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1. Introduction 

The theory of module is an important branch in Algebra. There are many applications of 

projective module as studied by some researchers. Yengui (2011) observed that for any finite-

dimensional ring, all finitely generated stably free modules over  of rank  dim  are 

free; the result was only known for Noetherian rings. According to T t nc  et al. (2012) if 

is a semi-projective -coretractable module with finite hollow dimension and  

End , there exist  such that  , where   is a nonzero 

hollow submodule of  and  for each . The 

paper discusses concept of module, exactness of sequence. There are two classes of -

modules: left and right -modules. The result on left -modules yields a corresponding result 

on right -modules. Since  is commutative, both left -module and right -module will be 

regarded as -module. 

Definition 1.1. Let  be a ring with identity. A left -module is a set together with a binary 

operation “+” on  under which  is an abelian group, and an action on  , that is, a map 

, which satisfies the following axioms: 

(a.)  

(b.)  
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(c.)  

(d.) . 

Similarly, a right -module  is an abelian group together with a map  

, satisfying the following axioms: For  

(a.)  

(b.)  

(c.)  

(d.) . 

Every abelian group is a - module. 

1.2. Submodule. Let  be an -module. A non-empty subset  of  is called a 

Submodule of  if  is an additive subgroup of  closed under the “same” multiplication 

by elements of , as for . This implies that the axioms of an -modules must be satisfied 

by . 

2. -Homomorphisms between two modules 

Let  and  be two -modules, then a function  is a homomorphism in case 

 and all . The function  must preserve 

the defining structure in order to be a module homomorphism. Precisely, if  is a ring and 

 are -modules. A mapping  is called an -module homomorphism if 

(i) . 

(ii) . 

2.1. Epimorphisms and Monomorphisms 

A homomorphism  is called an epimorphism in case it is surjective. That is, if 

 maps the elements of module  onto . An injective -homomorphism  is 

called an -monomorphism (that is, one-to-one). An -homomorphism  is an - 

isomorphism in case it is a bijection. Thus, two modules  and  are said to be isomorphic, 

denoted by , if there is an -isomorphism . An -homomorphism 

 is called an -endomorphism. If  is bijective, then, it is called an -

automorphism. 
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2.1.1 Kernel and Image of R-homomorphism. Let  be a ring. Let  and  be  - 

modules and  be an - homomorphism. The Kernel of  denoted by is given 

by . 

The image of  denoted by  or  is defined as  

 

 

 

Proposition 2.1.2. 

  Let  and  be -modules and  be an -module homomorphism. 

(i)  is a submodule of . 

(ii)  is a submodule of . 

(iii)The -homomorphism  is a monomorphism if and only if  . 

Proof: (i) Let  . We claim that  . Let be a zero of . Then 

and  by the definition of .  since  is arbitrary. 

This implies that  since  is a homomorphism. . 

Again, let  and . . ⇒  since  is a 

homomorphism. Since  is a module, . Hence,  is a submodule of . 

(ii) Let . Then, there exists    such that   ; 

  since  is a homomorphism. But   

(since  is a module). Therefore,  .  Also, let  and  .  There 

exists  such that  .  , since  is a homomorphism. But  

 since  is a module. Therefore, .  

Thus,  is a submodule of . 

(iii) If: Let  and  for . 

          ⇒   ⇒     ⇒ 

 is a monomorphism. 

Only if: Let  be a monomorphism and . Then,  since  is a 

monomorphism and ,   .     

2.2. Factor Module 
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Theorem and definition: Let  be an -module. Let  be a submodule of  and 

. Then  is an -module, where addition in  is defined by 

  for any  and closure under multiplication by 

scalars in  is defined as follows: for  ; , . 

Proof:  is an additive abelian group. Also, closure by scalars in  follows from 

definition. Now, to verify module axioms. Generally, for , . Let . 

(i)  

                . 

(ii)  

. 

(iii)   (by associativity in ) 

       . 

 If  has identity , then, .      

2.3  Exactness 

2.3.1 Exact Sequence. Let  and . The pair of  homomorphisms 

 is said to be exact at  in case . That is, let , then 

if and only if there exists  such that . In general, a finite or 

infinite sequence of homomorphism  is exact 

in case it is exact for each successive pair  and  . ⇒ . ⇒ for any three 

consecutive terms, the subsequence is exact. 

2.3.2 Short exact Sequence 

An exact sequence of the form   is called a short exact 

sequence. 

Proposition 2.3.3. If the sequence   is a short exact 

sequence. Then,  is a monomorphism and  is an epimorphism. . 

Proof. The exactness of   means that . This implies that  is 

injective. Similarly,  is surjective is equivalent to   is exact. 

 Thus, in the given short exact sequence ,  is injective,  

is surjective and .  ⇒  is a monomorphism and  is an epimorphism. 
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Remark.   Let  and  be any two -modules. Every -homomorphism from  to  is an 

element of the set of functions from  to . These homomorphisms form a set with standard 

notation; . 

Theorem 2.3.4.   is an -module, where  is a commutative ring and  are 

-modules.  

Proof: Suppose  is commutative. For  , , define  by 

. Since ,  and ,  

. 

We have that  . Also, let   and  preserves the    

scalar multiplication. Let  and  be arbitrarily given. Then, we have; 

 .                      

Hence,  preserves scalar multiplication. Since  is commutative, for arbitrary given 

 and ,  we define a function   by taking 

  for every . Thus,   is an -module.      □ 

Remark. From the above theorem, if  is a commutative ring and  is an -module, then, 

  is also an -module, where  is considered an -module over itself. 

 is a module called the dual of  and it is denoted by . 

 

 

2.4 Direct Summands, Split Homomorphism  

Suppose and  are submodules of a module .  and  span  in case 

.   and  are linearly independent in case . Let  

   be a canonical -homomorphism  from the 

cartesian product  module with ,  . 

Then,   is epic if and only if  and  span , and monic if and only if   and    are 

independent.  If $ the canonical homomorphism is an isomorphism, then  is the (internal) 

direct sum of its submodules  and , and it is denoted by . Thus, for each 

, there exists unique  and  such that  if and only 

if  . 



American Journal of Engineering Research (AJER) 2014 
 

 
w w w . a j e r . o r g   

 
Page 253 

A submodule  of  is a direct summand of  in case there is a submodule  of  such 

that  .   is also a direct summand.  and  are called Complementary 

direct summands. More generally, Let  be submodules of an -module . Suppose  

 and each has a unique representation ,  . Then,  is 

called the internal direct sum of  ’s and it is written as . 

2.4.1 Split exact Sequence 

Let  and  be  homomorphisms with , then  is a split epi and we 

write    and we say  is a split mono, and write   . Thus, a 

short exact sequence    is split or is split exact in case  is a 

split mono and  is a split epi. 

Lemma 2.4.2. Let  and  be homomorphisms such that . Then, 

 is an epimorphism,  is a monomorphism, and . 

Proof: Clearly,  is epi,  is monic. If  then 

, and . If , then 

  and 

. ⇒ .     □ 

Proposition 2.4.3. The following statements about a short exact sequence  

 

are equivalent in . 

(a.)  The sequence is split; 

(b.)  The monomorphism  is split; 

(c.)  The epimorphism  is split; 

(d.)   is a direct summand of ; 

(e.)  Every homo  factors through ; 

(f.)  Every homo  factors through . 

3.1 Free Module 

Definition 3.1.1.  
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 Let  be a non-empty subset of an -module .  is called a set of free generators or basis 

or base for   if every element  can be uniquely expressed as a linear combination of 

elements of . That is,  uniquely where  ranges through the elements of  and 

only a finite number of 's are non-zero in . A subset  of a module  over  is said to be 

linearly independent if and only if for every finite number of distinct elements , 




n

i

ii
x

1

 , , ⇒ . An -module  is free if it has a basis. A non-

zero cyclic module   is said to be free if given   ⇒ . Precisely,  is a 

basis for  if  where each  is a free cyclic module. Thus,  is a basis for if 

and only if  is linearly independent and generates . 

Theorem 3.1.2. Given any -module , there exists an exact sequence  

 such that  is a free -module. 

 Proof: Let  be a free -module with basis . Define a mapping  by 

 Then,  extends to a unique homomorphism  ,   is surjective since 

. Let . Then,    is exact.   □ 

Definition 3.1.3. An -module  is said to be  finitely generated (FG) if  can be generated 

by some finite set of elements. Thus, a module  is finitely generated if there is a      finite 

subset  of  with . If  and are finitely generated, so is . 

Theorem 3.1.4. Let  be a basis for a free -module,  and  any -module. Let  

be any mapping. Then, there exists a unique -homomorphism,  such that . 

Proof: Let , then,  can be expressed in the form  where only a finite 

number of the 's are non-zero. Define a map  by .  Thus, 

.    □ 

Remark. A homomorphism   that is composite of homomorphisms  is said 

to factor through  and . A homomorphism  factors uniquely through every epimorphism  

whose kernel is contained in that of  and through every monomorphism whose image 

contains the image of . 
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3.2 Projective modules 

Projection.  Let  be an -module. Let  be a direct summand of  with complementary 

direct summand , that is, . Then, , where ,  

defines an epimorphism  called the projection of  on  along . 

Proposition 3.2.1. Let  as given above, then, the projection of on  along  

is the unique epimorphism  which satisfies  and . 

Proof:  satisfies the given conditions. Let  be such that  and 

, then, for all , ,  

. Again, if  is the direct summand 

of  with complementary direct summand , . Then,  is a direct summand of 

 with  as its complementary direct summand. If   is the projection of  on  along , 

then the projection  of  on  along  can be characterized by; 

. 

Theorem 3.2.2. Suppose that  and  represent inclusion mapping where 

, then 

 

 

 are split exact. 

Proposition 3.2.3  Let . Let  be the projection of  on  along , and let  

be a submodule of . Then,  if and only if  is an isomorphism. 

Projective modules: A module  is called a Projective module if given any diagram 

 

 

 

 

 

where  is surjective and is an -module homomorphism, there exists a 

homomorphism   such that the diagram is commutative.  is a lifting of . In other 

h 

M 

g 

N P 

f 
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words, given an epimorphism , then, any homomorphism can be factored 

as  (  is lifted to ). 

Theorem 3.2.4.  A free module is projective. 

 Proof:  Suppose that the -module  is free. Let  be an -epimorphism and 

 be any -homomorphism. Since  is free, it has a basis. Let  be a basis for . 

 and for each , there exists  such that .  Define  

by . Then, .  ⇒   is projective.  □ 

Theorem 3.2.5.  Every direct summand of a projective module over  is projective. 

Proof:  Let  be a projective module with , a direct summand of . Let 

 be a projection map,   be an epimorphism,  be any -

homomorphism; where  is an inclusion map.  ,  

.  Then,  ⇒  ⇒  is a 

lifting to  ⇒  is projective.  □ 

Theorem 3.2.6.  Let  be an -module. Then,  is projective if and only if  is a direct 

summand of a free -module.  

Proof:  Assume  is projective and  is a free module, there exists an exact sequence   

 

Let be identity map. Then, there exists  such that  . ⇒  

 is a split short exact sequence.  ⇒ . 

Conversely,   let   be the projection map,   an -epimorphism and 

 any -homomorphism, then,  lifts to   since   is 

free and is projective. .  Let  be the inclusion map. Then, 

  ⇒  lifts to .  ⇒   is projective.   □ 

Theorem 3.2.7.  A direct sum of projective modules is projective if and only if each 

summand is projective. 

Proof:  Let  be the direct sum of -module , . Suppose each  is 

projective and consider the diagram 

 

 

M 

M 

 

A 0 
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where the row is exact. Let  be the restriction of    to . By projectivity of  , 

there exists  with . Let . Then, 

 ⇒  is projective. 

 Conversely, assume  is projective and we have the diagram with exact row, 

 

 

  

 

extend  


  to   by defining  . Let   for some 

.  Then the restriction  make the diagram to be 

commutative. Thus,  ⇒ each summand of  is projective.  □ 

Theorem 3.2.8.  An -module  is projective if and only if every short exact sequence 

 splits. 

Proof:  Assume  is projective.  Let  

 

 be exact. Given the diagram below 

 

 

 

 

 

By hypothesis, we can fill in the diagram with  to obtain a commutative diagram. 

Thus,  and the short exact sequence   splits. 

 

B 

M


 

 

A 0 

 

P 

P 

 

N 

g 
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Conversely, suppose the short exact sequence  splits, then, 

 is a direct summand of  and hence,   is projective.    □ 

Theorem 3.2.9.  Let  be a commutative ring with identity;  and ,  -modules. Suppose  

, then 

(a.)    given by  is an -homomorphism.       

(ii)  if   is defined. 

(b.)  Let  be an exact sequence. Then, 

 is exact. 

Proof: (a.) Let  be a homomorphism. To show that 

 given by   is an -homomorphism. Let 

, then for each , there exists . We claim that  is an 

-homomorphism. .  For   and 

 and for all 

,   

   ⇒     is an -homomorphism. 

 (ii.)  is epic if and only if for each , there exists  such 

that .  Let .  Since  is an -homomorphism,   ⇒  

   where . 

(b.) Given that  is exact. To show that 

 

is exact. Let  . There exists  such that 

  ⇒    is surjective.  Thus,  the exactness of 

 is established.  □  

Theorem 3.2.10.  An -module  is projective if and only if for any exact sequence 

 of -modules, the sequence 

  is exact. 
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Proof:  Let   be exact. Suppose  is projective, then 

given , there exists    such that 

. In this case,   is surjective and we have the 

exactness of 

. 

 The converse holds. Suppose   is exact and  (with  ).  Let 

. Then, we have the exact sequence   where  is 

the injection map.        Applying the exactness of   we have that  is projective.      

□ 

Conclusion. 

A module  is finitely generated and projective if and only if  is a direct summand of a free 

module with a finite base since if  is a direct summand of a free module  with a finite base, 

then  is projective and is also a homomorphic image of a free module . Thus,  has a       

finite set of generator. Also,   being a finitely generated and projective module implies that 

we have an exact sequence  where  is free and has a finite 

base.  is projective implies that  is isomorphic to ,  thus,  is a direct summand of a 

free module with finite base. 
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