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ABSTRACT: The present investigation deals with the response of thermomechanical sources in a 

thermoporoelastic medium. Laplace and Hankel transforms are  applied to investigate the problem. As an 

application of the approach concentrated source and source over circular region in the time domain and 

frequency domain are taken to illustrate the utility of the approach.  The expressions for displacement 

components, stress components, pore pressure and temperature change are obtained in the transformed domain. 

To obtain the resulting quantities in the physical domain,a numerical inversion techniques are applied. Effect of 

porosity is shown on the resulting quantities. A particular case of interest is also deduced from the present 

investigation. 

 

Keywords: thermoporoelastic medium, Laplace transform, Hankel transform, concentrated source , source 

over circular region. 

 

I. INTRODUCTION 

The effect of temperature on the behaviour of medium is a crucial problem and is important for several branches 

of engineering. Some of the important cases are the disposal of high-level radioactive waste, the extraction of oil 

or geothermal energy, the storage of hot fluid, and the road subgrade or the furnace foundation, which are 

usually subjected to cyclic changes of temperature. In addition, the case of underground nuclear explosion, the 

case of sudden heat radiation due to accidents involving nuclear waste buried in the ground are the other 

applications of the thermodynamics in engineering. 

 

For the thermoporoelastisity problems, coupled thermal and poro-mechanical processes play an important role 

in a number of problems of interest in the geomechanics such as stability of boreholes and permeability 

enhancement in geothermal reservoirs. A thermoporoelastic approach combines the theory of heat conduction 

with poroelastic constitutive equations and coupling the temperature fields with the stresses and pore pressure. 

Biot [1] proposed a general theory of three dimensional deformations of liquid saturated porous solid.  Liu et al. 

[2] discussed the thermo-elastodynamic response of a spherical cavity in saturated poroelastic medium.They 

also discussed mode of a spherical cavity’s thermo-elastodynamic response in a  saturated porous  medium for 

non-torsional load [3]. Abousleiman and Ekbote [4] obtained the solutions for the inclined borehole in a 

porothermoelastic transversely isotropic medium. 

 

Kumar and Hundal [5] discussed the symmetric wave propagation in a fluid saturated incompressible porous 

medium. Kumar and Rupender [6] discussed the elastodynamics of axi-symmetric deformation in magneto-

micropolar generalized thermoelastic medium. Bai  and Li [7]  obtained the solution for cylindrical cavety in a 

saturated thermoporoelastic medium. Bai [8]  also discussed the thermal response of saturated porous spherical 

body containing a cavity under several boundary conditions.  Jabbari and  Dehbani [9] obtained  an exact 

solution for classic coupled thermoelasticity in axisymmetric cylinder.They also obtained  an exact solution for 

quasi-static poro- thermoelastic problem in spherical coordinate [10]. Jabbari et.al. [11] also discuss thermal 

buckling analysis of functionally graded thin circular plate made of saturated porous materials.  

 

Belotserkovets and Prevost [12] discussed the thermoporoelastic response of a fluid saturated porous sphere. 

Hou,et. al. [13] discussed the three dimensional green’s function for transversely isotropic  thermoporoelastic 

biomaterial. Gelet et. al. [14]discussed the borehole stability analysis in a thermoporoelastic duel-porosity 

medium.  Li et al. [15] obtained the general steady state solution for transversely isotropic  thermoporoelastic 
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medium in three dimension .  Mukhopadhyay and Kumar [16] discuss the analysis of phase-lag effects on wave 

propagation in a thick plate under axisymmetric temperature distribution. 

 

Mixed variation principal for dynamic response of thermoelastic and poroelastic continua was discussed by 

Apostolakis and Dargus [17]. Hou, et. al. [18] discussed the three dimensional Green’s function for transversely 

isotropic thermoporoelastic biomaterial. He et al.[19] studied the dynamic simulation of landslide based on 

thermoporoelastic approach. Nguyen et al.[20] discussed the analytical study of freezing behaviour of a cavity in 

thermoporoelastic medium. Wu et al. [21] presented a refined theory of axisymmetric thermoporoelastic circular 

cylinder.  

 

In the present paper, we obtain the components of displacement, stress, pore pressure and temperature change 

due to concentrated source and source over circular region in the time domain and frequency domain in 

thermoporoelastic medium with incompressible fluid. Laplace and Hankel transforms are  used to investigate the 

problem. Numerical inversion techniques are applied to obtain the resulting quantities in a physical domain. The 

resulting quantities are shown graphically to depict the effect of porosity. 

 

II. GOVERNING EQUATIONS 
Following Jabbari and Dehbani [22], the field  equations are                                                                                                                                        

 λ + µ ∇∇. 𝑢  + 𝜇∇2𝑢  − 𝛼∇𝑝 − 𝛽∇𝑇 = 𝜌
𝜕2𝑢   

𝜕𝑡2      ,                                         (1) 
𝑘

𝛾𝑤
∇2𝑝 − 𝛼𝑝𝑝 − 𝑌𝑇 − 𝛼𝑑𝑖𝑣𝑢   = 0   ,                                                               (2) 

𝐾∇2𝑇 − 𝑍𝑇0𝑇 + 𝑌𝑇0𝑝 − 𝛽𝑇0𝑑𝑖𝑣𝑢   = 0   ,                                                      (3)        

  𝜍𝑖𝑗 = λuk,kδij + μ ui,j + uj,i − αpδij − βTδij  ,                                            (4) 

where   𝑢   is the displacement component, 𝑝 is the pore pressure, 𝜌 is the bulk mass density ,  𝛼 = 1 −
𝐶𝑠

𝐶
  is the 

Biot’s coefficient ,  𝐶𝑠 = 3 1 − 2𝑣𝑠 /𝐸𝑠 is the coefficient of volumetric compression of solid grain , with  𝐸𝑠 

and 𝑣𝑠 being the elastic modulus and Poisson’s ratio of solid grain ,   C = 3 1 − 2𝑣 /𝐸 is the coefficient of 

volumetric compression of solid skeleton , with 𝐸 and 𝑣 being the elastic modulus and Poisson’s ratio of solid 

skeleton , 𝑇0 is initial reference temperature , 𝛽 =
3𝛼𝑠

𝐶
 is the thermal expansion factor , 𝛼𝑠 is the coefficient of 

linear thermal expansion of solid grain ,𝑌 = 3 𝑛𝛼𝑤 +  𝛼 − 𝑛 𝛼𝑠  and 𝛼𝑝 = 𝑛 𝐶𝑤 − 𝐶𝑠 + 𝛼𝐶𝑠 are coupling 

parameters , 𝛼𝑤  and 𝐶𝑤  are  the coefficients of linear thermal expansion and volumetric compression of pure 

water , n is the porosity , 𝑘 is the hydraulic conductivity , 𝛾𝑤  is the unit of pore water and 𝑍 =
 1−𝑛 𝜌𝑠𝐶𝑠+𝑛𝜌𝑤 𝐶𝑤

𝑇0
 is 

coupling parameter , 𝜌𝑤  and 𝜌𝑠 are densities of pore water and solid grain and 𝐶𝑤  and 𝐶𝑠   are heat capacities of 

pore water and solid grain and 𝐾 is the coefficient of heat conductivity. 

 

III. FORMULATION AND SOLUTION OF THE PROBLEM 
We consider a homogeneous, incompressible fluid saturated thermal conducting poroelastic medium at uniform 

temperature 𝑇0 in the undeformed state. We take cylindrical polar coordinate system (r,𝜃,z) and consider a two 

dimensional axi-symmetric problem with symmetry about z-axis, so that all the quantities are remain 

independent of 𝜃  and  
𝜕

𝜕𝜃
= 0. The complete geometry of the problem is shown in the figure 1(a),1(b).  Since 

we are considering two dimensional problem, so we assume the components of displacement vector 𝑢      of the 

fom 

 𝑢     = (𝑢𝑟 , 0, 𝑢𝑧)  .                                                                                           (5)                     

Equations (1)-(3) with the aid of (5) can be written as: 

µ   ∇2𝑢𝑟 −
1

𝑟2 𝑢𝑟 𝑒𝑟 + ∇2𝑢𝑧𝑒𝑧  +  λ + µ   
𝜕2𝑢𝑟

𝜕𝑟 2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝜕2𝑢𝑧

𝜕𝑟𝜕𝑧
 𝑒𝑟 +  

𝜕2𝑢𝑟

𝜕𝑧𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝑧
+

𝜕2𝑢𝑧

𝜕𝑧 2  𝑒𝑧 −

𝛼  
𝜕𝑝

𝜕𝑟
𝑒𝑟 +

𝜕𝑝

𝜕𝑧
𝑒𝑧 − 𝛽  

𝜕𝑇

𝜕𝑟
𝑒𝑟 +

𝜕𝑇

𝜕𝑧
𝑒𝑧 − 𝜌  

𝜕2𝑢𝑟

𝜕𝑡 2 𝑒𝑟 +
𝜕2𝑢𝑧

𝜕𝑡 2 𝑒𝑧 = 0                                                                       (6)  

𝑘

𝛾𝑤
 
𝜕2𝑝

𝜕𝑟 2 +
1

𝑟

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝

𝜕𝑧 2 − 𝛼𝑝
𝜕𝑝

𝜕𝑡
− 𝑌

𝜕𝑇

𝜕𝑡
− 𝛼  

𝜕2𝑢𝑟

𝜕𝑡𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝑡
+

𝜕2𝑢𝑧

𝜕𝑧𝜕𝑡
 = 0 (7)                                                   

𝐾  
𝜕2𝑇

𝜕𝑟 2 +
1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧 2 − 𝑍𝑇0
𝜕𝑇

𝜕𝑡
− 𝑌𝑇0

𝜕𝑝

𝜕𝑡
− 𝛽𝑇0  

𝜕2𝑢𝑟

𝜕𝑡𝜕𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝑡
+

𝜕2𝑢𝑧

𝜕𝑧𝜕𝑡
 = 0 (8)                    

We define the non-dimensional quantities                                                                                          

   𝑟′ =
𝜔∗

𝑐1
𝑟, 𝑧 ′ =

𝜔∗

𝑐1
𝑧 , 𝑢𝑟

′  =
𝜔∗

𝑐1
𝑢𝑟  , 𝑢𝑧

′ =
𝜔∗

𝑐1
𝑢𝑧  ,𝑝′ =

𝑝

𝛽𝑇0
  ,𝑐1

2 =
λ+2𝜇

𝜌
 ,      𝑡 ′ = 𝜔∗𝑡,      𝑇 ′ =

𝑇

𝑇0
 , 𝜍𝑧𝑧

′ =
𝜍𝑧𝑧

𝛽𝑇0
, 𝜍𝑧𝑟

′ =
𝜍𝑧𝑟

𝛽𝑇0
                                          (9)                         where 𝜔∗ is the constant having the dimensions of 

frequency. 

Using dimensionless quantities defined by (9), in the equations (6)-(8) yield 
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𝜕𝑒

𝜕𝑟
+ 𝑎1(∇2 −

1

𝑟2)𝑢𝑟 − 𝑎2
𝜕𝑝

𝜕𝑟
− 𝑎3

𝜕𝑇

𝜕𝑟
= 𝑎4

𝜕2𝑢𝑟

𝜕𝑡2      ,                     (10)                                                                                       

𝜕𝑒

𝜕𝑧
+ 𝑎1∇

2𝑢𝑧 − 𝑎2
𝜕𝑝

𝜕𝑧
− 𝑎3

𝜕𝑇

𝜕𝑧
= 𝑎4

𝜕2𝑢𝑧

𝜕𝑡2     ,                                   (11)                                                                         

𝑏1∇
2𝑝 − 𝑏2

𝜕𝑝

𝜕𝑡
− 𝑏3

𝜕𝑇

𝜕𝑡
−

𝜕𝑒

𝜕𝑡
= 0      ,                                            (12)                                       

𝑏4∇
2𝑇 − 𝑏5

𝜕𝑇

𝜕𝑡
+ 𝑏6

𝜕𝑝

𝜕𝑡
−

𝜕𝑒

𝜕𝑡
= 0    ,                                   (13)                                                 

where 

𝑎1 =
𝜇

λ+µ
 , 𝑎2 =

𝛼𝛽𝑇0  

λ+µ
, 𝑎3 =

𝛽𝑇0

λ+µ
 , 𝑎4 =

𝜌𝑐1
2

λ+µ
 , 𝑏1 =

𝑘𝜔∗𝛽𝑇0  

𝛾𝑤𝛼𝑐1
2   , 𝑏2 =

𝛼𝑝𝛽𝑇0  

𝛼
  

  𝑏3 =
𝑌𝑇0  

𝛼
  , 𝑏4 =

𝐾𝜔∗ 

𝛽𝑐1
2   , 𝑏5 =

𝑍𝑇0

𝛽
 , 𝑏6 = 𝑌𝑇0,   

and             𝑒 =
𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟
𝑢𝑟 +

𝜕𝑢𝑧

𝜕𝑧
 ,  ∇2=

𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2                  (14)                               To simplify the 

problem, we introduce the potential functions as: 

 𝑢𝑟 =
𝜕𝛷

𝜕𝑟
−

𝜕𝛹

𝜕𝑧
  ,   𝑢𝑧 =

𝜕𝛷

𝜕𝑧
+

𝜕𝛹

𝜕𝑟
+

𝛹

𝑟
                                             (15)                                       

Using (14) and (15) eqs. (10)-(13) become 

 1 + 𝑎1 ∇
2𝛷 − 𝑎2𝑝 − 𝑎3𝑇 − 𝑎4

𝜕2𝛷

𝜕𝑡2 = 0     ,                       (16)                                                   

𝑎1∇
2𝛹 −

𝑎1

𝑟2 𝛹 − 𝑎4
𝜕2𝛹

𝜕𝑡2 = 0       ,                                          (17)                                                             

𝑏1∇
2𝑝 − 𝑏2

𝜕𝑝

𝜕𝑡
− 𝑏3

𝜕𝑇

𝜕𝑡
−

𝜕

𝜕𝑡
 ∇2𝛷 = 0 ,                            (18)                                                                    

𝑏4∇
2𝑇 − 𝑏5

𝜕𝑇

𝜕𝑡
+ 𝑏6

𝜕𝑝

𝜕𝑡
−

𝜕

𝜕𝑡
 ∇2𝛷 = 0 .                          (19)                                                         

We define the Laplace and Hankel transforms as follows: 

𝑓  𝑠 =  𝑓(𝑡)𝑒−𝑠𝑡∞

0
𝑑𝑡,                                                 (20)                                                         

𝑓  ξ, z, s =  𝑓 ∞

0
 𝑟, 𝑧, 𝑠 𝑟𝐽𝑛 𝑟ξ 𝑑𝑟,                             (21)                                                      

where   𝐽𝑛 𝑋  is the Bessel function of the first kind of index n. 

Applying integral transforms defined by (20) and (21) on (16)-(19), we obtain 

−ξ
2𝛷  +

𝑑2𝛷  

𝑑𝑧 2 − 𝐴1𝑝  − 𝐴2𝑇 
 − 𝐴3𝛷 

 = 0  ,           (22)                                                                  

−ξ
2𝛹  +

𝑑2𝛹  

𝑑𝑧 2 − 𝐴4𝛹 
 = 0     ,                                 (23)                                                                                         

−ξ
2𝑝  +

𝑑2𝑝  

𝑑𝑧 2 − 𝐵3ξ
2𝛷  − 𝐵3

𝑑2𝛷  

𝑑𝑧 2 − 𝐵1𝑝  − 𝐵2𝑇 
 = 0   ,   (24)                                                                   

−ξ
2𝑇  +

𝑑2𝑇  

𝑑𝑧 2 − 𝐵6ξ
2𝛷  − 𝐵6

𝑑2𝛷  

𝑑𝑧 2 − 𝐵4𝑇 
 − 𝐵5𝑝  = 0        (25)                                                    

where  𝐴1 =
𝑎2

1+𝑎1
, 𝐴2 =

𝑎3

1+𝑎1
, 𝐴3 =

𝑎4𝑠2

1+𝑎1
 , 𝐴4 =

𝑎4𝑠2

𝑎1
 , 𝐵1 =

𝑏2𝑠

𝑏1
 , 𝐵2 =

𝑏3𝑠

𝑏1
  𝐵3 =

𝑠

𝑏1
,𝐵4 =

𝑏5𝑠

𝑏4
 , 𝐵5 =

𝑏6𝑠

𝑏4
 , 𝐵6 =

𝑏7𝑠

𝑏4
 . 

Eliminating 𝑝   and 𝑇   from above equations, we obtain 

 
𝑑6

𝑑𝑧6 + 𝐷1
𝑑4

𝑑𝑧4 + 𝐷2
𝑑2

𝑑𝑧2 + 𝐷3 𝛷 
 = 0  ,                        (26)                                                     

 
𝑑2

𝑑𝑧2 − ξ
2 𝛹  − 𝐴4𝛹 

 = 0      ,                                       (27)                                                       

where 

   𝐷1 = −3ξ
2 −  𝐵1 + 𝐵4 − 𝐴3 − 𝐴1𝐵3 − 𝐴2𝐵6  ,                                                                      𝐷2 = −3ξ

4 −

2 𝐵1 + 𝐵4 ξ
2 +  𝐵1𝐵4 − 𝐵2𝐵5 + 2𝐴3ξ

2 +  𝐵1 + 𝐵4 𝐴3 + 2𝐴1𝐴3ξ
2 − 𝐴1 𝐵2𝐵6 − 𝐵3𝐵4 + 2𝐴2𝐵6ξ

2 −
𝐴2 𝐵3𝐵5 − 𝐵1𝐵6 , 

𝐷3 = ξ
6 −  𝐵1 + 𝐵4 ξ

4 − ξ
2 𝐵1𝐵4 − 𝐵2𝐵5 −  𝐵1 + 𝐵4 𝐴3ξ

2 − 𝐴3ξ
4 − 𝐴3 𝐵1𝐵4 − 𝐵2𝐵5 − 𝐴1𝐴3ξ

2 +

𝐴1ξ
2 𝐵2𝐵6 − 𝐵3𝐵4 − 𝐴2𝐵6ξ

4 + 𝐴2ξ
2 𝐵3𝐵5 − 𝐵1𝐵6 . 

Solving (26) and (27) and assuming that 𝛷  , 𝛹   ,𝑝   and 𝑇   →0 as z → ∞  we obtain the value of 𝛷  , 𝛹  , 𝑝   and 𝑇  as                                             

𝛷  = 𝐸1𝑒
− 𝑚1𝑧 + 𝐸2𝑒

− 𝑚2𝑧 + 𝐸3𝑒
− 𝑚3𝑧  ,                (28)                                                                                                                         

𝛹  = 𝐸4𝑒
− 𝑚4𝑧   ,                                                           (29)                                                                                                

𝑝  = 𝑟1  𝐸1𝑒
− 𝑚1𝑧 + 𝑟2𝐸2𝑒

− 𝑚2𝑧 + 𝑟3𝐸3𝑒
− 𝑚3𝑧  ,      (30)                                                          

  𝑇  =  𝑠1  𝐸1𝑒
− 𝑚1𝑧 + 𝑠2𝐸2𝑒

− 𝑚2𝑧 + 𝑠3𝐸3𝑒
− 𝑚3𝑧     (31)                                                         

where  𝑚1,  𝑚2,  𝑚3  are the roots of the equation (26)  found with the help of cardon method and 

𝑚4 =  𝐴5  

where   𝐴5 = ξ
2 + 𝑎4  

and the coupling constants are given by 
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𝑟𝑖 =
𝐵3 𝑚 𝑖

2−ξ
2 

2
+ 𝐵2𝐵6−𝐵3𝐵4  𝑚 𝑖

2−ξ
2 

 𝑚 𝑖
2−ξ

2 
2
− 𝐵1+𝐵4  𝑚 𝑖

2−ξ
2 + 𝐵1𝐵4−𝐵2𝐵5 

            (32)                                                             

𝑠𝑖 =
𝐵6 𝑚 𝑖

2−ξ
2 

2
+ 𝐵3𝐵5−𝐵1𝐵6  𝑚 𝑖

2−ξ
2 

 𝑚 𝑖
2−ξ

2 
2
− 𝐵1+𝐵4  𝑚 𝑖

2−ξ
2 + 𝐵1𝐵4−𝐵2𝐵5 

            (33)                                                            

(i=1,2,3) . 

The  displacement components 𝑢𝑟     and 𝑢𝑧     are obtained with the aid of (20)-(21) and (28)-(29) as 

𝑢𝑟    = −𝐸1ξ𝑒− 𝑚1𝑧 − 𝐸2ξ𝑒− 𝑚2𝑧 − 𝐸3ξ𝑒− 𝑚3𝑧 + 𝐸4𝑚4𝑒
− 𝑚4𝑧   ,        (34)                                                                                                

𝑢𝑧    = −𝐸1𝑚1𝑒
− 𝑚1𝑧 − 𝐸2𝑚2𝑒

− 𝑚2𝑧 − 𝐸3𝑚3𝑒
− 𝑚3𝑧 + 𝐸4ξ𝑒− 𝑚4𝑧(35) 

 

BOUNDARY CONDITIONS  

The boundary conditions at z = 0 are 

𝜍𝑧𝑧 = −𝐹1𝐹(𝑟, 𝑡),𝜍𝑧𝑟 = −𝐹2𝐹(𝑟, 𝑡), 𝑝 = 𝐹3𝐹(𝑟, 𝑡),
𝜕𝑇

𝜕𝑥3
= 𝐹4𝐹(𝑟, 𝑡)   (36)                    

where𝐹1, 𝐹2 are the magnitudes of the forces , 𝐹3 is the constant pressure  applied on the boundary and 𝐹4is the 

constant temperature applied on the boundary. 𝐹(𝑟, 𝑡) is a  known function  of r and t. 

Applying  Laplace and Hankel transforms defined by (20)and (21) on (36) and with the aid of (9) , we obtain 

𝜍𝑧𝑧     = −𝐹1𝐹 
  ξ, s , 𝜍𝑧𝑟     = −𝐹2𝐹 

  ξ, s , 𝑝  = 𝐹3𝐹 
  ξ, s ,

𝜕𝑇  

𝜕𝑥3
= 𝐹4𝐹 

  ξ, s  ,at z = 0(37)                                                                                                                                                                        

where                                                                          

𝜍𝑧𝑧     = 𝑅1ξ𝑢𝑟    + 𝑅2
𝑑𝑢𝑧     

𝑑𝑧
 − 𝛼𝑝  − 𝑇     ,                                (38)                                                                                                                       

𝜍𝑧𝑟     = 𝑅3  
𝑑𝑢𝑟     

𝑑𝑧
− ξ𝑢𝑧                                                              (39)                                                

  and   𝑅1 =
λ

𝛽𝑇0
 ,   𝑅2 =

λ+2𝜇

𝛽𝑇0
 ,  𝑅3 =

𝜇

𝛽𝑇0
                                                                                                                          

Case 1: for normal force 𝐹2 =  𝐹3 = 𝐹4 = 0 

Case 2: for shear force 𝐹1 =  𝐹3 = 𝐹4 = 0 

Case 3: For pressure source  𝐹1 =  𝐹2 = 𝐹4 = 0  

Case 4: For thermal source  𝐹1 =  𝐹2 = 𝐹3 = 0  

Substituting the values of 𝑢𝑟    , 𝑢𝑧     ,𝑝    and 𝑇  from(34),(35) and (30),(31) in the boundary condition (37) and with 

help of (38) and (39), after some simplifications, we obtain 

  𝜍𝑧𝑧     =
1

∆
 𝑑1∆1𝑒

− 𝑚1𝑧 + 𝑑2∆2𝑒
− 𝑚2𝑧 + 𝑑3∆3𝑒

− 𝑚3𝑧 + 𝑑4∆4𝑒
− 𝑚4𝑧  , (40)                                                                                                              

𝜍𝑧𝑟     =
1

∆
 𝑑5∆1𝑒

− 𝑚1𝑧 + 𝑑6∆2𝑒
− 𝑚2𝑧 + 𝑑7∆3𝑒

− 𝑚3𝑧 + 𝑑8∆4𝑒
− 𝑚4𝑧  ,   (41)                 

𝑝  =
1

∆
 𝑟1∆1𝑒

− 𝑚1𝑧 + 𝑟2∆2𝑒
− 𝑚2𝑧 + 𝑟3∆3𝑒

− 𝑚3𝑧   ,               (42)                                     

 𝑇  =
1

∆
 𝑠1∆1𝑒

− 𝑚1𝑧 + 𝑠2∆2𝑒
− 𝑚2𝑧 + 𝑠3∆3𝑒

− 𝑚3𝑧   ,              (43)                                                                                                                                                             

where 

∆= d1d8 −m3r2s3 + m2r3s2 − d2d8 −m3r1s3 + m1r3s1 + d3d8 −m2r1s2 + m1r2s1 − d4d5 −m3r2s3 +
m2r3s2−d4d6−m3r1s3+m1r3s1−d4d7−m2r1s2+m1r2s1 , 

 di = −R1ξ
2 + R2mi

2 − αri − si  where (i=1,2,3) , d4 = ξm4 R1 − R2  

 dj = 2ξmjR3  where (j=5,6,7)  ,         d8 = −R3 m4
2 + ξ

2 , 

and ∆1, ∆2, ∆3, ∆4 are obtained by replacing −𝐹1 , −𝐹2, 𝐹3, 𝐹4 
𝑇  in ∆. 

 

APPLICATIONS: 

TIME DOMAIN: 

CASE 1.CONCENTRATED SOURCE: 
The solutions due to concentrated source is obtained by substituting  

𝐹 𝑟, 𝑡 = 𝐹1 𝑟 𝜂 𝑡 ,                                             (44)                                                                     

where 

 𝐹1 𝑟 =
1

2𝜋𝑟
𝛿 𝑟 .                                                 (45)                                                             

Applying Laplace and Hankel transform on (44) and (45), we obtain 

 𝐹   ξ, s =
1

2𝜋
𝜂 (𝑠) 

 

CASE 2:SOURCE OVER CIRCULAR REGION: 

The solution due to source over the circular region of non-dimensional radius a is obtained by setting 𝐹 𝑟, 𝑡 =
𝐹1 𝑟 𝜂 𝑡 , 
where 
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 𝐹1 𝑟 =
1

𝜋𝑎2 𝐻 𝑎 − 𝑟 . 

Applying Laplace and Hankel transforms on these quantities, we obtain, 

𝐹   ξ, s =
1

𝜋𝑎 ξ
𝐽1(𝑎ξ)𝜂 (𝑠)  

In both the cases, we have taken 𝜂 𝑡 = 𝐻(𝑡), so Laplace transform of 𝜂 𝑡   gives, 𝜂  𝑠 = 1/𝑠. 

 

FREQUENCY DOMAIN: 

In this case we assume the time harmonic behaviour as 

 𝑢𝑟 , 𝑢𝑧 , 𝑝, 𝑇  𝑟, 𝑧, 𝑡 =  𝑢𝑟 , 𝑢𝑧 , 𝑝, 𝑇  𝑟, 𝑧, 𝑡 𝑒𝑖𝜔𝑡 , 

In frequency domain, we take 𝜂 𝑡 = 𝑒𝑖𝜔𝑡 . 

The expressions for displacement, stress and pore pressure and thermal source in frequency domain can be 

obtained by replacing s by 𝑖𝜔 in the expressions of time domain (40) - (43) along with 𝜂  𝑠  to be replaced by 

𝑒𝑖𝜔𝑡  for concentrated source. 

 

SPECIAL CASE 

In the absence of porosity effect, we obtain the stress components and temperature change as 

  𝜍𝑧𝑧     =
1

∆10
 𝑑9∆5𝑒

− 𝑚5𝑧 + 𝑑10∆6𝑒
− 𝑚6𝑧 + 𝑑4∆4𝑒

− 𝑚4𝑧  ,                            (46)                                                                                                 

𝜍𝑧𝑟     =
1

∆10
 𝑑11∆5𝑒

− 𝑚5𝑧 + 𝑑12∆6𝑒
− 𝑚6𝑧 + 𝑑8∆4𝑒

− 𝑚4𝑧   ,                           (47)  

𝑇  =
1

∆10
 𝑠5∆5𝑒

− 𝑚5𝑧 + 𝑠6∆6𝑒
− 𝑚6𝑧                                                                (48)                                                                                                                           

where 

∆10= s6m6d8d9 + s5m5d8d10 − s6m6d11 d4 + s5m5d12d4 , 

 d9 = −R1ξ
2 + R2m5

2 − s5  , d10 = −R1ξ
2 + R2m6

2 − s6  , d4 = ξm4 R1 − R2  

 d11 = 2ξm5R3  , d12 = 2ξm6R3,         d8 = −R3 m4
2 + ξ

2 , 

and ∆5, ∆6, ∆7 are obtained by replacing −𝐹1 , −𝐹2, 𝐹4 
𝑇  in ∆10 . 

Taking 𝐹2 = 𝐹4 = 0 , 𝐹1 = 𝐹4 = 0, 𝐹1 = 𝐹2 = 0  in equations (46)-(48) respectively , we obtain the stress 

components and temperature change for  normal force, tangential forces and thermal source respectively. 

 

INVERSION OF THE TRANSFORM 

The transformed displacements, stresses, pore pressure and temperature are functions of the parameters of the 

Laplace and Hankel transforms 𝑠 and ξ  respectively and hence are of the form 𝑓   ξ, z, s .To obtain the solution 

of the problem in the physical domain, we invert the Laplace and Hankel transforms by using the method 

described by Kumar and Deswal [23]. 

 

IV. NUMERICAL RESULTS AND DISCUSSION 
With the view of illustrating the theoretical results and for numerical discussion we take a model for which the 

value of the various physical parameters are taken from Jabbari and Dehbani [22]: 

𝐸 = 6 × 105 , 𝜈 = 0.3 , 𝑇0 = 293 , 𝐾𝑠 = 2 × 1010   , 𝐾𝑤 = 5 × 109 , 𝐾 = 0.5  , 

𝛼𝑠 = 1.5 × 10−5 , 𝛼𝑊 = 2 × 10−4 , 𝑐𝑠 = 0.8 , 𝑐𝑤 = 4.2 , 𝜌𝑠 = 2.6 × 106 , 𝜌𝑤 = 1 × 106 , 𝛼 = 1, 𝐹1 = 𝐹2 =
𝐹3 = 𝐹4 = 1. 

The values of components of stress 𝜍𝑧𝑧  , 𝜍𝑧𝑟   , pore pressure p and temperature change T for incompressible 

fluid saturated thermoporoelastic medium (FSTM)  and empty porous thermoelastic medium (EPM) are shown 

due concentrated source and source applied over the circular region. The computation are carried out for two 

values of dimensionless time t=0.1 and t=0.5 at z=1 in the range  0 ≤ 𝑟 ≤ 10. 

 

The solid lines either without central symbols or with central symbols represents the variations for t=0.1, 

whereas the dashed lines with or without central symbols represents the variations for t=0.5.Curves without 

central symbols correspond to the case of FSTM whereas those with central symbols corresponds to the case of 

EPM. 

 

TIME DOMAIN NORMAL FORCE  

Fig. 2 shows the variation of normal stress component 𝜍𝑧𝑧  w.r.t distance 𝑟 due to concentrated force. The value 

of 𝜍𝑧𝑧  starts with initial increase and then oscillates for FSTM as 𝑟 increases for both values of time. In case of 

EPM, the value of 𝜍𝑧𝑧  increases for the range 0 ≤ 𝑟 ≤ 1.5 and then oscillates oppositely as r increases for both 

values of time.  
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Behaviour of shear stress component 𝜍𝑧𝑟  w.r.t distance 𝑟 due to concentrated force is shown in figure 3. The 

value of 𝜍𝑧𝑟  increases for the range 0 ≤ 𝑟 ≤ 2.5 and then oscillates for FSTM as 𝑟 increases whereas in case of 

EPM, its value oscillates oppositely as r increases for both values of time.  

 

Fig. 4 shows the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to concentrated source. The value of 𝑝 

decreases for the range 0 ≤ 𝑟 ≤ 2.5 and then start oscillating for FSTM as 𝑟 increases for both values of time.  

Fig. 5 depicts the variation of temperature T w.r.t distance 𝑟 due to concentrated source. The value of 𝑇 

decreases for the range 0 ≤ 𝑟 ≤ 2.4 and then start oscillating for time t=0.1 whereas for the time t=0.5 its value 

converges near the boundary surface for FSTM as 𝑟 increases. In case of EPM, the value of 𝑇 oscillates 

oppositely as r increases for both values of time. 

 

Fig. 6 shows the variation of normal stress  𝜍𝑧𝑧  w.r.t distance 𝑟 due to force over circular region. The value of 

𝜍𝑧𝑧  start with initial increase and then oscillates for FSTM and EPM as 𝑟 increases for both value time. 

Fig. 7 shows the variation of shear stress component 𝜍𝑧𝑟   w.r.t distance 𝑟 due to force over circular region. The 

value of 𝜍𝑧𝑟  first increases and then starts oscillates for FSTM and the value of  𝜍𝑧𝑟   for EPM oscillating 

oppositely as 𝑟 increases for both value time . 

 

Behaviour of pore pressure 𝑝 w.r.t distance 𝑟 due to force over circular region is shown in figure 8. The value of 

𝑝 decreases for the range 0 ≤ 𝑟 ≤ 2.4 and then starts oscillates for FSTM as 𝑟 increases for time t=0.1 whereas 

for the time t=0.5 its value first decreases and then converges near the boundary surface as 𝑟 increases. 

Behaviour of temperature T w.r.t distance 𝑟 due to force over circular region is shown in figure 9. The value of 

T for the time t=0.1 first decreases and then starts oscillates whereas for the time t=0.5 its value with initial 

increase converges near the boundary surface for FSTM. The value of T for EPM oscillates oppositely as 𝑟 

increases for both values time. 

 

PRESSURE SOURCE 

Fig. 10 shows the variation of normal stress component 𝜍𝑧𝑧  w.r.t distance 𝑟 due to concentrated force. The value 

of 𝜍𝑧𝑧  decrease sharply for the range 0 ≤ 𝑟 ≤ 2.2 and then oscillates for FSTM as 𝑟 increases for time t=0.1 

whereas for the time t=0.5 the value of 𝜍𝑧𝑧  shows initial decrease and then converges near the boundary surface. 

 Behaviour of shear stress component 𝜍𝑧𝑟  w.r.t distance 𝑟 due to concentrated force is shown in figure 11. The 

value of 𝜍𝑧𝑟  decrease sharply for the range 0 ≤ 𝑟 ≤ 2.3 and then oscillates for FSTM as 𝑟 increases for time 

t=0.1 whereas for the time t=0.5 the value of 𝜍𝑧𝑟  first increases and then oscillates as r increases. 

Fig. 12 depicts the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to concentrated force. The value of 𝑝 

increases sharply for the range 0 ≤ 𝑟 ≤ 2.4 and then oscillates for FSTM as 𝑟 increases for both values of time.  

 Fig. 13 shows the variation of temperature T w.r.t distance 𝑟 due to concentrated force. The value of T increase 

sharply for the range 0 ≤ 𝑟 ≤ 2.7 and then oscillates for FSTM as 𝑟 increases for time t=0.1 whereas for the 

time t=0.5 the value of T start with initial increase and then oscillates as r increases. 

Fig. 14 shows the variation of normal stress component 𝜍𝑧𝑧  w.r.t distance 𝑟 due to force over circular region. 

The value of 𝜍𝑧𝑧  decrease sharply for the range 0 ≤ 𝑟 ≤ 2.2 and then oscillates for FSTM as 𝑟 increases for 

time t=0.1 whereas for the time t=0.5 the value of 𝜍𝑧𝑧 shows initial decrease and then converges near the 

boundary surface. 

  

Fig. 15 shows the variation of shear stress component 𝜍𝑧𝑟  w.r.t distance 𝑟 due to force over circular region. The 

value of 𝜍𝑧𝑟  first decreases and then oscillates for FSTM as 𝑟 increases for time t=0.1 whereas for the time t=0.5 

the value of 𝜍𝑧𝑟  increases for the range 0 ≤ 𝑟 ≤ 4.5  and then oscillates as r increases. 

Fig. 16 depicts the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to force over circular region. With initial 

increase, the value of 𝑝 oscillates for FSTM as 𝑟 increases for time t=0.1 whereas for the time t=0.5 the value of 

𝑝 increases sharply for the range 0 ≤ 𝑟 ≤ 2.5  and then oscillates as r increases. 

 Fig. 17 depicts the variation of temperature T w.r.t distance 𝑟 due to force over circular region. The value of T 

increases for the range 0 ≤ 𝑟 ≤ 2.4 and then oscillates for FSTM as 𝑟 increases for both values of time. 

 

THERMAL SOURCE 

Fig. 18 shows the variation of normal stress component 𝜍𝑧𝑧  w.r.t distance 𝑟 due to concentrated force. The value 

of 𝜍𝑧𝑧  first decreases and then oscillates for FSTM and EPM as 𝑟 increases for both value of time. 

Behaviour of shear stress component 𝜍𝑧𝑟   w.r.t distance 𝑟 due to concentrated force is shown in figure 4.19. The 

value of 𝜍𝑧𝑟 increases for the range 0 ≤ 𝑟 ≤ 2.2 and then oscillates for FSTM as 𝑟 increases for both values of 

time whereas for EPM, its value first decreases and then oscillates as 𝑟 increases for time t=0.1 and t=0.5. 
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Fig. 20 shows the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to concentrated force. The value of 𝑝 

decrease sharply for the range 0 ≤ 𝑟 ≤ 2.1 and then oscillates for FSTM as 𝑟 increases for time t=0.1 whereas 

for the time t=0.5 the value of 𝑝 shows initial decrease and then converges near the boundary surface. 

Fig. 21 depicts the variation of temperature T w.r.t distance 𝑟 for both FSTM and EPM due to concentrated 

force. The value of T increases sharply for the range 0 ≤ 𝑟 ≤ 2.1 and then starts oscillates for FSTM as 𝑟 

increases for time t=0.1 and t=0.5. In case of EPM, the value of T oscillates oppositely as r increases for both 

values of time. Behaviour of normal  

 

stress component 𝜍𝑧𝑧  w.r.t distance 𝑟 due to force over circular region is shown in figure 4.22. The value of 𝜍𝑧𝑧  

first decreases and then oscillates for FSTM and EPM as 𝑟 increases for both values of time.                                                                                                                                            

Fig. 23 shows the variation of shear stress component 𝜍𝑧𝑟   w.r.t distance 𝑟 due to force over circular region. The 

value of 𝜍𝑧𝑟  increases for the range 0 ≤ 𝑟 ≤ 2.2 and then oscillates for FSTM as 𝑟 increases for both values of 

time whereas for EPM, its value first decreases and then oscillates as 𝑟 increases for time t=0.1 and t=0.5.                                                                                                                                                                

Fig. 24 shows the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to force over circular region. The value of 𝑝 

decreases sharply for the range 0 ≤ 𝑟 ≤ 2.1   and increases for the range 2.1 ≤ 𝑟 ≤ 4 for FSTM for time t=0.1 

and for t=0.5 its value converges near the boundary surface. 

Fig. 25 depicts the variation of temperature T w.r.t distance 𝑟 due to force over circular region. The value of T 

increases sharply for the range 0 ≤ 𝑟 ≤ 2.1 and then starts oscillates for FSTM as 𝑟 increases for time t=0.1 and 

t=0.5. In case of EPM, the value of T oscillates oppositely as r increases for both values of time. 

 

FREQUENCY DOMAIN NORMAL FORCE  

Behaviour of normal stress component 𝜍𝑧𝑧  w.r.t distance 𝑟 due to concentrated force is shown in figure 26. The 

value of 𝜍𝑧𝑧  first increases monotonically and then start oscillating for FSTM  as 𝑟 increases for both value the 

time whereas for EPM its value first decreases and then oscillates as  𝑟 increases for t=0.1 and t=0.5.  

 Fig. 27 shows the variation of shear stress component 𝜍𝑧𝑟   w.r.t distance 𝑟 due to concentrated force. The value 

of 𝜍𝑧𝑟  first decreases for the range 0 ≤ 𝑟 ≤ 2.4 and then start oscillates for FSTM  as 𝑟 increases for both value 

the time where as its value oscillates oppositely as  𝑟 increases for both value the time for EPM. 

Fig. 28 shows the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to concentrated force. The value of 𝑝 

converges near the boundary surface for the time t=0.1 whereas for t=0.5 its value  first decreases for the range 

0 ≤ 𝑟 ≤ 2.5 and then start oscillates for FSTM  as 𝑟 increases.  

Fig. 29 depicts the variation of temperature T w.r.t distance 𝑟 due to concentrated force. The value of T first 

decreases and then start oscillates for FSTM and EPM as 𝑟 increases for both value the time  

 

PRESSURE SOURCE 

Fig. 30 shows the variation of normal stress component 𝜍𝑧𝑧 w.r.t distance 𝑟 due to concentrated force. The value 

of 𝜍𝑧𝑧  first decreases sharply for the range 0 ≤ 𝑟 ≤ 2.1 and then start oscillates for the time t=0.1 where as for 

t=0.5 its value first increases and then start oscillates for FSTM as 𝑟 increases. 

 Behaviour of shear stress component 𝜍𝑧𝑟  w.r.t distance 𝑟 due to concentrated force is shown in figure 31. The 

value of 𝜍𝑧𝑟   for FSTM first decreases sharply for the range 0 ≤ 𝑟 ≤ 2.1 and then start oscillates for the time 

t=0.1 whereas for t=0.5 its value converges near the boundary surface as 𝑟 increases. 

Fig. 32 shows the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to concentrated force. The value of 𝑝 for 

FSTM decreases sharply for the range 0 ≤ 𝑟 ≤ 6 and then become linear as r increases for both value the time. 

Fig. 4.33 depicts the variation of temperature T w.r.t distance 𝑟 due to concentrated force. The value of T for 

FSTM first increases for the range 0 ≤ 𝑟 ≤ 2.5 and then start oscillates for the time t=0.1 and t=0.5.  

 

THERMAL SOURCE 

Fig. 34 shows the variation of normal stress component 𝜍𝑧𝑧  w.r.t distance 𝑟 due to concentrated force. The value 

of 𝜍𝑧𝑧  oscillates oppositely for FSTM  and EPM as r increases for t=0.1 and t=0.5. 

Fig. 35 depicts the variation of shear stress component 𝜍𝑧𝑟   w.r.t distance 𝑟 due to concentrated force. The value 

of 𝜍𝑧𝑟  first increases and then oscillates  for FSTM for both value the time and in case of EPM its value first 

increases  for the range 0 ≤ 𝑟 ≤ 1.1 and then start oscillates for the time t=0.1 whereas for t=0.5 its value first 

increases  and then start oscillates as  r increases. 

Fig. 36 shows the variation of pore pressure 𝑝 w.r.t distance 𝑟 due to concentrated force. The value of 𝑝 for 

FSTM decreases sharply for the range 0 ≤ 𝑟 ≤ 4.5 and then starts increasing for time t=0.1 whereas for t=0.5 its 

value converges near the boundary surface as 𝑟 increases. 

Fig. 37 shows the variation of temperature T w.r.t distance 𝑟 due to concentrated force. The value of T 

converges near the boundary surface for FSTM for both value the time and in case of EPM its value oscillates 

oppositely  for the time t=0.1 and t=0.5. 
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V. CONCLUSION 
The work presented in this chapter provides a mathematical model to obtain the solutions of displacement, 

stress, pore pressure and temperature change due to  various sources by using the Laplace and Hankel 

transforms. Various sources are taken to illustrate the application of the approach. Some particular cases of 

interest are also deduced.   

 

In time domain, near the application of the source porosity effect increases the value of 𝜍𝑧𝑧   and T  for the 

normal force and for thermal source and away from the source due to porosity effect the value of 𝜍𝑧𝑧    oscillates. 

Although there is difference in their magnitude values.  Also porosity effect decreases the values of 𝜍𝑧𝑟  for the 

force in normal direction but increase the values for pressure source.                                   

   

In frequency domain, near the application of the source porosity effect decreases the value of 𝜍𝑧𝑧   and T for the 

normal force and thermal source whereas the value of 𝜍𝑧𝑟    increases for the force in normal direction and away 

from the source they have oscillatory behaviour in all the cases for both type of sources with difference in their 

magnitude values. 

            

Near the application of the source the value of 𝑝 decreases  for the normal force and pressure source whereas it 

shows opposite behaviour for thermal source for both types of sources and away from the source it has 

oscillatory behaviour with difference in their magnitude values.      

An appreciable porosity effect is observed on the components of stress, pore pressure and temperature change 

on the application of ring and disc loads. Near the application of the load, the porosity effect increases the value 

of 𝜍𝑧𝑧  , 𝑝 and decreases the value of 𝜍𝑧𝑟 ,T  and away from the source these values oscillates with the difference 

in their magnitude values. 
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Fig. 1a Concentrated force or pressure source or thermal source   𝑭(𝒓, 𝒕) acting on the plane  boundary 

𝒛 = 𝟎 . 

 

 
Fig. 1b. Force over the circular region or pressure source or thermal source   𝑭(𝒓, 𝒕), acting at the 

interface 𝒛 = 𝟎. 

                        

 
     

Fig .2 Variation of normal stress 𝝈𝒛𝒛w.r.t.distance r due to concentrated force in normal direction (time 

domain) Fig .3  Variation of shear stress 𝝈𝒛𝒓w.r.t.distance r due to concentrated force in normal direction 

(time domain)                                       
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Fig .4 Variation of pore pressure 𝒑 w.r.t.distance r due to concentrated force in normal direction (time 

domain) Fig.5 Variation of temperature T w.r.t.distance r  due to concentrated force in normal direction 

(time domain)  
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Fig .6 Variation of normal stress 𝝈𝒛𝒛w.r.t.distance r due to force over circular region in normal direction 

(time domain) Fig.7 Variation of shear stress 𝝈𝒛𝒓w.r.t.distance r due to force over circular region in 

normal direction (time domain) 
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Fig.8 Variation of pore pressure 𝒑 w.r.t.distance r due to force over circular region in normal direction 

(time domain) Fig.9 Variation of temperature T w.r.t.distance r  due to force over circular region in 

normal direction (time domain)   
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Fig.10 Variation of normal stress 𝝈𝒛𝒛w.r.t.distance r  due to concentrated pressure source(time domain) 

Fig .11 Variation of shear stress 𝝈𝒛𝒓w.r.t.distance r  due to concentrated pressure source(time domain) 
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Fig.12 Variation of pore pressure 𝒑 w.r.t.distance r due to concentrated pressure source (time domain)  

Fig.13 Variation of temperature T w.r.t.distance r  due to concentrated pressure source(time domain)                                                            
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Fig .14 Variation of normal stress 𝝈𝒛𝒛w.r.t.distance r due to concentrated pressure source (time domain) 

 Fig 15 Variation of shear stress 𝝈𝒛𝒓w.r.t.distance r due to pressure source over circular region (time 

domain) 
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Fig 16 Variation of pore pressure 𝒑 w.r.t.distance r due to pressure source over circular region (time 

domain) Fig 17 Variation of temperature T w.r.t.distance r  due to pressure source over circular region 

(time domain)  

 

0 2 4 6 8 1 0

D is ta n c e  r

-0 .0 8

-0 .0 4

0

0 .0 4

0 .0 8

0 .1 2

N
o

rm
a

l 
s

tr
e

s
s

 
z

z
 

F S T M (t= 0 .1 )

F S T M (t= 0 .5 )

E P M (t= 0 .1 )

E P M (t= 0 .5 )

 
Fig .18 Variation of normal stress 𝝈𝒛𝒛w.r.t.distance r due to concentrated thermal source (time domain)                               
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Fig .19 Variation of shear stress 𝝈𝒛𝒓w.r.t.distance r due to concentrated thermal source (time domain)Fig 

.20 Variation of pore pressure 𝒑 w.r.t.distance r due to concentrated thermal source (time domain)    
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Fig 21 Variation of temperature T w.r.t.distance r  due to concentrated thermal source (time domain) Fig 

.22 Variation of normal stress𝝈𝒛𝒛w.r.t.distance r  due to Thermal source over circular region (time 

domain)  
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Fig.23 Variation of shear  stress𝝈𝒛𝒓w.r.t. distance r due to Thermal source over circular region (time 

domain) Fig 24 Variation of pore pressure 𝒑 w.r.t.distance r due to Thermal source over circular region 

(time domain)                                  
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Fig .25 Variation of temperature T w.r.t.distance r  due to Thermal source over circular region ( time 

domain) Fig .26 Variation of normal stress𝝈𝒛𝒛w.r.t.distance r due to concentrated force in normal 

direction (frequency domain)                                
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Fig .27 Variation of shear  stress 𝝈𝒛𝒓w.r.t.distance r  due to concentrated force in normal direction 

(frequency domain) Fig.28 Variation of pore pressure 𝒑 w.r.t.distance r due to concentrated force in 

normal direction (frequency domain) 
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Fig .29 Variation of temperature T w.r.t.distance r due to concentrated force in normal direction 

(frequency domain) Fig .30 Variation of normal stress𝝈𝒛𝒛w.r.t.distance r due to concentrated pressure 

source (frequency domain) 
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Fig .31 Variation of shear  stress 𝝈𝒛𝒓w.r.t.distance r due to concentrated pressure source(frequency 

domain) Fig.32 Variation of pore pressure 𝒑 w.r.t.distance r due to concentrated pressure 

source(frequency domain)                                
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Fig .33 Variation of temperature T w.r.t.distance r  due to concentrated pressure source(frequency 

domain) Fig .34 Variation of normal stress 𝝈𝒛𝒛w.r.t.distance r due to concentrated thermal 

source(frequency domain)    
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Fig .35 Variation of shear stress 𝝈𝒛𝒓w.r.t.distance r due to concentrated thermal source(frequency 

domain) Fig .36 Variation of pore pressure 𝒑 w.r.t.distance r due to concentrated thermal 

source(frequency domain)   
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Fig .37 Variation of temperature T w.r.t.distance r  due to concentrated thermal source(frequency 

domain) 

 

 

 

       

 

 

              


