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ABSTRACT: Noise is a major issue that reduces the quality of images acquired by diffusion MRI (dMRI). 

Recently, the non-local means (NLM) algorithm has been proposed and successfully applied in dMRI denoising. 

However, NLM relies on self-similarity information and tends to fails when recurrent image structures cannot 

be located. To address this issue, we introduce the improved collaborative NLM. Both inner-image and inter-

image similarity information are used. Specifically, a group of co-denoising images are first registered to the 

target space. NLM-like block matching is then performed on both target noisy image and co-denoising images. 

This formulation can significantly increase the amount of similarity information and reduce the rare patch 

effect. Moreover, in order to adapt to the characteristics of dMRI, we present a complete denoising framework 

with multiple techniques including 4D image block, pseudo-residual-based noise standard deviation estimation, 

Rician bias correction, and block preselection. Extensive experiments on both synthetic and real data 

demonstrate that the proposed framework outperforms the classical NLM method. 
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I. INTRODUCTION 
Diffusion magnetic resonance imaging (dMRI) [1] is capable of measuring the diffusion process of 

water molecules in human brain non-invasively. Based on the diffusion properties obtained, tractography can 

then reconstruct white matter tracts [2,3]. Therefore, white matter integrity and degeneration can be effectively 

examined and brain connectome [4] can be further revealed among the development of nervous system [5] and a 

variety of neurological diseases such as Alzheimer’s disease [6-10], autism [11,12], brain traumatic injury 

[13,14], and even genetics [15,16]. Since dMRI measures the signal attenuation caused by water diffusion, the 

images acquired tend to have low signal-to-noise ratio (SNR). Moreover, dMRI requires acquiring a large 

amount of images, which is very time consuming. To save the acquisition time, fast imaging protocol becomes 

necessary; however, it further decreases the SNR. The images with low SNR create significant difficulty for the 

following image analyses and may result in unreliable conclusions. Therefore, denoising plays an important role 

in the preprocessing of dMRI images. 

Recently, the non-local means (NLM) [17] algorithm has been applied in dMRI studies and shown 

promising performance in denoising [18], super resolution [19] and voxel-based morphometry [20]. NLM 

estimates the true signals from the self-similarity information of image collected by block matching. However, 

the denoising performance is largely affected by the amount of self-similarity information. NLM fails when the 

matching features of certain unique structures cannot be located, which causes so-called “rare patch effect” [21]. 

To resolve this problem, Prime et al. [22] extended the NLM search volume to the symmetrical parts of human 

brain in order to increase the chance of locating matching structures. Although it improved the denoising 

performance, only doubling the search volume may not be sufficient. Chen et al. [23,24] introduced the inter-

image similarity information by utilizing other co-denoising images. This formulation, named collaborative 

NLM (CNLM), significantly increases the amount of similarity information and thus reduces the influence of 

“rare patch effect” effectively. However, CNLM is designed only for structural MRI denoising, which may not 

be suitable based on the characteristics of dMRI. 

To apply CNLM in dMRI, a major algorithm extension is to re-define the image blocks used in block 

matching. Diffusion images can be considered as vector-based or 4D images while all the volumes are stacked 

together. Hence, the 3D image block used in the original CNLM cannot be directly applied in dMRI. Yap et al. 

[18] constructed 4D image blocks from 3D image blocks extracted from a set of diffusion images and those 4D 

image blocks were then applied in block matching. It has been demonstrated that 4D image block is able to 

obtain more robust block matching performance than 3D image block. Another benefit for this formulation is 

high efficiency. When using 3D image blocks, we need to compute NLM weights in each individual image. 
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Therefore, the computation has to be performed multiple times to process the entire diffusion dataset. In contrast, 

4D image block allows NLM weights to be computed only one time and diffusion images can be denoised 

jointly. 

In this paper, we propose a complete framework in dMRI denoising with 4D CNLM, in which both 

inner and inter-image similarity information are used. 4D image blocks are applied to adapt the 4D characteristic 

of dMRI. Pseudo-residual [25] is used to get robust estimation of noise variance used in the calculation of NLM 

weights. Moreover, we utilize Rician bias correction [26] to adapt to the characteristics of dMRI noise and block 

preselection [25] to save the computational time. The proposed framework will be validated on both synthetic 

data and real human data to demonstrate its performance. 

 

II. METHOD 
2.1. Non-local means 

Our method is based on the NLM algorithm. We first provide a quick review on the classical NLM 

algorithm. NLM has two major components, i.e., weighted average and block matching. Given a location , the 

first component takes the weighted average of all intensity values in the search volume to obtain the NLM 

recovered value , i.e., 

 

 

(1) 

where  is a cubic search volume centered at , and the size of  is .  is the intensity 

value at . The second component compares two blocks and assigns a weight to indicate the similarity between 

two blocks. Let  be a cubic neighbor centered at , and the size of  is . We then define  to 

be a vector containing all intensity values in . The weight  between  and  is then defined as a 

Gaussian function of the Euclidean distance between  and , i.e., 

 

 

(2) 

where  controls the attenuation of exponential equation;  is a constant that guarantees that the sum of the 

weights equals one, i.e., . The definition of  then becomes 

 

 

(3) 

We observe that . When  and  are the same, the weight will become one, which 

is too large in practice. Hence, we set . 

2.2. 4D Collaborative Non-local Means 

4D CNLM introduces multiple co-denoising images to help denoise the target image. Specifically, co-

denoising images are first warped to the target space. Then, block matching is not only performed in the search 

volume of the target image but also in those of co-denoising images. Hence, both inner-image and inter-image 

similarities can be captured in the weighted average and the performance is thus greatly improved. An overview 

of 4D CNLM is shown in Fig. 1. 

 
Fig. 1: An overview of 4D CNLM. The intensity value of the denoised target image voxel is decided based on 

those of the voxels in a set of search volumes located in both the target noisy image and the co-denoising images. 

Note that here all the diffusion image voxels are vector-valued or 4D. 
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Suppose we have an image group , including one target noisy image and  co-denosing images. 

The recovered diffusion signals given by 4D CNLM is: 

 

 

(4) 

where  is a search volume centered at  in image .  is an un-normalized weight between 

 and .  is a vector containing all diffusion voxels in . Due to the 4D property of dMRI, instead of the 

3D block defined in Eq.(2), we defined a 4D block  consisting of a group of 3D blocks, i.e., 

. Each 3D block  represents a cubic neighborhood centered at  in the 

diffusion image acquired using gradient direction . The weight between two 4D blocks is then defined as 

 

 

(5) 

NLM can then be regarded as a non-parametric kernel regression problem. Chen et al. [23,24] showed 

that increasing the sample size alone cannot reduce the estimation bias, and the corresponding bandwidth should 

be decreased accordingly. Hence, we define 

 

 
(6) 

where  is a constant, and  is the estimated noise standard deviation. 

2.3. Noise Standard Deviation Estimation 

The parameter  controls the attenuation of exponential function. Based on Eq. (5),  is 

further determined by the estimated local noise standard deviation . The overestimated  brings 

strong smoothness in deniosing, while the underestimated  causes incomplete denoising. Hence, an 

accurate estimation of  is the key to the successful denoising. We estimate  using the robust pseudo-

residual-based noise standard deviation estimation proposed in [25]. By leaving out  for the purpose of 

simplification (i.e., restricting the noise estimation in one single diffusion image), we first define pseudo-

residual  as 

 

 

(7) 

where  is the six-neighbor of .  is then estimated using 

 

 

(8) 

where  is a local volume centered at . 

2.4. Adaption to Rican Noise 

To apply the classical NLM in Rician noise removal, bias correction needs to be performed. The 2nd-

order origin moment of Rician distribution follows 

  (9) 

where  is the true signal, and  is a scale parameter to decide the level of Rician noise. Note that  is not equal 

to the standard deviation of noise. 

Based on Eq. (9), we then obtain the unbiased estimation using 

 

 

(10) 

where  is an estimate of  and can be estimated from the image background using the method presented in [26]. 

2.5. Block Preselection 

4D CNLM requires multiple search volumes in denoising, which causes astronomical computational 

burden. To make the algorithm efficient, a straightforward solution is to add a block preselection step. 
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Specifically, before the weight calculation, the search blocks far from the target block are discarded, and only 

some similar search blocks are kept. A preselection scheme based on block statistics [25] is shown below: 

 

 

(11) 

only if 

 

 

(12) 

Otherwise, , where ,  and  are the mean, the inverted mean, 

and the variance of 4D block , respectively. The parameters  and  are two thresholds. 

The inverted mean is defined as 

 
 

(13) 

 

III. DATASETS 
3.1. Synthetic Dataset 

A set of synthetic spiral diffusion data was generated to evaluate the algorithm performance. Each fiber 

population was modeled by a tensor with , , and 

. The baseline signal without diffusion attenuation was set to 150. 30 diffusion directions 

consistent with the real data were applied in the simulation. The image was set to . To simulate the 

registration errors between images, 10 sets of rigid transformations were applied to the target ground truth image 

to generate the co-denoising images. The rigid transformation included random translations from −4mm to 4mm 

along each axis. Finally, four levels of Rician noise (3%, 6%, 9%, 12%) were added to the 11 ground truth 

images. The noise level  indicated how much Gaussian noise (i.e., ) was added in the 

complex domain of the signal, where  was the maximum signal value (150 in our case). The Rician noise was 

simulated using the method proposed in [25]. 

3.2. Real Human Dataset 

The diffusion images from 11 subjects were acquired with a Siemens 3T TIM Trio MR scanner. The 

standard acquisition protocol is: 30 diffusion volumes with the diffusion directions uniformly distributed on a 

hemisphere with  and one volume with no diffusion weighting, image size , voxel 

size  mm
3
, TE=81ms, TR=7618ms, and 1 average. The diffusion images of one subject were used as 

the target images, while the rest were used as co-denoising images. Before performing 4D CNLM, we warped 

the co-denoising images to the target space using a large deformation diffeomorphic registration algorithm 

[27,28] designed for dMRI registration. 

 

IV. RESULTS 

For all experiments, we set d=1, m=2, β=1. Note that the resolution of dMRI is low, therefore, we did 

not use a large radius for the image block and search volume.  was set to 11, including one target noisy image 

and 10 co-denoising images. In the experiments, we compared three methods including 4D CNLM, NLM and 

simple averaging. The methods were also evaluated in high order entities, i.e., orientation distribution function 

(ODF), and we used the method proposed in [29] to reconstruct ODFs. 

Peak-to-signal-ratio (PSNR) was used for the quantitatively evaluation. The definition follows 

 

 
(14) 

where RMSE represents for root mean square error, MAX is the maximum intensity value of the input image 

(150 in our case). 

3.1. Synthetic Data 

The PSNR results of synthetic data are shown in Fig. 2. 4D CNLM gets the highest PSNR values at all 

noise levels. Compared to NLM, the largest improvement, 7.67 dB, happens at the noise level of 6%. The better 

PSNR value indicates the denoised image is closer to the ground truth. In contrast, simple averaging gives the 

lowest PSNR due to the simulated misalignment between images. NLM-based methods utilize robust block 

matching to correct inter-image misalignment and significantly improve the denoising performance. 4D CNLM 

utilizes a sufficient number of co-denoising images. From Fig. 3, we can observe that the PSNR value increases 

when more co-denoising images are used in denoising. The ODF reconstruction results, shown in Fig.4, 

demonstrate that 4D CNLM gives clean and coherent ODFs. Compared to other three methods, shown in (C), 

(D), and (F), the ODFs estimated with 4D CNLM is the closest to the ground truth. 
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Fig. 2: PSNR comparisons between simple averaging, NLM, and 4D CNLM at different noise levels. Note that 

10 co-denoising images are used in 4D CNLM and simple averaging. 

 
Fig. 3:The PSNR performance using different numbers of co-denoising images at different noise levels. 

 
Fig. 4: Comparison of ODF visualization in synthetic data. (A) a direction-encoded color FA image for 

reference. The rest five images are the close-up views for the blue square in (A). (B) is the ground truth; (C) is a 

noisy version of (B); (D), (E) and (F) are the denoising versions using NLM, 4D CNLM and simple averaging, 

respectively. 10 co-denoising images are used in (E) and (F). 
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3.2. Real Human Data 

From Fig. 5, we can observe that 4D CNLM is able to preserve important local subtle structures after 

denoising. The local subtle structures in grey matter area contain important information for disease diagnosis 

and are the basis of successful cortical surface extraction [30]. We also evaluated the influence of denoising in 

the ODF reconstruction. The ODF results, shown in Fig.6, indicate that 4D CNLM gives more coherent and 

clean ODFs. Plenty of spurious peaks can be seen in the ODFs reconstructed using the noisy data and NLM 

denoised data. 

 
Fig. 5: Denoising of real data. (Far Left) Reference DW image. Regional close-up views for (Left) noisy DW 

image, (Middle) NLM denoised DW image, and (Right) 4D CNLM denoised DW image using 10 co-denoising 

images. 

 
Fig 6: Comparison of ODFs in real human data. (Far Left) Reference FA image. ODFs estimated using (Left) 

noisy dMRI data, (Middle) NLM denoised dMRI data, and (Right) 4D CNLM dMRI data with 10 co-denoising 

images. 

 

V. CONCLUSION 
In this work, we propose a complete framework for dMRI denoising with 4D CNLM. 4D image block 

is used to adapt the characteristics of dMRI. Pseudo-residual is utilized to achieve robust noise standard 

deviation estimation. Ricain bias correction is considered to recover unbiased estimation. Finally, block 

perselection is added to reduce computational burden. Extensive experiments on synthetic data and real human 

data demonstrate that our method outperforms classical NLM algorithm. Further ODF results illustrate that the 

denoised images with our method can provide clean and coherent fiber orientations. 
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