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ABSTRACT:- In this paper,  we  have  analysed  a  production  inventory  model for deteriorating items with 

time-dependent  holding  cost.  Three  parameter  Weibull  distribution  is  assumed for time to deterioration of 

items. Shortages are allowed to occur.  The  derived  model  is  illustrated  by  a  numerical example and its 

sensitivity analysis is carried out. 
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I. INTRODUCTION 

Deterioration is the damage caused due to spoilage, dryness, etc. Deterioration of an item is a realistic 

situation associated with an inventory system. The decrease or loss of utility due to decay is usually a function 

of the on-hand inventory. For items such as steel, hardware, glassware and toys, the rate of deterioration is so 

low that there is little need for considering deterioration in the determination of the economic lot size. But some 

items such as blood, fish, strawberry, alcohol, gasoline, radioactive chemical, medicine and food grains (i.e., 

paddy, wheat, potato, onion etc.) have remarkable deterioration overtime. It has been observed that the failure of 

many such items can be expressed by Weibull distribution. 

Manna and Chiang [1] developed an EPQ model for deteriorating items with ramp type demand. Teng 

and Chang [2] considered the economic production quantity model for deteriorating items with stock level and 

selling price dependent demand. Jain et al. [3] developed an economic production quantity model with shortages 

by incorporating the deterioration effect and stock dependent demand rate. Roy and Chaudhary [4] developed 

two production rates inventory model for deteriorating items when the demand rate was assumed to be stock 

dependent. In the research of Sana et al. [5] shortages are allowed to occur at the end of a cycle. With the 

consideration of time varying demand and constant deteriorating rate, the optimal production inventory policy 

was studied. Raman Patel [6] developed a production inventory model for Weibull deteriorating items with price 

and quantity dependent demand and varying holding cost with shortages.  

Both Skouri and Papachristos [7] and Chen et al. [8] developed a production inventory model in which 

the shortages are allowed at the beginning of a cycle. In contrast, in Manna and Chaudhari [9] shortages are 

allowed but occur at the end of each cycle. Goyal’s [10] production inventory problem of a product with time 

varying demand, production and deterioration rates in which the shortages occur at the beginning of the cycle.  

Kirtan Parmar and U. B. Gothi [11] have developed an order level inventory model for deteriorating 

items under quadratic demand with time dependent IHC. Authors also [12] have developed a deterministic 

inventory model by taking two parameter Weibull distribution to represent the distribution of time to 

deterioration where shortages are allowed with partial backlogging. Authors also [13] have developed an EPQ 

model of deteriorating items using three parameter Weibull distribution with constant production rate and time 

varying holding cost. Authors [14] also have developed an inventory model of deteriorating items using two 

parameter Weibull distribution with linear time dependent demand and IHC.  
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 The rate of deterioration-time relationship for the three-parameter Weibull distribution is shown in 

Figure – 1. The figure shows that the three-parameter Weibull distribution is most suitable for items with any 

initial value of the rate of deterioration and for items, which start deteriorating only after a certain period of time 

(Begum at el. [15]). The probability density function for three parameter Weibull distribution is given by  

  
 t1

f ( t ) t e


   

      ; t ≥ μ  (0 < α < 1 and  β, μ > 0)  

 The instantaneous rate of deterioration θ(t) (i.e. for hazzard rate) of the non-deteriorated inventory at 

time t,  can be obtained from 
f ( t )

( t )
1 F ( t )

 


, where F(t) = 
 

1
t

1 e


   

  is the cumulative distribution 

function (c.d.f.) for the three parameter Weibull distribution. Thus, the instantaneous rate of deterioration of the 

on-hand inventory is  
1

( t ) t
 

      .  

 

 
 

II. NOTATIONS 
We use the following notations for the mathematical model 

1.   Q(t)  : Inventory level of the product at time t ( ≥ 0). 

2.   R  : Demand rate. 

3.   θ(t)   : Rate of deterioration per unit time. 

4.   A      : Ordering cost per order during the cycle period. 

5.   p : Selling price per unit.  

6.   k  : Rate of production per unit time. 

7.   Q1  : The maximum inventory level at time t = μ. 

8.   Q2 : The maximum inventory level during shortage period. 

9.   Ch    : Inventory holding cost per unit per unit time. 

10. Cd    : Deterioration cost per unit per unit time. 

11. T      : Duration of a cycle. 

12. TC  : Total cost per unit time. 

 

III. ASSUMPTIONS 
1. The demand rate of the product is a linear function of price and quantity which is  

    R = R(p, Q(t)) = [a – p + ρ Q(t)] (where a , p, ρ > 0). 

2. As soon as a unit is produced it is available for to meet with demand. 

3. As soon as the production is terminated the product starts with deterioration.  

4. Holding cost is a linear function of time and it is Ch = h+rt  (h, r > 0) 

5. Replenishment rate is infinite and instantaneous. 

6. Shortages occur and they are completely backlogged. 

7. Repair or replacement of the deteriorated items does not take place during a given cycle.  

8. The second and higher powers of ρ and α are neglected in the analysis of the model. 
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IV. MATHEMATICAL MODEL AND ANALYSIS 

Here, we consider a single commodity deterministic production inventory model with a time dependent 

demand rate R(        =  [a – p + ρ Q(t)]. Initial, inventory level is zero. At time t = 0, the production starts 

and simultaneously supply also starts. The production stops at t = μ when the maximum inventory level Q1 is 

reached. In the interval [0, μ] the inventory is built up at a rate k – R and there is no deterioration in this interval. 

In the interval [μ, t2] deterioration starts and the inventory depleted at the rate R. The inventory is finitely 

decreasing in the time interval [μ, t2] until inventory level reaches zero. It is decided to backlog the demands up 

to Q2 level which occur during stock-out time. Thereafter, shortages can occur during the time interval [t2, t3], 

and all of the demand during the period [t2, t3] is completely backlogged.  Thereafter, Production is started at the 

rate k – (a – p) so as to clear the backlog, and the inventory level reaches to 0 (i.e. the backlog is cleared).  

The pictorial presentation is shown in the Figure – 2. 

 

The differential equations which describe the instantaneous state of Q(t) over the period (0, T) are given by  

   
d Q ( t )

k a p Q ( t ) ,                                    0 t
d t

                            (1) 

     
1
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d Q ( t )
k a p ,                                                t t T
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                         (4) 

Under the boundary conditions Q(0) = 0,     Q(μ) = Q1,     Q(t2) = 0,    Q(t3) = – Q2      and Q(T) = 0 solutions of  

equations (1) to (4) are given by      
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     2 2 3Q ( t ) a p t t ,              t t t              (7) 

     3Q ( t ) k a p t T ,          t t T               (8) 

 

Putting Q(t2) = 0 in equation (6), we get 
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2 2 2 2
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      (9) 

 

Taking Q(t3) = – Q2 in equation (7), we get 

   2 3 2Q a p t t                           (10) 

Equation (7) and (8) coincide at t = t3   hence 

       2 3 3a p t t k a p t T       

 3 2k t a p t
T

k a p

 
 

 
                                                 (11) 

The total cost comprises of the following costs 

1) The ordering cost 

     OC = A                                      (12) 

2) The deterioration cost during the period [μ, t2] 
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                              (13) 

3) The inventory holding cost during the period [0, t2] 

   

2
t

0

IH C h rt Q ( t )d t h rt Q ( t )d t





      

     

   

         

2
t 12

12 2
0

1 t t Q

t
h rt k a p t d t h rt d t

2
a p t 1 t t t

2 1





 


         
      

         
     

               
    

 
 



American Journal of Engineering Research (AJER) 2015 
 

 
w w w . a j e r . o r g  

 
       Page 250 

 

 

   
 

   
   

   

     

 
   

1

2 2

2 2 1

2 2

3 2 2

2
2 3 4

2 3 2

2 2 2

1

4 3

2 2

t
t t Q

2 1

h r

t t
a p t

6 2 1 2
h h r

IH C k a p r
2 2 3 8

t t t
Q

2 3 2

r

t t t
a p

8 3

 

 

 

    
       
   
   

              
               

         
             

  
  

 


      
   

 

   

3

2

1 3

 

 

 

 

 

 

 

 

 
 

  
  
  
  
    
   
      

   

         

                                                                                                                                                                          (14) 

4) The shortage cost per cycle 

3

2 3

t T

s

t t

S C C Q ( t ) d t Q ( t ) d t

 

   
 

 

   

       
2 2

2 3 3

s

a p t t k a p t T
S C C

2 2

 
    

   
 
 

                                   (15) 

Hence the total cost per unit time is given by  
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μ*, t2* and t3* are the optimum values of μ, t2 and t3 respectively, which minimize the cost function TC and they 

are the solutions of the equations 

2 3

T C T C T C
0 ,   0 ,     0 ,

t t

  
  

  
  satisfying the sufficient condition     

H > 0, at μ*, t2* and t3* where   
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  is Hessian determinant.                                             (17) 

V. NUMERICAL EXAMPLE 
Let us consider the following example to illustrate the above developed model, taking A = 200, α = 0.05, β = 2, 

ρ = 0.04, a = 100, p = 0.05, k = 300, Cs = 8, h = 5, r = 0.05 and Cd = 25 (with appropriate units).  

The optimal values of μ, t2 and t3 are μ* = 0.2922609055, t2* = 0.7971385166, t3* = 1.162469779 units and the 

optimal total cost per unit time TC = 292.1188781 units. 

VI. SENSITIVITY ANALYSIS 
Sensitivity analysis depicts the extent to which the optimal solution of the model is affected by the changes in its 

input parameter values. Here, we study the sensitivity for the cycle length T and total cost per time unit TC with 

respect to the changes in the values of the parameters A, α, β, ρ, a, p, k, Cs, h, r and Cd. 

The sensitivity analysis is performed by considering variation in each one of the above parameters 

keeping all other remaining parameters as fixed. The last column of the Table – 1 gives the % changes in TC as 

compared to the original solution for the relevant costs.  

   

Table – 1: Partial Sensitivity Analysis 
Parameter Values μ t2 t3 TC % changes in 

TC 

 

 

A 

160 0.26086836 0.71820154 1.04433609 260.777187 –10.73 

180 0.27698628 0.75890706 1.10516826 276.870453  – 5.22 

220 0.30681595 0.83326276 1.21676237 306.646292    4.97 

240 0.32074754 0.86756457 1.26845115 320.548910    9.73 

 

 

α 

0.04 0.29132373 0.80636505 1.17056312 291.212773 – 0.31 

0.06 0.29315442 0.78854655 1.15495940 292.983715    0.30 

0.07 0.29400802 0.78051774 1.14796489 293.810738    0.58 

0.08 0.29482499 0.77299146 1.14142941 294.602984    0.85 

 

β 

1.7 0.29381028 0.78922481 1.15645351 293.636073    0.52 

2.2 0.29145691 0.80188926 1.16623813 291.333361 – 0.27 

2.4 0.29079177 0.80625594 1.16979361 290.684723 – 0.49 

2.7 0.28999578 0.81214901 1.17471824 289.910361 – 0.76 

 

 

ρ 

0.030 0.29176671 0.79774869 1.16300147 292.056120 – 0.02 

0.035 0.29201336 0.79744468 1.16273660 292.087416 – 0.01 

0.044 0.29245960 0.79689204 1.16225493 292.144166    0.01 

0.048 0.29265887 0.79664422 1.16203886 292.169558    0.02 

 

 

a 

110 0.31389982 0.78652619 1.12527284 297.961556   2.00 

120 0.33629005 0.77961771 1.09466062 302.867847   3.68 

130 0.35965081 0.77605652 1.06968258 305.253654   4.50 

140 0.38422542 0.77564139 1.04969128 306.826258   5.03 

 

 

p 

0.040 0.29228224 0.79712589 1.16242888 292.125497    0.002 

0.045 0.29253072 0.79713220 1.16244933 292.122188    0.001 

0.055 0.29225024 0.79714483 1.16249024 292.115569 – 0.001 

0.060 0.29223957 0.79715115 1.16251069 292.112258 – 0.002 
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Parameter Values μ t2 t3 TC % changes in 

TC 

 

 

k 

240 0.38956686 0.86409821 1.20463323 272.291802 
– 6.79 

270 0.33376102 0.82541901 1.17989319 283.437558 – 2.97 

330 0.26011077 0.77551601 1.14955528 299.081800    2.38 

360 0.23443121 0.75842588 1.13961106 304.795673    4.34 

 

 

Cs 

6.4 0.27842610 0.76252505 1.19759872 278.307925 – 4.73 

7.2 0.28585872 0.78115463 1.17819763 285.728022 – 2.19 

8.8 0.29783754 0.81101420 1.14946209  297.685233    1.91 

9.6 0.30274153 0.82318024 1.13852528 302.579872    3.58 

 

 

h 

4.0 0.34291138 0.90648539 1.24976742 274.488318 – 6.04 

4.4 0.32041369 0.85911048 1.21176409 281.981824 – 3.47 

4.6 0.31036926 0.83734779 1.19439906 285.498196 – 2.27 

4.8 0.30100918 0.81672156 1.17799505 288.874283 – 1.11 

 

 

r 

0.040 0.29250414 0.79771582 1.16297647 292.062414 – 0.02 

0.045 0.29238242 0.79742695 1.16272292 292.090659 – 0.01 

0.055 0.29213959 0.79685053 1.16221705 292.147071    0.01 

0.060 0.29201847 0.79656299 1.16196474 292.175239    0.02 

 

 

Cd  

24.0 0.29209044 0.79873637 1.16386135 291.953929 – 0.06 

24.5 0.29217588 0.79793452 1.16316289 292.036604 – 0.03 

26.0 0.29242970 0.79556377 1.16109933 292.282240    0.06 

27.0 0.29259685 0.79401151 1.15974944 292.444046   0.11 

VII. GRAPHICAL PRESENTATION 
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 Figure – 7                                 Figure – 8 

 

 
        Figure – 9                  Figure – 10 
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       Figure – 11                     Figure – 12 

 

Figure – 13 

VIII. CONCLUSIONS 
 It is observed from Figure No – 3 to 11 that when the values of parameters A, α, a, ρ, k, h, r, Cs, Cd 

increase the average total cost (TC) also increases. 

 

 It is observed from Figure No – 12 to 13 that when the values of parameters β and p increase then the 

average total cost (TC) has reverse effect.  

 

 It is observed from Figure No – 3, 5, 7, 8, 9 that the total cost per time unit (TC) is highly sensitive to 

changes in the values of A, a, k, Cs, h. 

 

 From Figure No – 4, 12 that the total cost per time unit (TC) is moderately sensitive to changes in the 

values of α, β.  

 

 From Figure No – 6, 10, 11, 13 that the total cost per time unit (TC) less sensitive to changes in the 

values of ρ, r, Cd, p. 
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