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ABSTRACT: The multiphase flow in porous media is a subject of great complexities with a long rich history 

in the field of fluid mechanics. This is a subject with important technical applications, most notably in oil 

recovery from petroleum reservoirs and so on. The single-phase fluid flow through a porous medium is well 

characterized by Darcy’s law. In the petroleum industry and in other technical applications, transport is 

modeled by postulating a multiphase generalization of the Darcy’s law. In this connection, distinct pressures 

are defined for each constituent phase with the difference known as capillary pressure, determined by the 

interfacial tension, micro pore geometry and surface chemistry of the solid medium. For flow rates, relative 

permeability is defined that relates the volume flow rate of each fluid to its pressure gradient. In the present 

paper, there is a derivation and analysis about the diffusion equation for the fluid flow in porous rocks and 

some important results have been founded. The permeability is a function of rock type that varies with stress, 

temperature etc., and does not depend on the fluid. The effect of the fluid on the flow rate is accounted for by the 

term of viscosity. The numerical value of permeability for a given rock depends on the size of the pores in the 

rock as well as on the degree of interconnectivity of the void space. The pressure pulses obey the diffusion 

equation not the wave equation. Then they travel at a speed which continually decreases with time rather than 

travelling at a constant speed. The results shown in this paper are much useful in earth sciences and petroleum 

industry.  
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I. INTRODUCTION 
 For discussing the fluid flow in porous media, we discuss firstly about the groundwater. The 

groundwater systems contain a huge quantity of the fresh water present on earth, providing a repository of water 

that is necessary for both human society and ecological systems. Many times for groundwater range from 

hundreds to thousands of years, making it a water source that is largely independent of the seasonal caprices 

associated with many surface water sources.  
 Due to primary source of drinking water worldwide, protection of this resource is critical to ensure widespread 

access to reliable sources of clean water. Instances of groundwater contamination are common, and many can be identified 

with significant risks to public health. But from long residency times often extend to groundwater contamination and 

pollutants can be involved with long-term deleterious impacts on contaminated resources. Non-aqueous phase liquids 

(NAPLs) represent a class of contaminants for which existing remediation strategies are particularly inadequate. NAPL 

contaminated systems are common, arising from improper disposal of solvents used in industry, leakage of underground 

storage tanks containing petroleum products, spills and byproducts of refinement and coal gasification [1], [7], [8]. NAPLs 

are immiscible in water, and most are soluble in trace amounts. Once NAPLs have been introduced into a system 

contamination can persist for decades or even centuries [12], [13]. The development of useful remediation strategies for 

these systems has been largely unsuccessful, and standard mathematical modeling approaches used to give the flow behavior 

for these systems are subject to a number of problems occurring, severely limiting their predictive capability [9], [10]. The in 

use modeling approaches fail too properly account for multiple fluid phases, and more precise mathematical descriptions are 

required to analyses risks involved in contamination, advance fundamental understanding of system behavior, and develop 

remediation strategies related with these systems.  
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The consideration of porous media within a multi-scale framework is an emerging concept that takes 

advantage of the more mature state of understanding that applies at smaller length scales as a method to give the 

description of larger scale systems. Many physical systems can be associated with a series of length scales; each 

one is associated with a particular mathematical formulation which describes the system behavior at that scale. 

The multi-scale frameworks give the relationship between these different descriptions, which give a series of 

mathematical formulations.  

When these are applied to porous media the approach can be used to tie macroscopic thermodynamic 

forms and conservation equations to those that apply at the pore-scale, otherwise known as the micro scale. This 

is useful when macroscopic closure relationships are unreliable or incomplete; microscopic closure relationships 

are usually better known. Microscopic simulations can therefore be applied to give insights into macroscopic 

behavior, judges simplifying assumptions, and generate suitable macroscopic closure relationships. These 

studies rely heavily on computational methods to give the actual solutions for the microscopic analysis of 

porous medium flows. The computational analysis gives opportunities to incorporate larger and more realistic 

details of micro-analysis behavior into macroscopic modeling analysis.  

 In Germany and many other countries more than half of the population depends on groundwater as 

their supply in drinking water [4]. The problems with groundwater quality arise from disposal dumps, leaking 

storage tanks and accidental spills of substances used in industry. For removing these substances from the 

subsurface are extremely complicated and difficult, if at all possible [6]. In order to design effective remediation 

methods it is important to understand the governing physical processes of flow and transport in porous media. 

The mathematical modeling is one of the important methods that help to get the target. Including the more 

detailed physics and geometric detail into the mathematical models wants the use of efficient numerical 

algorithms and large scale parallel computers, both are of major concern in this analysis. Among the most toxic 

and prevalent materials threatening groundwater quality are so called non-aqueous phase liquids (NAPLs) such 

as petroleum products, chlorinated hydrocarbons etc. These chemicals have low solubility in water and are to be 

considered as separate phases in the subsurface. 

 

Figure 1 Formation of residual and dissolution 

(Source: Friedrich Schwille, 1988, Lewis Publishers, Chelsea, Michigan) 
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Figure 2 Formation of residual and vapor plume 

(Source: Friedrich Schwille, 1988, Lewis Publishers, Chelsea, Michigan) 

 

 

Figure 3 DNAPL below the water table 

(Source: Friedrich Schwille, 1988, Lewis Publishers, Chelsea, Michigan) 

 
Figure 4 Summary of processes in the DNAPL spill. 

(Source: Pope, D. F., and J. N. Jones, 1999. 

 



American Journal of Engineering Research (AJER) 2015 
 

 
w w w . a j e r . o r g  

 
       Page 142 

Monitored Natural Attenuation of Chlorinated Solvents. 

Report Number EPA/600/F-98/022. Office of Researchand Development, 

U.S. Environmental Protection Agency, Washington, D.C. May 1999) 

 

Figure 5 LNAPL behavior at the water table 

(Source: C.W.Fetter, 1992, Contaminant Hydrogeology, Macmillan Publishing Company, New York) 

 

The above figures taken from different sources illustrate the qualitative flow behavior of different 

NAPLs in the subsurface. In the case, when a light NAPL (LNAPL) with density smaller than water is released 

then it migrates downward through the unsaturated zone until it reaches the water table where it continues to 

spread horizontally. Now, these substances contain volatile components that are then transported in the air 

phase. When the supply of LNAPL stops, a certain amount of it remains immobile in the soil at residual 

saturation. The flow of a dense NAPL (DNAPL) is heavier than water and its flow behavior in the unsaturated 

zone are same. But due to its bigger density it moves downward also through the saturated zone. But due to 

capillary effects heterogeneities in the soil play an important role in multiphase flows. The regions of smaller 

pores are not penetrated by the fluid until a critical fluid saturation has accumulated. The size of these regions 

may variates from centimeters leading to an irregular lateral spreading of the NAPL to meters with the 

formation of DNAPL pools. The NAPLs give a long term problem to the quality of ground water. The initial 

infiltration may occur in hours or days while the solution process may occur in years. The small concentrations 

of NAPL on the order of 10 make the water not suitable for drinking. By the large number of processes 

mentioned in list it is evident that mathematical modeling of remediation processes can be very difficult. In the 

simplest example of two phases immiscible flow, the mathematical model is related to two coupled non-linear 

partial differential equations depend on time. But the detailed geometry of a porous medium is impossible to 

determine its complicated structure is effectively known by several parameters in the mathematical equations. It 

is the fundamental problem of all porous medium flow models for finding these parameters. But due to the 

heterogeneity of the porous medium on different length scales these effective parameters are the scale 

dependent. The different techniques have been found to address this problem. Here we have mention stochastic 

modeling [5], upscaling [2] and parameter identification [11].So far we concentrated on groundwater 

remediation problems as our motivation for the consideration of multiphase fluid flow in porous media. In 

addition there are other important applications for these models such as oil reservoir exploitation and security 

analysis of underground waste repositories. The latter application is often complicated by the existence of 

fractures in hard rock [3].  

For flow in porous media, the Darcy’s equation has been applied. The Darcy equation is generally 

based on the principle of a linear relation between the velocity and the pressure gradient in the porous media. 

The linear factor is expressed as porosity and is representing the resistant to flow in the solid media. The flow 

process in porous media is governed by several physical phenomena like as viscous forces and the forces 

coming from surface tensions between solid and fluid, but also surface tensions between different phases of the 

fluid. The flow process is involved in the principle modeled by use of the momentum equation, but it takes more 

simulation effort to solve the momentum equation than use the Darcy’s equation. For this reason the Darcy’s 

equation is most commonly applied in simulations of fluid flow through porous media.  
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II. GOVERNING LAWS AND EQUATIONS 

The basic law governing the flow of fluids through porous media is Darcy’s law, which was formulated 

by the Henry Darcy in 1856 on the basis of his experiments on vertical water filtration through sand beds. The 

detailed derivation related to diffusion was given by R. W Zimmerman in 2002 [14]. Darcy found that his data 

could be described by 

   
              

 
                                                                                                                                                       

  

Where 

 P = pressure [Pa] 

ρ = density [kg/m
3
] 

g = gravitational acceleration [m/s
2
] 

z = vertical coordinate (measured downwards) [m] 

L = length of sample [m] 

Q = volumetric flow rate [m
3
/s] 

C = constant of proportionality [m
2
/Pa s] 

A = cross-sectional area of sample [m
2
] 

 

Any consistent set of units can be used in Darcy’s law, such as SI units, C.G.S. units etc. But in the oil 

industry it is common to use “oilfield units”, that are inconsistent. The Darcy’s law is mathematically same as 

other linear transport laws, such as Ohm’s law for electrical conduction, Fick’s law for solute diffusion and 

Fourier’s law for heat conduction. By the fluid mechanics we know that Bernoulli’s equation contains the terms: 

 

 
     

   

 
 

 

 
          

  

 
                                                                                                                        

where P/ρ  is related to the enthalpy per unit mass, g z is the gravitational energy per unit mass, v
2
/2 is the 

kinetic energy per unit mass. But the fluid velocities in a reservoir are small then the third term can be 

neglected. And we see that the term (P – g z) represents a term of energy type. That seems reasonable that the 

fluid can flow from regions of higher to lower energy so, the driving force for flow must be the gradient of (P – 

 g z). But due to Darcy’s analysis, it has been found that all other factors being equal, Q is inversely 

proportional to the fluid viscosity. It is therefore suitable to factor out μ, and put C = k/μ, where k is known as 

the permeability. On taking the volumetric flow per unit area, q = Q/A. Now the Darcy’s law can be written as: 

   
 

 
 

 

 

          

 
                                                                                                                                             

where the flux q has the dimensions of [m/s]. It is perhaps easier to say of these units as [m
3
/m

2
s]. 

For transient processes in which the flux varies from the point to point, we can write a differential form of 

Darcy’s law. In the vertical direction, this equation can be written as: 

    
 

 
  

 

 
 
          

  
                                                                                                                                        

where the suffix v is taken for vertical flow. The minus sign is taken since the fluid flows in the direction from 

higher potential to lower potential. The differential form of Darcy’s law for one-dimensional horizontal flow can 

be 

    
 

 
  

 

 
 
          

  
  

 

 
 
  

  
                                                                                                                    

where the suffix v is taken for vertical flow. In most rocks the permeability kh in the horizontal plane is different 

than the vertical permeability, kv ; in most of the cases, kh > kv. The permeabilities in any two orthogonal 

directions within the horizontal plane have the difference. So, in this course we shall generally take: kh = kv. The 

permeability is the function of rock type, that varies with stress, temperature etc., but it does not depend on the 

fluid; the effect of the fluid on the flow rate is accounted for by the term of viscosity in the above equations. The 

permeability has units of m
2
, but in mathematical use it is conventional to use “Darcy” units, defined as: 

1Darcy = 0.987 ×10
-12

 m
2
 ≈ 10

-12
 m

2
 

 The Darcy unit is defined such that a rock having a permeability of 1 Darcy would transmit 1 c.c. of 

water with viscosity 1 cP per second, through a region of 1 sq. cm. cross-sectional area, if the pressure drop 

along the direction of flow were 1 atm per cm. Many soils and sands that mathematicians must deal with have 

permeabilities on the order of a few Darcies. The original purpose of the “Darcy” definition was thus to avoid 
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the need for using small prefixes such as 10
-12

 etc. But a Darcy is nearly a round number in SI units, so 

conversion between the two is easy. The numerical value of k for a given rock depends on the size of the pores 

in the rock, d as well as on the degree of interconnectivity of the void space. So that 

k ≈  d 
2
 /1000 

 where d denotes the diameter of the pores. The permeabilities of different types of rocks and soils vary 

over many orders of magnitude. However, the permeabilities of petroleum reservoir rocks tend to be in the range 

of 0.001-1.0 Darcies. So it is convenient to refer the permeability of reservoir rocks in units of “milliDarcies” 

(mD), which equal 0.001 Darcies. In some reservoirs, the permeability is due mainly to an interconnected 

network of fractures. The permeabilities of fractured rocks tend to be in the range 1 mD to 10 Darcies. In a 

fractured reservoir, the reservoir scale permeability is not closely related to the core scale permeability that 

anyone can measure it. 

 

If the fluid is in static equilibrium then q = 0, so the differential equation will be  

  
          

  
                                                                                                                               

If we take z = 0 i.e., at sea level, where the fluid pressure is equal to the atmospheric pressure, then we have 

                                                                                                                                                                       

where       represent the static pressure and atmospheric pressure respectively. But we always measure the 

pressure above the atmospheric pressure, so we can neglect the term    in the above equation (7). We can see by 

comparing equation (7) with equation (4) that only the pressure above and beyond the static pressure given by 

equation (2) plays a role in driving the flow. So the term ρgz is useless, as it only contributes to the static 

pressure and but does not contribute to the driving force for the flow. Then after removing the term, the equation 

for correct pressure will be 

                                                                                                                                                                       
Now the Darcy’s law in the terms of corrected pressure for the horizontal flow can be written as: 

   
 

 
  

 

 
 
    
  

                                                                                                                                                      

 

Instead of using sea level i.e., z = 0, we can take z=z0 as a datum i.e., the amounts of initial oil in place 

lie above and below z=zo. So we get 

Pc = P – ρ g (z − zo)                                                                                                                                          (10) 
 The choice of the datum level is immaterial, in the sense that it gives a constant term to the corrected pressure so it 

does not contribute to pressure gradient. The pressure Pc defined in equation (10) can be interpreted as the pressure of a 

analytical fluid at depth z=zo that will be in equilibrium with the fluid and exists at the actual pressure at depth z. The 

Darcy’s law is supposed to be a macroscopic law that is intended to be meaningful over regions that are much bigger than 

the size of a single pore. Now we can discuss about the permeability at a point in the reservoir, we cannot be referring to the 

permeability at a mathematically infinitesimal point since the given point can be in a sand grain and not in the pore space. 

The permeability property is actually defined for a porous medium, not for a single pore. So the permeability is the property 

that is in a meaning of averaged out on a certain region of space surrounded the point (x,y,z). Now the region must be 

sufficiently large to encompass a significant number of pores. The pressure P that is used in Darcy’s law is actually an 

average pressure taken on a small region of space. 
 

 
 

Figure 6. Spherical representative elementary volume (REV). 

 

The spherical representative elementary volume is shown by figure-6. When we refer to the pressure at a 

certain location in the reservoir, we do not distinguish between two nearby points such as these. So, the entire 

region shown in the figure will be represented by an average pressure which is taken over the indicated circular 

region that is known as a Representative Elementary Volume (REV). Similarly, the permeability of the rock is 

defined over the REV length scale. About the size of REV, we can say that it must be at least one order of 

magnitude larger than the pore size.  
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The Darcy’s law in itself does not give sufficient information to solve time-dependent i.e., transient 

problems that involving subsurface flow. So to find the complete governing equation that applies to these 

problems, we will first find the mathematical expression for the principle of conservation of mass. The 

conservation of mass equation states the balance between rate of mass change in an arbitrary volume and inflow 

of mass through the boundary surface area. In integral form, this can be expressed as follows: 

 
 

  
                                                                                                                                  

 

In this equation the double and triple integrals are taken over surface and volume respectively and 

          and ϕ represent the velocity vector, unit normal vector, fluid density, external mass flow rate and 

porosity respectively. The right hand side term of the equation (11) can be changed into a volume integral form 

by the using the Gauss’ divergence theorem as: 

 

                                                                                                                                                      

 

So, for a fixed control volume, the integral form of the conservation law will be 

 

  
      

  
                                                                                                                                           

 

Now the differential form the conservation equation for mass can be written in coordinate invariant form as: 

 
      

  
                                                                                                                                                      

 

For the multiphase flow, it is necessary to account for the saturation of each phase. So that the equation (14) 

within each phase α can be written as: 

 
         

  
                                                                                                                                          

 

III. DIFFUSION EQUATION IN CARTESIAN COORDINATES 
 The transient flow of a fluid through a porous medium is governed by a certain type of partial differential equation 

known as a diffusion equation. The detailed derivation and discussion related to diffusion was given by R. W. Zimmerman in 

2002 [14] i.e., discussed in this paper. So to derive the equation, we combine Darcy’s law with the law of mass conservation 

and an equation that describes the process for which the fluid is stored inside a porous rock. Now using the differentiation for 

the product function (ρ ϕ), we get 

                                       
 

  
                                                                                                

  
  

  

  

  
  

  

  

  

  
 

                       
 

 

  

  
 
  

  
   

 

 

  

  
 
  

  
  

                                                                                                                                                

where       are the compressibility of the rock and the fluid respectively. 

 

The equation for mass conservation for the fluid flow is taken as: 

 
      

  
 

      

  
                                                                                                                                          

By using the Darcy’s law, we have  
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From the equations (17) and (19), we get 

    

   
    

  

  
 
 

 
 

 
                                                                                                                                   

  

But we know that, 

    

   
    

  

  
 
 

 

On neglecting the term    
  

  
 
 

        

   
  

  
 
 

    
   

         
 
 

                                                                                                                           

    

   
 

   

          
                                                                                                                                            

So we can neglect the nonlinear term in equation (20), we get the diffusion equation as given 

  

  
 

 

           

   

   
                                                                                                                                

where           is the total compressibility. 

 The parameter which governs the rate at which fluid pressure diffuses through the rock is the hydraulic 

diffusivity DH , that is defined by 

   
 

             
                                                                                                                                   

The distance d at which a pressure disturbance will travel during an elapsed time t is given as 

                                                                                                                                                          

 
For the multi-phase flow if we have assume that the pores of the rock are filled with two components, oil and 

water, and often also contain some hydrocarbons in the gaseous phase. So we have to find the governing flow equations for 

an oil and water system, in the general form. From the rock properties module that Darcy’s law can be generalized for two-

phase flow by including a relative permeability factor for each phase, we have 
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where the subscripts w and o are used for oil and water respectively. The two relative permeability functions are 

supposed to be known functions of the phase saturations. For the oil-water system, the two saturations are 

necessarily related to each other by the relationship 

                                                                                                                                                      

The pressures in the two phases at every point in the reservoir must be different. If the reservoir is oil-wet then 

the two pressures will be given by 

                                                                                                                                                   

where the capillary pressure    is given by the rock-dependent function of oil saturation. 

But the volume of the oil in a given region is equal to the total pore volume multiplied by the oil saturation then 

by the equations of the conservation of mass for the two phases can be written by inserting a saturation factor in 

the storage term as given 

 
       

  
 

        

  
                                                                                                                     

 
      

  
 

         

  
                                                                                                                  

 

The densities of the two phases are related to their respective phase pressures with the equation of state as given 

by 

                                                                                                                                                   

                                                                                                                                                 

where the temperature are taken as constant.  

Lastly, the porosity must be the function of the phase pressures Po and Pw. The above two pressures 

independently affect the porosity. Now, the capillary pressure    is generally small so that 

        

From which we can use the pressure-porosity relationship that would be obtained under single-phase conditions, 

i.e., 

                                                                                                                                                    

If the fluid is taken as slightly compressible or if the pressure variations are small then the equations of state are 

written as 

                                                                                                                                

where the subscript “i” is used for the initial state, and the compressibility co is taken as a constant. 

IV. DISCUSSION AND RESULTS: 
The permeability is a function of rock type that varies with stress, temperature etc., and does not 

depend on the fluid. The effect of the fluid on the flow rate is accounted for by the term of viscosity. The 

numerical value of k for a given rock depends on the diameter of the pores in the rock “d” as well as on the 

degree of interconnectivity of the void space. The parameter that governs the rate at which fluid pressure 

diffuses through a rock mass is the hydraulic diffusivity which is defined by  

   
 

       
 

 The distance d at which a pressure disturbance will travel during an elapsed time t is given as  

         

 The time required for a pressure disturbance to travel a distance d is found by 
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The pressure pulses obey a diffusion equation not a wave equation. So, they travel at a speed that continually 

decreases with time rather than travelling at a constant speed. 
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