temperature T w.r.t distance r due to force over circular region. The value of T
increases for the range 0 < r < 2.4 and then oscillates for FSTM as r increases for both values of time.

THERMAL SOURCE

Fig. 18 shows the variation of normal stress component a,, w.r.t distance r due to concentrated force. The value
of a,, first decreases and then oscillates for FSTM and EPM as r increases for both value of time.

Behaviour of shear stress component a,, w.r.t distance r due to concentrated force is shown in figure 4.19. The
value of o, increases for the range 0 < r < 2.2 and then oscillates for FSTM as r increases for both values of
time whereas for EPM, its value first decreases and then oscillates as r increases for time t=0.1 and t=0.5.
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Fig. 20 shows the variation of pore pressure p w.r.t distance r due to concentrated force. The value of p
decrease sharply for the range 0 < r < 2.1 and then oscillates for FSTM as r increases for time t=0.1 whereas
for the time t=0.5 the value of p shows initial decrease and then converges near the boundary surface.

Fig. 21 depicts the variation of temperature T w.r.t distance r for both FSTM and EPM due to concentrated
force. The value of T increases sharply for the range 0 < r < 2.1 and then starts oscillates for FSTM as r
increases for time t=0.1 and t=0.5. In case of EPM, the value of T oscillates oppositely as r increases for both
values of time. Behaviour of normal

stress component a,, w.r.t distance r due to force over circular region is shown in figure 4.22. The value of g,,
first decreases and then oscillates for FSTM and EPM as r increases for both values of time.
Fig. 23 shows the variation of shear stress component a,, w.r.t distance r due to force over circular region. The
value of g, increases for the range 0 < r < 2.2 and then oscillates for FSTM as r increases for both values of
time whereas for EPM, its value first decreases and then oscillates as r increases for time t=0.1 and t=0.5.
Fig. 24 shows the variation of pore pressure p w.r.t distance r due to force over circular region. The value of p
decreases sharply for the range 0 < r < 2.1 and increases for the range 2.1 < r < 4 for FSTM for time t=0.1
and for t=0.5 its value converges near the boundary surface.

Fig. 25 depicts the variation of temperature T w.r.t distance r due to force over circular region. The value of T
increases sharply for the range 0 < r < 2.1 and then starts oscillates for FSTM as r increases for time t=0.1 and
t=0.5. In case of EPM, the value of T oscillates oppositely as r increases for both values of time.

FREQUENCY DOMAIN NORMAL FORCE
Behaviour of normal stress component o,, w.r.t distance r due to concentrated force is shown in figure 26. The
value of a,, first increases monotonically and then start oscillating for FSTM as r increases for both value the
time whereas for EPM its value first decreases and then oscillates as r increases for t=0.1 and t=0.5.

Fig. 27 shows the variation of shear stress component a,, w.r.t distance r due to concentrated force. The value
of a,, first decreases for the range 0 < r < 2.4 and then start oscillates for FSTM as r increases for both value
the time where as its value oscillates oppositely as r increases for both value the time for EPM.

Fig. 28 shows the variation of pore pressure p w.r.t distance r due to concentrated force. The value of p
converges near the boundary surface for the time t=0.1 whereas for t=0.5 its value first decreases for the range
0 < r < 2.5 and then start oscillates for FSTM as r increases.

Fig. 29 depicts the variation of temperature T w.r.t distance r due to concentrated force. The value of T first
decreases and then start oscillates for FSTM and EPM as r increases for both value the time

PRESSURE SOURCE
Fig. 30 shows the variation of normal stress component g,, w.r.t distance r due to concentrated force. The value
of g,, first decreases sharply for the range 0 < r < 2.1 and then start oscillates for the time t=0.1 where as for
t=0.5 its value first increases and then start oscillates for FSTM as r increases.

Behaviour of shear stress component g, w.r.t distance r due to concentrated force is shown in figure 31. The
value of a,, for FSTM first decreases sharply for the range 0 < r < 2.1 and then start oscillates for the time
t=0.1 whereas for t=0.5 its value converges near the boundary surface as r increases.

Fig. 32 shows the variation of pore pressure p w.r.t distance r due to concentrated force. The value of p for
FSTM decreases sharply for the range 0 < r < 6 and then become linear as r increases for both value the time.
Fig. 4.33 depicts the variation of temperature T w.r.t distance r due to concentrated force. The value of T for
FSTM first increases for the range 0 < r < 2.5 and then start oscillates for the time t=0.1 and t=0.5.

THERMAL SOURCE

Fig. 34 shows the variation of normal stress component a,, w.r.t distance r due to concentrated force. The value
of g, oscillates oppositely for FSTM and EPM as r increases for t=0.1 and t=0.5.

Fig. 35 depicts the variation of shear stress component o, w.r.t distance r due to concentrated force. The value
of g, first increases and then oscillates for FSTM for both value the time and in case of EPM its value first
increases for the range 0 < r < 1.1 and then start oscillates for the time t=0.1 whereas for t=0.5 its value first
increases and then start oscillates as r increases.

Fig. 36 shows the variation of pore pressure p w.r.t distance r due to concentrated force. The value of p for
FSTM decreases sharply for the range 0 < r < 4.5 and then starts increasing for time t=0.1 whereas for t=0.5 its
value converges near the boundary surface as r increases.

Fig. 37 shows the variation of temperature T w.r.t distance r due to concentrated force. The value of T
converges near the boundary surface for FSTM for both value the time and in case of EPM its value oscillates
oppositely for the time t=0.1 and t=0.5.
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V. CONCLUSION
The work presented in this chapter provides a mathematical model to obtain the solutions of displacement,
stress, pore pressure and temperature change due to various sources by using the Laplace and Hankel
transforms. Various sources are taken to illustrate the application of the approach. Some particular cases of
interest are also deduced.

In time domain, near the application of the source porosity effect increases the value of g,, and T for the
normal force and for thermal source and away from the source due to porosity effect the value of o,, oscillates.
Although there is difference in their magnitude values. Also porosity effect decreases the values of g, for the
force in normal direction but increase the values for pressure source.

In frequency domain, near the application of the source porosity effect decreases the value of a,, and T for the
normal force and thermal source whereas the value of g, increases for the force in normal direction and away
from the source they have oscillatory behaviour in all the cases for both type of sources with difference in their
magnitude values.

Near the application of the source the value of p decreases for the normal force and pressure source whereas it
shows opposite behaviour for thermal source for both types of sources and away from the source it has
oscillatory behaviour with difference in their magnitude values.

An appreciable porosity effect is observed on the components of stress, pore pressure and temperature change
on the application of ring and disc loads. Near the application of the load, the porosity effect increases the value
of a,, , p and decreases the value of g,,., T and away from the source these values oscillates with the difference
in their magnitude values.
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Fig. 1b. Force over the circular region or pressure source or thermal source F(r,t), acting at the
interface z = 0.
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Fig .2 Variation of normal stress o,,w.r.t.distance r due to concentrated force in normal direction (time
domain) Fig .3 Variation of shear stress a,,.w.r.t.distance r due to concentrated force in normal direction
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Fig .4 Variation of pore pressure p w.r.t.distance r due to concentrated force in normal direction (time
domain) Fig.5 Variation of temperature T w.r.t.distance r due to concentrated force in normal direction

(time domain)
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normal direction (time domain)
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Fig.8 Variation of pore pressure p w.r.t.distance r due to force over circular region in normal direction
(time domain) Fig.9 Variation of temperature T w.r.t.distance r due to force over circular region in
normal direction (time domain)
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Fig.10 Variation of normal stress a,,w.r.t.distance r due to concentrated pressure source(time domain)
Fig .11 Variation of shear stress a,,w.r.t.distance r due to concentrated pressure source(time domain)
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Fig.12 Variation of pore pressure p w.r.t.distance r due to concentrated pressure source (time domain)
Fig.13 Variation of temperature T w.r.t.distance r due to concentrated pressure source(time domain)
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Fig 16 Variation of pore pressure p w.r.t.distance r due to pressure source over circular region (time
domain) Fig 17 Variation of temperature T w.r.t.distance r due to pressure source over circular region
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Fig .18 Variation of normal stress a,,w.r.t.distance r due to concentrated thermal source (time domain)
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Fig 21 Variation of temperature T w.r.t.distance r due to concentrated thermal source (time domain) Fig
.22 Variation of normal stressea,,w.r.t.distance r due to Thermal source over circular region (time
domain)
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Fig.23 Variation of shear stressoa,,w.r.t. distance r due to Thermal source over circular region (time
domain) Fig 24 Variation of pore pressure p w.r.t.distance r due to Thermal source over circular region
(time domain)

Fig .25 Variation of temperature T w.r.t.d

istance r due to Thermal source over circular region ( time
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Fig .27 Variation of shear stress o,.w.r.t.distance r due to concentrated force in normal direction

(frequency domain) Fig.28 Variation of pore pressure p w.r.t.distance r due to concentrated force in
normal direction (frequency domain)
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Fig .29 Variation of temperature T w.r.t.distance r due to concentrated force in normal direction
(frequency domain) Fig .30 Variation of normal stressea,,w.r.t.distance r due to concentrated pressure
source (frequency domain)
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Fig .31 Variation of shear stress c;z;w.r.t.distance r due to concentrated pressure source(frequency
domain) Fig.32 Variation of pore pressure p w.r.t.distance r due to concentrated pressure
source(frequency domain)
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Fig .33 Variation of temperature T w.rtdistance r due to concentrated pressure source(frequency
domain) Fig .34 Variation of normal stress a,,w.r.t.distance r due to concentrated thermal
source(frequency domain)
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domain) Fig .36 Variation of pore pressure p w.r.t.distance r due to concentrated thermal
source(frequency domain)
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Fig .37 Variation of temperature T w.r.t.distance T due to concentrated thermal source(frequency
domain)




