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ABSTRACT : Linear equalizers were derived either on the deterministic Zero Forcing (ZF) approach for
equalizers of ZF type or on the stochastic Minimum Mean Square Error (MMSE) approach for equalizers of the
MMSE type. We present a new formulation of the equalizer problem based on a Weighted Least Squares (WLS)
approach. Here, we show that it is possible and in our opinion even simpler to derive the classical results in a
purely deterministic setup, interpreting both equalizer types as Least Squares solutions. This, in turn, allows the
introduction of a simple linear reference model for equalizers, which supports the exact derivation of a family of
iterative and recursive algorithms with optimize behavior. Due to this reference approach the adaptive
equalizer problem can equivalently be treated as an adaptive system identification problem for which very
precise Statements are possible with respect to convergence, optimization and I,-stability.

Keywords: Zero Forcing (ZF), Minimum Mean Square Error (MMSE), Least Squares (LS),
WeightedLeastSquare (WLS) and Singlelnput Single Output (SISO).

l. INTRODUCTION

Linear equalizers were designed either on the deterministic ZF approach for equalizers of ZF type or
on the stochastic MMSE approach for equalizers of the MMSE type. We proposed a new formulation of the
equalizer problem based on a weighted least squares (LS) approach. This deterministic concept is very much in
line with Lucky so original formulation [11], leaving out all signal and noise properties (up to the
noisevariance) but at the same time offers new insight into the equalizer solutions, as they share common LS
or thogonality properties. This novel LS approach allows very general formulation to cover a multitude of
equalizer problems, including different channel models, multiple antennas as well as multiple users [1].

In practice, the equalizer problem is not yet solved once the solution is known, as it typically
involves a matrix inversion, a mathematical operation that is highly complexandchallenginginlow-costfixed-
pointdevices.Adaptivealgorithmsarethus commonly used to approximate the results. Suchadaptive
algorithmsforequalization purposescomeintwoforms, aniterative (alsooff-lineorbatch process) approach as well
asarecursiveapproach (alsoon-lineordata-drivenprocess) that readjusts its estimates oneachnewdata
elementthat isbeingobserved. Both approaches have their benefits and drawbacks. Ifchannelestimation
isperformedinapreviousstep  (forvarious reasons), then the iterative algorithm based onthe
channelimpulseresponsemaybemost effective.Onthe other hand, itisnot required tocompute firstthe
channelimpulseresponseifonlythe equalizer solution isofinterest. In particularintime-variantscenarios,
onemay not have the chance to continuously estimate thechannelandthen compute equalizersolutionsiteratively
andtherefore, arecursive solution that isableto track changes, may betheonlyhopeforgood results[2],[3].

However, such adaptive algorithms require a deep understanding of their properties as selecting their
free parameter, the step-size, turns out to be crucial. While forward cascades adaptive filter designers were
highly satisfied when they able to prove convergence in the mean-square sense, more and more situations now
become known, in which this approach has proved to be insufficient, since, despite the convergence in them
enquire sense, the worst case sequences exist that cause the algorithm to diverge. This observation has
started with Feintuchs adaptive IIR algorithm and the class of adaptive filters with a line are filter in the error
path [4],[5]but has recently found in other adaptive filters[6],[7],as well as in adaptive equalizers[8]. A robust
algorithm design, on the other hand, is much more suited to solving the equalization problem as it can
guarantee the adaptive algorithm will not diverge in any case. In this contribution we show how to design
robust, adaptive filters for linear equalizers [9],[10].
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. Formulation For Transmission Model
Throughout this paper, we adopt that the separable transmit signal elements s. have unit

energyefls, I°1=1 ,and the noise variance at the receiver is given by e[} v, |°1= N, .We are considering several
similar but distinct transmission schemes:

2.1 Single User (SU) Transmission for Frequency Selective SISO Channels

The following SU transmission defines frequency selective (also called time dispersive)single-input
single-output (SISO)scenarios:

r.=Hs +v, (1)

Here, the vector s, = [s,.s, ;.- " consists of the current and s -1 past symbols according to

o Siese]
the span L < s of the channel 1 , which is typically the Toeplitz form as describe in (2). The received vector is

defined as», = [r,.7,. 7r.,] - Let the transmission be disturbed by additive noise v, being of the same
dimension asr. .
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Note that for a toeplitz form channel H we have R < s . A linear equalizer applies an FIR filter f on the received

H

signal r. so that f"r is an estimate of s,  =e's

. for the delayed version ofs.. A unit vector

k k

e. =[0,...,0,1,0,...,0]" with asingle one at position - facilitates the description.

2.2 Single User (SU) Transmission for Frequency Selective MIMO Channels
The transmissions follow the same form as described in equation (5), although with a different
meaning as we transmit over N antennas and receive by N, . Suchmultiple input multiple- outputsystems are

generally referred toasMIMO systems. The transmit vector s, = |:€ s s ] is of dimension1x N , the

channel matrix+ ,and thus the receive vector and the additive noise vector are of dimensionix N .
Here, N+ is the number of transmit antennas. As in the previous case, we assume each entry of the transmit
vector to have unit power. Unlike the earlier situation, however, we have to distinguish N_ > N, (under
determined LS solution) and N, < N, (over determined LS solution). For N, = N, both solutions coincide. In
order to detect the various entries of the transmit vector s, , we again employ a unit vectore, : es, = s, . Note
however that in contrast to the previous channel model, a set of N, different vectors ¢ ;¢ = 1,2,.., 5, will be
employed in order to select all N, transmitted symbols while in the frequency selective SISO case a single

vectore_ is sufficient. Early works on linear MIMO equalization can befound in [15] and [16]. Note that

precoding matrices are often applied in particular in modern cellular systems such as HSDPA and LTE. In this
case the concatenation of the precoding matrix and the wireless channel has to be considered as a new
compound channel. Such precoding matrices can also have an impact on the dimension of the transmit vector
s, as in many cases fewer symbols than rank are transmitted at each time instant k . A particular form of this is
given when the precoding matrix shrinks to a vector, in which case we talk about beamforming where only one
symbol stream is transmitted.

2.3 Maximizing SIR and SINR

To understand the vast amount of research and information available on this subject, one has to ask the
question “What is the purpose of an equalizer?” While Lucky’s original work focused on the SU scenario,
attempting a minimax approach to combat intersymbolinterference (I1SI), today we typically view the equalizer
in terms of signal-to-interference ratio (SIR) or signal-to-interference and noise ratio (SINR). If a signal, say's, ,
is transmitted through a frequency selective channel, a mixture of ISI, additive noise and signals from other
users multiuser interference (MUI) is received. If signals are transmitted by multiple antennas, then additional
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so-called spatial ISI (SP-1SI) is introduced. The ratio of the received signal power p_ and all disturbance terms

before an equalizer indicated by the index ‘be’) is easily described as
P
SINR,, = : (3)
Ps +P + P + N,

Isi SP-1SI1 MUI

The task of the equalizer is to improve the situation, i.e., to increasethis ratio. A linear filter applied to
the observed signal can for example result in an increased p, > p_,utilizing useful parts of p, and p

SP-ISI ?
while the remaining and/or pg, is decreased. Unfortunately, the noise power
N, as well as its power spectraldensity is in general also changed when an equalizer filter is applied.At best it

can be considered possible to achieve the post equalizationSINR (the index ‘ae’ denotes after equalization)

<P and/or P, <P

SP-IsI MUl

P.+P +P
SINRae < S IS1 SP-1Isl (4)

N,

Where the equalizer manages to treat the ISI and SP-ISI as useful signal whilst at the same time eliminating the
MUI (for example by successive interference cancellation). The ratio of siNRr, to the eventually achieved
SINR,, Iis considered as the equalizer gain. The purpose of this paper is to develop a unified view of the SINR

and SNR relation to the MMSE and ZF equalizer, which permits the introduction of a simple linear reference
model as well as its application in an adaptive system identification framework.

I11. A Reference Model for An Adaptive Equalizers
While classical literature views the equalizer problem as minimizing a mean square error, we show in the
following section that this is in fact not required and a purely deterministic approach based on a least squares
modeling is possible. This approach in turn leads to the novel interpretation of the adaptive equalizer problem in
terms of a classic system identification problem. For such problems, however, a much stronger 1, -stability and

robustness has been derived in the past to ensure convergence of the adaptive algorithms under worst case
conditions. In order to apply such robust techniques, we first have to show the equivalent system identification
approach for equalizers. We start with the ZF equalizer and then continue with its MMSE counterpart [8].

3.1 Zero Forcing (ZF) Equalizer
A solution to the ZF equalizer problem is equivalently given by the following LS formulation:

ZF
fr,t,m

. H 2
=argmin||H " f -e_ |

®)

=argmin|[H"[f - (HH ") He_  1II;

Withe  ~ indicating a unit vector with a single one entry at Position< , for transmit antenna t of userm ,

thuse!, s, =s the transmit signal at antennat of user m that will be decoded at delay lag - . Note that this

form of derivation requiresno signal or noise information, focusing instead only onproperties of linear time-
invariant systems of finite length (FIR);it thus entirely ignores the presence of noise. This is identicalto Lucky’s
original formulations [14], where system propertieswere the focus and the particular case of N, = 1,M = 1 was
considered. If RN, < sN, M (for example, in Lucky’s SISO frequency selective scenario, we have R < s ) the
solution to this problem is obviously given by

k-ttm !

f°F° — (HH H)lee”Ym (6)

7,t,m
Commonly known as the ZF solution. Note that this is a so-called overdetermined LS solution as we have more
equations than entries in f’" . When RN, >SN, M an alternative so-called underdetermined LS solution

exists, as long as rank(H)= SN, M
ZF,0 _ H -1
£ =HMHH" )"e (7
And requires independent consideration as will be provided further on in this section.
Let us first consider the overdetermined case of (7). As I1SIdoes not vanish for finite length vectors, we propose
the followingreference model for ZF equalizers

e = H H 1:ZF,O + VZF,O (8)

T,t,m T,t,m T,t,m

With the modeling error vector
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A= -H"(HH") T H)e, 9)
The term vZ{;” models ISI, SP-ISI, and MUI. The larger the equalizer length RN, , the smaller the ISI, e.g.,

251> . The cursor position - also influences the result.

3.2 Minimum Mean Square Error (MMSE) Equalizer

measured in || v

MMSE solutions are typically derived on the basis of signal and noise statistics [21], e.g., by

MMSE

T,t,m

=argminE[|erk-s 2 (10)

k-7,t,m I ]

However, the linear MMSE solution can alternatively be defined by
€ Il N ILE 1)
1 (11)
=argmin|[(HH " + N D2[f -(HH " + N )" He_, ][I +MMSE

= argmin(|| H A

T,t,m

With an additional term, according to the additive noise variance N, . We consider here white noise; alternative
forms with colored noise, as originating, for example from fractionally spaced equalizers, is straightforward; one
only has to replace N1 withr,, the autocorrelation matrix of the noise.

This formulation of the equation (11) has now revealed that the MMSE problem equivalently can be written as a
weighted LS problem with the

MMSE =e] [I-H"(HH" + N, 1)’ H]e (12)
Defines the minimum mean square error. As the term is independent of f , it can thus be dropped when
minimizing equation (11). The well-known MMSE solution is now obviously

T,t,m

MMSE H 1
fr,t,m = (H H + N 0 I) H er,t,m (13)
Similarly to the ZF equalizer, an over determined solution for v < sn, m also exists here.
fUOE = HHHE T + N De (14)
Under white noise both solutions are in fact identical " "**° = t""** ~which is very different to the ZF

equalizer. Correspondingly, to thereference model for ZF equalizers in equation (8), we can now alsodefine a
reference model for MMSE equalizers

e - H H 1:MMSE + VMMSE (15)

T,t,m T,t,m T,t,m

With the modeling error

MMSE

o = HTHET N DT H)e (16)
Note, however, that unlike in the case of the ZF solution themodeling error is not orthogonal to the MMSE

solution, i.e., vMM5E "  MMSE s not equal to zero. MMSE equalizers are typically designed on the basis of

otm t,m

T,t,m

observations rather than system parameters.Multiplying the signal vector with e_, ~we obtain

T MMSEH
e s =5 = f

T,t,m "~k k-t,t,m T,t,m

HS, +v " g 17)

Jtm k
How does a received signal look after such MMSE-equalization? We apply on the observation vector and obtain

MMSE, H MMSE H MMSE,H
f r=s,_-v s, + f v
T,t,m k k-t T k T,t,m k
(18)
— 7MMSE
_Sk-r+vk,t,m

From classic equalizer theory it is well known that the remaininglSI energy of the ZF equalizer is smaller than
that ofthe MMSE parts. The weighted LS solution f"°¢ of equation (17),applied to the observation vector r, ,

Ttm

defines a linear referencemodel in which the desired output signal is s, _, originating from a transmitted signal

~MMSE

over antenna t of userm , corrupted by additive compound noise v,,,° . The compound noise is defined by

MMSE H
ot,m

equation (16)

MMSE H
T

MMSE H
T

f v, as well as by the modeling noisev s, , defined by the modeling error vector v in




American Journal of Engineering 2016

. ~ref
Sk—rtym Uk!.f.m

ref ) £
Lk f'r,fm: Ektm

Y
=
S

" ref
Sk—7t,m 2k ”J[re.i,m

Fig 1: Adaptive Equalization as System Identification problem.
In conclusion, the adaptive equalizer problem has thus taken on the form of an identification problem as

ref

depicted in Fig 1. The linear system with impulse f response is estimated as 't by an adaptive equalizer
algorithm. Here, ‘ref” stands for either MMSE or ZF. The outcome of the reference system is disturbed by the

Tt,m Tt,m

~ref

compound noise v, (see equation (18)) and constructs a noisy reference symbols, . The adaptive filter

k,t,m

~ref ~ref

with its output §,_, +v, ~tries to resembles, . +v. | . The distorted error signal ¢, is applied to the
adaptive filter in order to adjust the equalizer solution.

V. An Iterative Algorithms for An Adaptive Equalizers
Equalizer solutions requiring matrix inverses are highly complex and numerically challenging, in
particular when the matrix size is 50 or over. An iterative algorithm, as referred to here, is one that possesses all
data and attempts to achieve an optimal solution. In the literature such algorithms are also referred to at times as
off-line or batch algorithms since they require no new data during their operation. In this contribution we show
convergence conditions for numerous known and novel algorithms, but do not deal with the question of when to
stop the iterations [1].

4.1 An lterative Zero Forcing Equalizer (1ZF)

Let Starting with an initial value f, (which can be the zero vector), we arrive at the ZF iterative
algorithm for x = H

t =t tuH(e, -H" f,_,), 1=123,... (19)

With the reference model in equation (8) we can introduce the parameter error vector t, = *F -'t and obtain

E

we recognize that the noise condition is satisfied, as property Hv’" =0 forv = vZF . Convergence conditions for

the step-size , are now also readily derived, being dependent on the largest Eigen value of HH " .

2
O<p<————— (20)
maxi(HH ")

As computing the largest eigenvalue may be a computationallyexpensive task, simpler bounds are of interest,
even thoughthey may be conservative.

1. A classic conservative bound is given by

2
O<p<———— (21)
Trace(HH H )

And can be computed with low complexity once the matrix H is known.

2. For a Single User in a frequency selective SISO channel, the channel H is defined by a single

Toeplitz matrix, the largest eigenvalue of which can also be bounded bymax, |H(e 291, with
H (e’ ) denoting the Fourier transform of the channel impulse response. The corresponding condition

for the step-size reads now
2

0<upu< . (22)
max, |H(e )’
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Such a step-size may be more conservative than the condition in equation (20) but it is also more practical to
find.

In the simulation examples presented the bound so obtained is very close to the theoretical value in equation
(20).

10 — % 7}

-20

— 1 =0.0166667 — 1 =0.0166667

Relatve System mismatch in dB
)
(=]

Relatve System mismatch in dB

30 f---e — 1 =0.0510578 |----- beeneid 30 f--ee — 1 =0.0510578
— 1=0.127645 : : ! —— 1 =0.127645
— u=0.250003 : ; : i |Y:-39.88 — u=0.250003
4O pe-eee —— 1=0.255289 e ot e s (T 0.266289
i = 0.260395 ; ; i ; ; = 0.260395
50 i i i i P i i i i 50 i i i i ] i i i
0 10 20 30 40 5 60 70 80 90 100 0 10 20 30 40 5 60 70 80 90 100
adaptation step k adaptation step k
(i)System Mismatch (ii)Relative Error

Fig.2:lterative Zero Forcing Equalizer

Depending upon different step size conditions we have calculated Relative System mismatch and Error. Here as
the number of iterations increases error decreases means we are converging towards desired values of filter
weights.

4.2 An Iterative Fast Convergent An Zero Forcing Equalizer (IF-ZFE)

As the convergenceof the previous equalizer algorithm (Iterative ZF Algorithm) is dependent on the channel
matrix H , the algorithm exhibits much slower convergence forsome channels than for others, even for optimal
step-sizes. Theanalysis of the algorithm shows that the optimal matrix B that ensures fastest convergence is

given by B =[HH " 17, which is exactly the inverse whose computation we are attempting toavoid with the

iterative approach. If, however, some a prioriknowledge is present on the channel class (e.g., Pedestrian Bor
Vehicular A), then we can precompute the mean value overan ensemble of channels from a specific class, for
example

E[[HH " 171=R}, (23)
In this case, the algorithm updates read
t, =%, +tuR He -H"F );i1=102,.. (24)
Convergence condition for this algorithm will be
2
O<p<—— (25)

maxi(HH ")

30 S T TE

error in dB

Relatve System mismatch in dB

m—; vioaor | Y:_49.98
' K 50 | 1 ] " i 1 L 1
02 3 w0 0 0 70 80 % 100 UM 2% B0 A0, 80 600 Tk H0 30 100
adaptation step k adaptationstep k
(i)System Mismatch (ii)Relative Error

Fig.3:Fast Convergent of An Iterative Zero Forcing Equalizer
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Fig.4:SystemMismatch Comparison ofIZFE v/s IF-ZFE

The convergence speed of above Zero Forcing Equalizer depends upon the channel, for some channels it is
slowly convergent and for others it is fast convergent. For IF-ZFE, We can observe from results that this

algorithm is fast convergent as compared to anlZFEalgorithm as it reaches the desired value in very few
iterations.

4.3 An Iterative Minimum Mean Square Error Equalizer (IM?SE?)

Let’s start with our MMSE reference model equation (15), we consider the following update equation

t. =% +uXHe -(HH" + N, D, ) (26)
We can thus reformulate equation (26) into

H
t, =%, -uxHH" + N DY, | (27)
If we select x = 1, we can identify B = HH " + N1 and we find as a condition for convergence that
2
0<u< v (28)
maxi(HH =~ + N I)
20 T T T T T T T T T 40
! 1 = 0.0166667
3oL 1 =0.0510578

w=0.127645
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(i)System Mismatch (if)Relative Error
Fig.5:IterativeMinimumMeanSquareErrorEqualizer
The an IZF Equalizer does not consider channel noise, it cannot deal with noisy channel, and to deal this
problem we designed MMSE Equalizer which considers channel noise in its algorithm for calculating the step
size and Equalizer solution. Here also depending upon different step size conditions we have calculated Relative
System mismatch and Error. Here as the number of iterations increases error decreases means we are converging
towards desired values of filter weights.
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4.4 An Iterative Fast Convergent Minimum Mean Square Error Equalizer (IF-M?SE?)

As the convergence of the previous equalizer algorithm (lterative MMSE Algorithm) is dependent on the
channel matrix H, the algorithm exhibits much slower convergence for some channels than for others, even for
optimal step-sizes. The analysis of the algorithm shows that the optimal matrix B that ensures fastest

convergence is given by 8 = [HH ' 171 | which is exactly the inverse whose computation we are attempting to

avoid with the iterative approach. If, however, some a priori knowledge is present on the channel class (e.g.,
Pedestrian B or Vehicular A), then we can precompute the mean value over an ensemble of channels from a
specific class, a speedup algorithm is possible with

X =Ry, + Ny (29)
In this case our Fast Convergent MMSE Algorithm will become
t =% +ur,, +N,D (He -(HH" + N,D'f ) (30)
The Convergence condition for this algorithm will be
2
0 < u < (31)

maxi(HH " + N I)
40 T T T
——u=014 :
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Fig.6:Fast Convergent An Iterative Minimum Mean Square Error Equalizer
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Figure7:SystemMismatch Comparison ofIM?SE? v/s IF- M?SE?

The convergence speed of above IM?SE?depends on the channel, for some channels it is slowly convergent and
for others it is fast convergent. For IF- M?SE?, We can observe from results that this algorithm is fast convergent
as compared to alM?SE?algorithm as it reaches the desired value in very few iterations. We have also compared
IZF with IM?SE2, which is shown in the results. From the results, we can observe that the relative Error of
IM?SE?is less as compared to IZF, because 1ZF Equalizer can't deal with noisy channels this problem we have
overcome using IM?SE? Equalizer which reduces ISI as well as noise power.
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Figure8:Relative Error Comparison ofIM?SE? v/s IF- M*SE?

As compared to an IM?SE?algorithm as it reaches the desired value in very little iteration. We have also
compared an 1ZF with an IM?SE? which is shown in the results. From the results, we can observe that the
relative Error of an IM?SE?isless as compared to an |ZF, because an |ZF Equalizer can’t deal with noisy

channels this problem we have overcomeusinglM?SE?EqualizerwhichreduceslSlaswellasnoisepower.
30 T T T T T T —E—T T 30 T T T T

pn=014
20k =035

error in dB
error in dB

1
i 1 1 IETR |
0 10 20 30 40 50 60 70 80 90 100
50 60 70 80 90 100 adaptation step k
adaptation step k

(i)Relative Error 1ZF (ii)RelativeErrorIM?SE?

Fig.9:RelativeErrorComparison ofl ZFandIM?SE?Equalizers
In order to perform out theoretical findings, we present selected Matlab examples, we consider a set of seven
channels impulse response of finite length [8] with the length of the channel to be m =50 for which even the
first four impulse responses have decayed considerably. If we run an iterative receiver (also of 50 taps), the

result for h* is depicted on the left-hand side (LHS) of Figures, with f, denoting the ZF solution and 't

denoting its estimate. Based on the convergence condition in equation (20) it is possible to compute the exact
step-size bound (0.255), given the channel matrix H . Also shown in the figure are the conservative bound in
equation (20), which is the smallest step-size (0.017) in the figure, resulting in the slowest convergence speed
and equation (21), which is just a fraction smaller (0.25 vs. 0.255) than the step-size bound. The average inverse
autocorrelation r;,, is computed over all seven channels, and applied in the algorithm’s updates. This results in

a considerable speed-up in the iterations as proposed and is depicted on the right-hand side (RHS) of Figures.

V. Conclusion

Due to an LS approach it is now possible to derive the classical equalizer types with an alternative
formulation, and LS formulation for IZF and a weighted LS formulation for IM?SE? equalizers. This in turn
resulted in a linear reference model for both. Based on such a linear reference model, it is possible to derive
iterative forms of equalizers that are robust. Conditions for their robustness were presented, and in particular
ranges for their only free parameter, the step-size, were presented to guarantee robust learning. We have also
compared 1ZF and IM?SE? and IF- M?SE? Equalizers, it is found that IF- M*SE? Equalizer performs better as
compared to 1ZF and IM?SE?Equalizer. Simulation example validates our findings.
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