
American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 73

 American Journal of Engineering Research (AJER)

e-ISSN : 2320-0847 p-ISSN : 2320-0936

Volume-3, Issue-9, pp-73-86

www.ajer.org
Research Paper Open Access

A Systematic Exploration of Mutation Space in a Hybridized

Interactive Evolutionary Programming for Mobile Game

Programming

Jia Hui Ong
1
, Jason Teo

2

1(Evolutionary Computing Lab, Universiti Malaysia Sabah, Malaysia)
2Evolutionary Computing Lab, Universiti Malaysia Sabah, Malaysia))

ABSTRACT : In this study, a systematic exploration of mutation space in interactive evolutionary

programming was conducted to investigate the effects of the game synthesis process using different mutation

rates. Evolutionary programming is the core Evolutionary Algorithm (EA) used in this study where it is

hybridized with Interactive Evolutionary Algorithm (IEA) to generate different rulesets that was played on a

custom arcade-type mobile game. The experiment was initially conducted by utilizing different mutation rates of

10, 20, 30, 40, 50, 60, 70, 80, and 90 percent. From the optimization results obtained, the single best individual

was selected from each mutation rate to further analyze its quality. It was discovered that higher mutation rates

were able to yield faster and better solutions and lower mutation rates generally yielded results that were below

average.

KEYWORDS : Mutation space, Evolutionary Programming (EP), Interactive Evolutionary Algorithm (IEA),

mobile games, arcade-type game

I. INTRODUCTION
EAs are optimization algorithms with operational processes that are inspired by nature. There are four

different classes of EAs which are Genetic Algorithms (GA), Evolutionary Programming (EP), Evolution

Strategies (ES), and Genetic programming (GP) [10].Interactive Evolution Algorithms (IEAs) are a branch of

EAs where it uses human users to evaluate the quality of the individual solutions [9] as opposed to the

traditional EAs, where the quality of the solutions are based on mathematical formulas and objective

calculations that relate explicitly to the problem being solved. Music [6], games [7], graphical arts [8], are

among problem domains that have used IEAs as the evaluation paradigm to solve the optimization problem. The

major operating systems for smartphones are Apple iPhone Operating Systems (iOS), Android OS, Palm OS,

Blackberry OS, and Microsoft Windows Mobile. The Android OS open features has enabled different device

manufactures to use it as their device’s operating systems. Moreover, Android has also opened up its resources

for applications developer to develop applications with zero to a small minimal fee if they decided to post their

application into the Android market. Hence, this was the motivation for this investigation to develop the custom

arcade-type game using the Android OS platform.

To investigate the effects from the usage of different mutation rates, an Android mobile game was

created and incorporated with the hybridized Evolutionary Programming (EP) with Interactive Evolutionary

Algorithm (IEA) method. The time needed for the optimization result to converge [9] is one of the primary

concerns in IEA due to its effect on users’ fatigue. Thus, by searching for a suitable mutation rate that can yield

a faster convergence, or in this case, the identification of a better game rule set, is the main objective in this

paper. By identifying a suitable mutation rate, the time needed to get a good quality of novel rules set for the

games is decreased and hence it will lower the users’ fatigue level as well since users’ fatigue level is dependent
on the time invested in the interactive evolution process [9].The organization of this paper is as follows. Section

II draws out the methods that we have used in this study, a more in-depth explanation of the game mechanism

and how EP and IEA are implemented into the game. Section III describes the experimental setup that we have

used and the results and discussion will be given in Section IV. We will conclude our study and discuss some

future work recommendations in the last section.

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 74

II. METHOD
Procedural content generation (PCG) is a method that has been used to automatically generate game

contents. Contents that are involved here does not count the creation of artificial intelligence for non-player

character (NPC) [3] but it is more on the terrain, stories, maps, and others elements that made up the game.
Studies have been done using PCG on generating platform levels [5] and even some used it to generate maps in

a large scales game like Real-time strategy (RTS) game genre [3]. Togelius and Schmidhuber [4] had conducted

a study that involved generating a game rules instead of the environments. This has given us the idea to create a

game that contains no rules and hence letting the PCG to work on the rules generations.

Game Design : This game is created to be able to run on Android OS 2.2, the screen size of the game is set to fit

in a HVGA mobile display with a dimension of 430 x 320 pixels. The game is built upon a few components

such as elements, walls, collision, and scoring. Below are the details of elements and walls as follow.

 Elements

o Red elements

o Blue elements

o Green elements

o Cyan elements

o Yellow elements

 Walls

o 20 x 320 pixels upper and lower border

o 430 x 10 pixels left and right border

o 30 x 30 pixels of square walls

Each element is in a round image with their respective colors, and the size of the image is 30 x 30

pixels. The yellow element is used by the users to navigate in the game environment. As for the position of each

element is place randomly at the beginning of the game except for yellow element’s position is fixed in the

center of the environment. Walls served as a restriction for all the elements, upper, lower, left, and right border

walls will restrict elements and player from moving out from the game environment. The 30 white square walls

will be place as shown in Fig. 1 it will form a simple moving obstacle. Fig. 2 shows how these elements and
walls placement looks like when they are place together into a mobile environment.

Figure. 1 Walls Placements

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 75

Figure. 2 Elements Wall Placement in Mobile Environment

Each element’s movement has been set accordingly where red and blue will be static while green

element can only move in vertical directions and cyan elements can only move in vertical directions. Table 1

shows the overall movement for the elements in the game.

Table 1 Elements Movement.

Elements Movement

Yellow
Vertical and

horizontal

Red Static

Blue Static

Green Vertical

Cyan Horizontal

Moving to the collision component, there are three events that might occur after each elements collide
with each other.

 None (no effect) – 0

 Death (elements is deleted from the environment) – 1

 Teleports (elements get teleport back to a locations) – 2

Notice that the number at the end of 0, 1, and 2 it represents the effect in our chromosome. In order for

these collisions to take effect, we have structured a collision effect table that will enable a lookup for each

collision that happens and hence giving the proper effects that associate with it. Table 2 shows the collision
structure that we have created.

Table 2 Collision Effect.

Elements Yellow Red Blue Green Cyan

Yellow C1 C2 C3 C4

Red. C1 C5 C6

Blue C2 C7 C8

Green C3 C5 C7 C9

Cyan C4 C6 C8 C9

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 76

C1: Yellow and Red element collision

C2: Yellow and Blue element collision

C3: Yellow and Green element collision

C4: Yellow and Cyan element collision

C5: Green and Red element collision

C6: Cyan and Red element collision

C7: Green and Blue element collision

C8: Cyan and Blue element collision

C9: Green and Cyan element collision

The black square represent collision effect that has been taken out, the reason that we took it out is due

to the movement of the elements for example, is not possible for red and blue to collide with each other since

they are in a static position. Another important component for the game is the scoring systems. Each collision

will have a score linked to it as shown in Table 3. The score are 0, 1, or -1.

Table 3 Elements Movement Link to Score.

Elements Movement

C1 S1

C2 S2

C3 S3

C4 S4

C5 S5

C6 S6

C7 S7

C8 S8

C9 S9

Evolutionary Algorithm : The EA method that we have applied in this study is evolutionary programming.

Number of elements that can presented in the game, the collision effect, the score of each collision, and the

winning point, the losing point of the game and the number of each elements in the game. As mention earlier
that collision effect will be represented by 0, 1 and 2 while score of each collision is between -1, 0 or 1. Winning

point range is from 1 to the maximum of available elements presents in the game as well as the losing point. The

number of elements of each type is range from 1 to 5 meaning that each color elements will have none to a

maximum of 5 that can be present in the game. Population size is set to three as we do not want to increase the

fatigue of the human tester (Takagi, 2001) as the larger the population size increase, more evaluation has to be

done by a tester in order to complete a full run. The same goes to the number of generations as we want to keep

the time durations lower, hence the number of generations is set to be 20. Below is the flow of the overall EP:

1.0 Start

2.0 Random initialization for parent chromosome. The value of the each phenotype is illustrate below

2.1 Phenotype value for position from 0 to 8 – range from 0 to 2

C1 C2 C3 C4 C5 C6 C7 C8 C9

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 77

2.2 Phenotype value for position from 9 to 17 – range from 0 to 2

2.3 Phenotype value for position from 18 to 21 – range from 0 to 5

R B G C

2.4 Phenotype value for position from 22 to 23 – range from 0 to max number of total elements

W L

3.0 Parent is loaded into the game environment and evaluated

3.1 Repeat step 1.0 to 3.0 until the number of individual parent reach 3

4.0 Select the best individual parent to seed for next generations offspring

5.0 Generate offspring from parent

6.0 Offspring is loaded into the game environment and evaluated

6.1 Step 5.0 to 6.0 is repeated until the number of offspring reaches 3

7.0 Select the best offspring from the populations pool to be parent for next generations

Step 5.0 to 7.0 is repeated until the number of generations reached 20

Interactive Evolutionary Algorithm : IEA has two different evaluation methods which is reactive and

proactive feedbacks. In reactive feedbacks algorithms, it requires human evaluator to give their feedbacks after

the game or it can also allow the human evaluator to intervene the autonomously running algorithm [2].
Proactive feedbacks algorithm allows human evaluator to pause the algorithm at stagnation stage and alters the

parameters in the algorithm before allowing it to continue with its process [2]. Reactive feedback has been

chosen to be the IEA feedback method in this paper. Human evaluator has been given a score range of 0 to 7

where 0 represent the lowest score value and 7 represent the highest score value for the particular individual.

III. EXPERIMENT SETUP
The experiment has been conducted with the help from a human tester from a faculty. The tester has

been brief with the information of how to play the game and how to assign a score for each game generated.

Below is the procedure that he needs to go through to complete a full run of the game

[1] Start

[2] A game rules is loaded into the game environment

[3] Tester played with the game rules and assign score at the end of the game.

[4] Step 1.0 to 3.0 will be repeated 60 times since each generation has 3 individuals and the number of

generations has been set to be at 20.

Nine different experiments will be conducted with different mutation rate. The first experiment is start

off with a 10 percent mutation rate and the following experiment mutation rate will be increase to another 10

percent which mean experiment 2 will have 20 percent, experiment 3 with 30 percent and so forth. In addition,

an individual chromosome was selected from each mutation rate. The criteria for the individual to be selected
are:-

 It has to belongs to the user that has the highest average rating in the particular mutation rate

 It is the last highest score attain from the 20 generations

10 different players were asked to test on these selected individual.

S1 S2 S3 S4 S5 S6 S7 S8 S9

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 78

EXPERIMENT RESULTS

Table 4 below is a summary of the results of the average score given by each human evaluator for each mutation

rate.

Table 4: Average Score for Each Mutation Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 2.17 2.28 1.75 2.07 2.28 1.95 2.75 2.67 1.85

2 1.97 1.97 2.00 1.92 1.67 2.00 2.93 1.85 1.77

3 2.65 1.73 1.92 1.98 1.95 1.92 1.75 2.22 2.22

4 2.18 2.08 2.05 2.07 2.13 1.58 2.53 1.77 1.85

5 2.13 2.32 2.23 1.70 1.83 1.80 1.80 1.77 3.17

6 1.88 2.05 1.95 1.95 2.25 1.90 1.92 2.13 2.08

7 1.98 2.18 2.15 1.98 1.85 1.83 2.33 2.00 2.35

8 1.77 2.05 2.07 2.07 1.93 2.00 2.12 2.17 2.07

9 1.95 1.62 2.35 2.07 1.85 1.70 2.18 1.88 1.62

10 2.17 1.95 2.15 2.10 2.03 1.67 1.78 2.18 2.53

Average 2.09 2.00 2.06 1.99 1.98 1.83 2.21 2.06 2.15

Table 5: Highest Score of Each Generation in Mutation Rate 0.9 for User No.5

Generations Score

1 5

2 5

3 5

4 3

5 4

6 5

7 5

8 5

9 5

10 4

11 3

12 1

13 4

14 5

15 4

16 3

17 4

18 4

19 4

20 3

User

Mutation Rate

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 79

Figure 3: Graph for Highest Score of Each Generation in Mutation Rate 0.9 for User No.5

Table 6: Highest Score of Each Generation in Mutation Rate 0.7 for User No.2

Generations Score

1 1

2 4

3 3

4 5

5 4

6 3

7 5

8 3

9 4

10 5

11 3

12 4

13 4

14 5

15 5

16 3

17 4

18 5

19 5

20 5

S
C

O
R

E

GENERATIONS

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 80

Figure 4: Graph for Highest Score of Each Generation in Mutation Rate 0.7 for User No.2

Table 7: Highest Score of Each Generations in Mutation Rate 0.6 for User No.4

Generations Score

1 3

2 3

3 2

4 2

5 2

6 1

7 3

8 2

9 3

10 2

11 3

12 1

13 3

14 1

15 1

16 3

17 4

18 3

19 2

20 1

S
C

O
R

E

GENERATIONS

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 81

Figure 5: Graph for Highest Score of Each Generations in Mutation rate 0.6 for User No.4

Table 4 show the average results obtained where the highest average score obtained was 3.17 by user

No.5 and is under the mutation rate of 0.9 while the lowest is 1.58 by user No.4 obtained from mutation rate of

0.6. Mutation rate of 0.9 has shown the best result compared to the other mutation rates. From Table 8, 9 out of

10 evaluators gave the highest score before the 10th generation and it reflects that by using mutation 0.9 the

solutions can propel out of local optima and hence achieving a higher score from the evaluator. Table 5 and

Figure 3 graph shows the highest score given by user No.5 in each generation for mutation rate 0.9. It is
observed that 8 out of 20 generations have a high score of 5 and most of the other generations’ score are at least

3 or more except for the 12th generation where the highest score in that generation is only 1. This reflects that

most generation can generate good ruleset. Meanwhile Table 7 and Figure 5 graph shows the highest score in

each generation for mutation rate 0.6 for user No.4. Most of the scores are below 3 hence this future supports

that mutation rate 0.6 could not generate ruleset that reaches the user’s satisfactory level.

Mutation rate 0.7 has the second best average score given by the 10 evaluators where 6 out of 10

average scores are over 2.00 and Table 9 shows in which generations the first highest score was attained. Sixty
percent of the time the evaluators assigned the maximum score within the 10th generation. This proves that the

individuals generated reached the evaluator’s satisfactory level very quickly. Table 6 and Figure 4 graph shows

highest score for each generation in mutation 0.7 given by user no.2. All except the first generation’s score were

more than 3 with a significant number of ruleset scoring the maximum of 5. Hence this further supports that the

ruleset generated reached the user’s satisfactory level.

Table 8: High Score Given by Each User in Mutation Rate 0.9

Evaluator Highest Score Generation

1 5 9th

2 4 6th

3 5 16th

4 5 2nd

5 5 1st

6 5 2nd

7 5 2nd

8 4 3
rd

9 5 5th

10 5 1st

S
C

O
R

E

GENERATIONS

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 82

Table 9: High Score Given by Each User in Mutation Rate 0.7

Evaluator Highest Score Generation

1 5 2nd

2 5 3rd

3 5 2nd

4 5 3rd

5 5 18th

6 5 15th

7 5 4th

8 5 13th

9 5 1st

10 5 15th

Table 10: High Score Given by Each User in Mutation Rate 0.6

Evaluator Highest Score Generation

1 5 16
th

2 5 10
th

3 5 6
th

4 4 16
th

5 5 11
th

6 5 6
th

7 5 20
th

8 4 2
nd

9 5 14
th

10 4 11
th

Although in mutation rate 0.9 contains one of the highest average score, the total sum of all the scores attained

for mutation rate 0.9 is only 1290 while for mutation rate 0.7 is 1326. The individual created by mutation rate

0.7 shows a higher and consistent score compared to mutation rate 0.9 based on this observation. Mutation rate

0.6 contains the lowest average score for this experiment and its total score is 1101 and Table 10 lists the highest

score it receive from each evaluator. Table 10 very clearly shows that most of the evaluator only gives the first

highest score at the very late stage of the generation.Throughout this experiment, it was found that the higher the

mutation rate, the probability of generating a better result increases. In other words, the possibility of leaving

locally-optimal solutions increases. By having three individuals in each population also helps to decrease the
searching time for a good set of novel game rules and yet maintaining good individuals through each generation.

Since the number of individual has increased significantly from the previous total of 20 individuals to 60

individuals, it has affected the human fatigue in this experiment. As the fatigue increased, it probably decreased

the accurate judgment of the human evaluator. Hence, the overall lower averages obtained as compared to the

preliminary experiment. Figures 6 to 32 below are some screenshots of each mutation rate experiment with a

table summarizing each rule set generated.

Figure 6: Screenshot for Mutation Rate 0.1

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 83

Figure 7: Screenshot for Mutation Rate 0.2

Figure 8: Screenshot for Mutation Rate 0.3

Figure 9: Screenshot for Mutation Rate 0.4

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 84

Figure 10: Screenshot for Mutation Rate 0.5

Figure 12: Screenshot for Mutation Rate 0.6

Figure 13: Screenshot for Mutation Rate 0.7

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 85

Figure 14: Screenshot for Mutation Rate 0.8

Figure 15: Screenshot for Mutation Rate 0.9

IV. CONCLUSION AND FUTURE WORK
Implementation of IEA in mobile games has been introduced in this paper. Searching for a suitable

mutation rate in the main concern in this paper and from the results obtained, it shows that using a higher

mutation rate will tend to result in better solutions. Since IEA involves a human evaluator and we have to keep

this process running fast and timely, getting a suitable mutation rate will help to yield a faster and better

convergence rate. Future work for this research is to extend the preliminary results to a larger pool of human

evaluators to get a more statistically significant result. Another aspect that should be looked into for future work

is searching for a better population size that is suitable with IEA and also the score rates.

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 86

V. ACKNOWLEDGEMENTS
 This research is funded by the FRGS Research project FRGS0213-TK-2010 granted by the Ministry of

Science, Technology and Innovation, Malaysia.

REFERENCES
Proceedings Papers:
[1] J.Togelius, G.N.Yannakakis, K.O.Stanley, C.Browne. Search-based Procedural Content Generation. In EvoStar Conference, 2010.

[2] R.Breukelaar, M.Emmerich, T.Bӓck. On Interactive Evolution Strategies. In EvoWorkshops, 530-541, 2006

[3] J.Togelius, M. Preuss, G.N.Yannakakis.Towards Multiobjective Procedural Map Generation. In Workshop on Procedural Content

Generation in Games, 2010.

[4] J. Togelius, J. Schmidhuber. An experiment in automatic game design. In IEEE Symposium on Computational Intelligence and

Games, 2008.

[5] K.Compton, M.Mateas. Level Design for platform Games. In Second Artificial Intelligence and Interactive Digital Entertainment

International Conference (AIIDE) Marina del Rey, 2006.

[6] Horowitz. Generating rhythms with genetic algorithms. In International Computer Music Conference, 142-143, 1994.

[7] E.J.Hastings, K.G.Ratan, K. O. Stanley. Evolving Content in the Galactic Arms Race Video Game.In IEEE Symposium on

Computational Intelligence and Games (CIG09). Piscataway, NJ:IEEE, 2009

[8] P.J. Angeline. Evolving Fractal Movies. In: 1
st
Annual Conference on Generic Programming Standford, Ca, USA, 503-511, 1996.

[9] H.Takagi. Interactive Evolutionary Computation:Fusion of the Capabilities of EC Optimization and Human Evaluation. . In IEEE
2001,vol.89, 1275-1296, 2001.

Books:

[10] A.E.Eiben, J.E.Smith.Introduction to Evolutionary Computing. 2003.

