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Abstract: The Hertzian potentials are used to determine the electric and magnetic field components. Moreover, 
it is possible for the radiation to start with the dipole to be observed at much greater distances than would be 

possible if the waves were generated in an infinite homogeneous medium. In this paper we present the problem 

of communication of aradiation in a conducting medium. The problem is analyzed in terms of a dipole radiation 

in a homogenous medium separated by a plane boundary from a dielectric half space. Expressions for the 

Hertzian potentials of the dipole is reduced to integrals which was obtained by Sommerfeld equations multiplied 

by an exponential depth attenuation factor. The analysis is described for both magnetic and electric, vertical and 

horizontal dipolesFinally, accurate numerical analyses are derived to illustrate the above statements. 

 

Keywords:  - Sommerfeld radiation problem, Dipole radiation, Hertzian potentials 

 

I. INTRODUCTION 
The so - called „Sommerfeld radiation problem„ is a well – known problem in the field of propagation 

of electromagnetic (EM) waves for obvious applications in the area of wireless telecommunications [1], [2]. 

Furthermore, Sommerfeld expanded his original work to take into account vertical and horizontal, electric and 

magnetie dipoles above a plane earth. In 1909, Sommerfeld stated the existence of a surface wave in the 

radiation of a vertical Hertzian dipole over a plane earth [1]. The solution of the boundary value problem was 

based on the evaluation of Fourier-Bessel integrals which were the solutions of the wave equation. In 1953, 

Wait discussed an insulated magnetic dipole in a conducting medium, showing that the fields are independent of 

the characteristics of the insulation for an antenna diameter much less than the radiation wavelength in the 

conducting medium [4]. Analyzed magnetic dipole solution of a semi-infinite medium including special cases of 

frequency, antenna depth, and separation between antennas was discussed [5]. It can be noticed from [6], [7] 
that a horizontal electric dipole in a conducting half space was carried out by a mathematical analysis. Also, the 

exponential increase of the attenuation with depth was experimentally verified. In [8], [9] the engineering 

application of the above problem with obvious application to wireless telecommunications was discussed and 

provided approximate solutions to the above problem, which are represented by rather long algebraic 

expressions.  

 

II. PREFACE OF RADIATION PROBLEM 
The geometry of the problem is given in Figure 1. It is assumed that the dipole is oriented either horizontally in 

x-direction or vertically in the z-direction. It can be noticed that the important direction for transmitting dipole 
radiation is directly toward the surface of the sea because of the mode of communication. Furthermore, 

magnetic and electric fields have been calculated for both the vertical and the horizontal dipoles. 
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Figure 1. Geometry of the radiation problem considered in this paper 

 

The theory of a conducting half space and electromagnetic radiation in a conducting medium are discussed  in 

[9,10]. 

 

 

III. ANALYSIS OF RADIATION PROBLEM 
3.1   The two Hertzian functions for  the two mediums have to meet the following conditions, [1]: 

∆𝜋1 + 𝑘1 
2𝜋1 = 0 ,          𝑧 > 0  

                                                                                        (1a) 

∆𝜋2 + 𝑘2 
2 𝜋2 = 0 ,          𝑧 < 0 

 

𝜋1 =  𝜋2 ,  
1

𝑘1
2

𝜕𝜋1

𝜕𝑧
 =  

1

𝑘2
2

𝜕𝜋2

𝜕𝑧
     𝑎𝑡   𝑧 = 0 

(1b)      

𝜋1 = 0, 𝑧 > 0, 𝑟 = ∞  , 𝑧 = +∞ 
 

𝜋2 = 0, 𝑧 < 0, 𝑟 = ∞  , 𝑧 = −∞                                   (1c) 
where 

r = cylinder radius , R = distance of the point from the transmitter which lies on the origin  

(z = 0 , r = 0). As in Figure 2. 

 

 
Figure 2. Dipole position 

 

Then, Sommerfeld obtained his well-known solution in the form of the following integral, [2]: 

𝜋1 =  4 
 𝑘1

2 + 𝑘2
2 𝑒

−𝑧 𝜆2−𝑘1
2

 (𝐽0𝜆𝑟)

3𝑘1
2 𝜆2 − 𝑘1

2 + 𝑘2
2 𝜆2 − 𝑘2

2

∞

0

𝜆𝑑𝜆 𝑧 > 0               (2) 

 

1.2 The Maxwell equations for a conducting medium are given by, [2], [3]: 
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∇2𝐸 = 𝑗𝜔𝜇𝜍𝐸   (3) 
where 

H is the magnetic field and E is the electric field. 

Furthermore, by taking into account a plane wave travelling through the positive z-direction we get the 

following equations 

𝐸 =  𝐸0𝑒
− 1+𝑗  𝑧/𝛿     ,      𝐻 =  𝑒−𝑗𝜆 /4 2

𝑛∗𝐸

𝜇𝜔𝛿
                             (4) 

where 
n is the unit vector in the direction of propagation 

𝛿 =  
2

𝜇𝜔𝜍
 

 

The Hertzian potentials ∏ and ∏∗(the Green's function for a dipole source) for the electric and magnetic dipoles 

respectively, in the infinite, conducting medium are, [2], [11]: 

∏ = 𝑃1 
𝑒−𝑘1𝑗𝑟

𝑅
      ,   𝑃1 =

∏𝑒𝑚

4𝜍𝜋
 (5) 

 

∏∗ = 𝑃1
∗ 𝑒−𝑘1𝑗𝑟

𝑅
      ,   𝑃1

∗ =
∏𝑚𝑚

4𝜋
    (6) 

 

where 

∏mm   is the magnetic moment = NIS 

I  is the current. 

N  is the number of turns in the magnetic loop. 

S is the loop area vector. 

∏em    is the electric moment. 
R  is the distance from the dipole to the observation point. 

In this paper, the Hertzian potentials are used for both the electric and magnetic dipoles. It can be easily found 

that the electric and magnetic field vectors are functions of the Hertzian potential as follows, [5], [12]: 

 

For the Electric dipole: 

𝐻1 = ∇𝜍 ∗ ∏       ,      𝐸1 =  ∏ * ∇∇  + 𝑘1
2∏(7) 

For the Magnetic dipole: 

𝐻1 = ∇∇ ∗ ∏∗  + 𝑘1
2∏∗      ,      𝐸1 =  −𝑗𝜔𝜇∇ ∗  ∏ ∗                                    (8) 

where 

𝑘1 =  −𝑗𝜔𝜇𝜍 

 

Moreover, the electric and magnetic fields in an infinite, nonconducting medium are as the following equations: 

For the Electric dipole: 

𝐻2 = ∇𝑗𝜔𝜖0 ∗  ∏       ,      𝐸2 =  ∏ * ∇∇  + 𝑘2
2∏                                    (9) 

 

 

For the Magnetic dipole: 

𝐻2 = ∇∇ ∗ ∏∗  + 𝑘2
2∏∗      ,      𝐸2 =  −𝑗𝜔𝜇∇ ∗  ∏ ∗                           (10) 

where 

k2  =  2π/λ0 , is the wave number 

λ0is free space wavelength 

 

 

Therefore, the Hertzian potentials in this case for the electric and magnetic dipole respectively, are as the 

following equations, [4]: 

∏2 = 𝑃2 
𝑒−𝑘2𝑗𝑟

𝑅
      ,   𝑃2 = 𝑗 

∏𝑒𝑚

4𝜔𝜋 𝜖0
                                                    (11) 

∏∗
2

= 𝑃2
∗ 𝑒−𝑘2𝑗𝑟

𝑅
      ,   𝑃2

∗ =
∏𝑚𝑚

4𝜋
                                                       (12) 

 

Then, by taking into account the modification for the case of a source in a conducting half space separated by a 

plane boundary from a nonconducting half space. Therefore, the source (transmitting dipole) is located in the 

conducting half space at coordinate position (0, 0, zt) from the boundary. Similarly, the point of observation 
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(receiving dipole) is located at coordinate position (r, ∅, zr ), as shown in Figure 1. Moreover, the Hertzian 

potentials for the conducting and nonconducting half space must satisfy the wave equation (condition A below), 

the radiation condition at infinity (condition B) and the radiation condition near the source (condition C) below 

[1], [13]: 

 

For condition A: 

∇2∏1 + 𝑘1
2∏1= 0    , ∇2∏1

∗ + 𝑘1
2∏1

∗
= 0,  𝑧𝑟 > 0      sea medium 

 

∇2∏2 + 𝑘2
2∏2= 0    , ∇2∏2

∗ + 𝑘2
2∏2

∗
= 0,  𝑧𝑟 < 0       air medium 

 

For condition B: 

lim
𝑅→∞

∏1 = 0    ,   𝑙𝑖𝑚
𝑅→∞

∏1
∗ = 0   ,                             𝑧𝑟 > 0         sea medium 

 

lim
𝑅→∞

∏2 = 0    ,   𝑙𝑖𝑚
𝑅→∞

∏2
∗ = 0   ,    𝑧𝑟 < 0                                  air medium 

where  

R  =  𝑟2 +  (𝑧𝑡 − 𝑧𝑟)2 

 

 

For condition C: 

𝑙𝑖𝑚
𝑅→0

∏1 =
𝑒−𝑗𝑘1𝑅

𝑅
= 𝑙𝑖𝑚

𝑅→0
∏1

∗
 

 
Moreover, the electric and magnetic fields must satisfy the boundary conditions at the surface of the sea. 

Therefore, the boundary conditions for the components of the Hertzian potentials and their derivatives are as the 

following described equations, [3]: 

 

∏𝑧1
∗
 = ∏𝑧2

∗
 

-jg∏𝑥1
∗
 = ∏2

∗
 

𝜕∏𝑥1
∗

𝜕𝑧
=

𝜕∏𝑥2
∗

𝜕𝑧
 

 

𝜕∏𝑥1
∗

𝜕𝑧
 +

𝜕∏𝑧1
∗

𝜕𝑧
 =

𝜕∏𝑥2
∗

𝜕𝑥
+
𝜕∏𝑧2

∗

𝜕𝑧
 

where 

g =
𝜍

𝜔𝜖0
 =  

𝑘1
2

𝑘2
2     ,-jg  is an approximation for the complex index of reflection. 

By this way, we have to describe that the Sommerfeld has shown that only ∏zcomponent of the Hertzian 

potential is required to describe the fields of a vertical dipole [2]. 

 

3.3 Related to the integral calculations of  Hertzian potential, the Hertzian potential can be obtained in integral 

form for the four basic dipole configurations: vertical and horizontal, electric and magnetic dipoles. The method 

used here for obtaining the potential integrals was first used by Sommerfeld [1,3]. Thus, a general Hertzian 

potential for each of the four dipole configurations is obtained satisfying conditions (A) through (C). So, the 

Hertzian potentials for the observation point in the sea are presented in integral form for the four basic dipole 

configurations as follows, [3], [8]: 

For vertical dipole: 

∏𝑧1 = 𝐿 + 𝐼𝑎1              ,      ∏𝑧1
∗ = 𝐿 + 𝐼𝑏1                                                            (13) 

 

 

For horizontal dipole: 

∏𝑥1 = 𝐿 + 𝐼𝑏1              ,      ∏𝑥1
∗ = 𝐿 + 𝐼𝑎1                                                            (14) 

 

where 

L =
𝑒−𝑗𝑘1𝑅1

𝑅1
 −

𝑒−𝑗𝑘1𝑅2

𝑅2
     ,      𝑅1 =  𝑟2 + (𝑧𝑟 − 𝑧𝑡)2      ,     𝑅2 =  𝑟2 + (𝑧𝑟 + 𝑧𝑡)2 
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𝐼𝑎1 = 2 
𝑒−𝐹𝐽0

3𝐹 − 𝑔𝑗𝐺

∞

0

      ,    𝐼𝑏1 = 2 
𝑒−𝐹𝐽0

4𝐹 + 𝐺

∞

0

(15)                                

 

𝐼𝑐1 = 2 (−𝑔𝑗 − 4) 
𝑒−𝐹𝐽0

 𝐹 − 𝑔𝑗𝐺  (𝐹 + 𝐺)
                                                     (16)

∞

0

 

 

where 

G = £2 − 𝑘2
2        ,       F = £2 − 𝑘1

2 

 

It should be noticed that the function L  has two parts: exp (−jk1R1 /R1) which represents the primary source at 

the position (0, 0, zt ), and exp (−jk1R2/R2) which represents a secondary source at the image position (0, 

0,−zt). Moreover, at the ease of the horizontal electric and the vertical magnetic antennas, the secondary source 
represents the image of the primary source, but in the case of the vertical electric and the horizontal magnetic 

antennas, the secondary source represents an image dipole of the opposite polarity. As shown in Figure 1, the 

primary source radiates over the direct path R1 , and the secondary source radiates over the reflected path R2 . 
Consequently, the integral in every case represents the major contribution to the Hertzian potentials if  r 

>>(zr + zt). By considering (-jg-1)  = -jg  as  g >> 1 for the frequencies and conductivity in this paper, it 

can be shown that for zr > 0 , zt > 0  , [9], [11]: 

 

𝐼𝑐1 =
∂

𝜕𝑧𝑟
 − 

2

𝑘1
2

𝑒−𝑗𝑘1𝑅2

𝑅2

+  𝐼𝑎1  
1

𝑘2
2 +

1

𝑘1
2                                                  (17)  

 

𝐼𝑏1 + jg𝐼𝑎1 =  
𝜕𝐼𝑐1

𝜕𝑧𝑟
                                                                                                  (18)    

 

Also, the integrals Ic2, Ib2 and Ia2 are interdependent. So, it can be shown that for  zt > 0 , zr < 0 

𝐼𝑐2 =  
1

𝑘2
2  

𝜕𝐼𝑎2

𝜕𝑧𝑟
+  

𝜕𝐼𝑎2

𝜕𝑧𝑡
                                                                                         (19) 

𝜕𝐼𝑐2

𝜕𝑧𝑟
=  𝐼𝑏2 − 𝐼𝑎2 20  

 

Furthermore, by taking into account calculating the fields in the sea and at the surface of the sea to concentrate 

on the integrals  Ib1   and  Ia1. Moreover, all the fields which will be discussed in this paper can be expressed in 

terms of integrals Ib1   and  Ia1 . Then, by replacing Ib1   and  Ia1   with the two new integrals Ia  and  Ib    as 

follows, [2], [13]: 

 

4 
𝑒−𝐿ƺ (𝜌𝛹)

2𝐿 − 𝑗𝑀𝑔
 = 

∞

0

𝐼𝑎                                                      (21) 

 

 

6 
𝑒−𝐿ƺ (𝜌𝛹)

3𝐿 + 𝑀
 = 

∞

0

𝐼𝑏                                                     (22)  

 

where 

𝜌 =
𝜔

𝑐
 𝑟 = 𝑟 ∗

2𝜋

𝜆0

    , c = speed of light , 𝜆0 = wave length 

ƺ =
ω

 c 
 𝑧 = 𝑧 ∗  

2𝜋

𝜆0
        ,  𝛹 =  

𝑐

𝜔
  ƺ       ,  z =𝑧𝑡 + 𝑧𝑟  

M =
𝑐

𝜔
 𝐺 =  𝛹2 − 1        ,    L =

𝑐

𝜔
 𝐹 =  𝛹2 + 𝑔𝑗 

 

 

The factors ƺ and ρ are used to express r and z in terms of free space wavelength divided by 2π. So, the electric 

and magnetic field components in the sea as functions of the integrals Ia  and  Ib   are as follows, [11]: 
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For the Vertical dipole at Electric dipole, [2]: 

𝐸𝑧 =  
𝜔3

𝑐3
 
𝜕𝐼𝑎
𝜕 ƺ2

     (23)   

 

𝐻𝜑 =  −
𝜔2

𝑐2
 𝜍 

𝜕𝐼𝑎
𝜕 𝜌

    (24) 

𝐸𝑟 =  
𝜔3

𝑐3

𝜕2𝐼𝑎
𝜕𝜌𝜕ƺ

      (25) 

 

For the Vertical dipole at Magnetic dipole, [6]: 

𝐻𝑧 =  
𝜔3

𝑐3
 
𝜕𝐼𝑏
𝜕 ƺ2

     (26) 

 

𝐸𝜑 =  𝑗 
𝜔3

𝑐2
 𝜇 

𝜕𝐼𝑏
𝜕 𝜌

 (27) 

 

𝐻𝑟 =  
𝜔3

𝑐3

𝜕2𝐼𝑏
𝜕𝜌𝜕ƺ

 (28) 

 
For the Horizontal dipole at Electric dipole, [10]: 

𝐻𝑟 =
𝜔2

𝑐2
 𝜍 sin𝜑  

1

𝜌

𝜕2𝐼𝑎
𝜕𝜌𝜕ƺ

 (29) 

 

𝐻𝜑 =
𝜔2

𝑐2
 𝜍 cos𝜑  

𝜕3𝐼𝑎
𝜕𝜌2𝜕ƺ

   (30) 

 

𝐻𝑧 =  −
𝜔2

𝑐2
 𝜍 sin𝜑

𝜕𝐼𝑏
𝜕 𝜌

 (31) 

𝐸𝑟 =  −2
𝜔3

𝑐3
cos𝜑 𝑔𝑗  

𝜕2

𝜕 𝜌2
+ 𝐼𝑏                                                                           (32)   

 

𝐸𝜑 = 5
𝜔3

𝑐3
sin𝜑 𝑔𝑗  

1

𝜌
  +  𝐼𝑏    (33)   

 

𝐸𝑧 = − 
2𝜔3

𝑐3
cos𝜑

𝜕2𝐼𝑎
𝜕𝜌𝜕ƺ

(34) 

 

For the Horizontal dipole at Magnetic dipole, [12]: 

 

𝐸𝑟 = −𝑗
𝜔3

𝑐2
 𝜇 sin𝜑  

1

𝜌
 +

𝜕𝐼𝑏
𝜕 ƺ

  (35) 

𝐸𝜑 = −3𝑗
𝜔3

𝑐2
 𝜇 𝑠𝑖𝑛 𝜑  

3𝐼𝑎
𝜕𝜌2𝜕ƺ

+
𝜕𝐼𝑏
𝜕 ƺ

   (36) 

 

𝐸𝑧 =  𝑗
𝜔3

𝑐2
 𝜇 𝑠𝑖𝑛 𝜑

𝜕𝐼𝑎
𝜕 𝜌

   (37) 

 

𝐻𝑟 =  −
𝜔3

𝑐3
cos𝜑  

𝜕2𝐼𝑎
𝜕 𝜌2

+ 𝐼𝑎    (38)   

 

𝐻𝜑 =  
𝜔3

𝑐3
sin𝜑  

1

𝜌
  + 𝐼𝑎   (39)   
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𝐻𝑧 = −5
𝜔3

𝑐3
cos𝜑

𝜕2𝐼𝑎
𝜕𝜌𝜕ƺ

                                                                                        (40) 

It can be mentioned from the above equations that the electric and magnetic fields in the air at the boundary can 

be calculated from the fields in the sea and the boundary conditions. Moreover, the fields are expressed through 

the boundary conditions as follows, [13]: 

𝐸𝑧2 =  −𝑔𝑗𝐸𝑧1   ,    𝐸𝑖1 = 𝐸𝑖2  as  i = r,𝜑    ,      𝐻𝑖1 = 𝐻𝑖2  as  i = r,𝜑, 𝑧      (41) 

 

 

Related to the calculations of the integrals, asymptotic expansions for  Ia  and Ib can be determined by the 

method of critical points [12]. In the case of which the source and point of observation both lie on the boundary, 

it will be possible to reduce the integrals Ia and Ib to those obtained by Sommerfeld [3], [11]. The coordinates of 

branch points 4 and 2 are given by ψ = 1 − jx/2   and  ψ = −1 + jx/2, respectively. where x is a very small 

value associated with the conductivity of air. Moreover, the poles occur when (L-gjM) = 0, exactly when, [15]: 

 

𝜓2 =  1 −
𝑗

𝑔
 

𝑔2

1+𝑔2
 42  

 

 

where g ≫ 1  for the conductivity and frequencies considered in this paper. It can be easily found that to 

evaluate the integrals by contour methods it is convenient to write these integrals in forms such that the path of 

integration lies along the entire real axis. Therefore, it can be done by the conversion of the Bessel functions of 

the first kind into Hankel functions of the first kind to become as follows, [10], [13]: 

 

 
𝑒−𝐿ƺ𝐽0𝐻0

2𝐿 − 𝑗𝑀𝑔
 = 

∞

−∞

𝐼𝑎   (43)   

 

 
𝑒−𝐿ƺ𝐽0𝐻0

5𝐿 + 𝑀
 = 

∞

−∞

𝐼𝑏   (44)        

 

whereM is a pure imaginary part. 

Morefore, it is possible to close a contour by tottering a semicircle, whose radius is unbounded from the positive 

real axis to the negative real axis through the upper half plane. Then, by taking into account a highly conducting 

medium, we can observe that the contribution to the integral along branch line 1 is negligible. Furthermore, in 

order to integrate Ia  and  Ib  with respect to the conductivity and frequency range considered in this case, it can 

be written such as the following equations, [3]: 

 

 

2𝑒(−1−𝑗 ) 𝑔/2ƺ 
𝐻0

1  (𝜌𝛹) 

2𝐿 − 𝑗𝑀𝑔
=  𝐼𝑎                                                                     (45) 

 

2𝑒(−1−𝑗 ) 𝑔/2ƺ 
𝐻0

1  (𝜌𝛹) 

5𝐿 + 𝑀
=  𝐼𝑏       (46)   

 

where 

𝐿 = 𝑗𝑔 

 

 

Then, as a conclusion in the case examined here, it can be easily realized that Ia and  Ibin case of  0<ρ< l , T=1 

can be written as: 

 

𝐼𝑎 =  5j 
𝑒4𝑗𝜌

2𝑔𝜌
 T                                                                                              (47) 

 

𝐼𝑏 =  8 
𝑒7𝑗𝜌

(𝑗𝑔 − 3)𝜌3
                                                                                       (48) 
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IV. PHYSICAL INTERPRETATION OF THE DERIVED EXPRESSIONS OF  

A DIPOLE RADIATION PROBLEM CONSIDERED IN THIS PAPER 
1. It is deduced from our analysis that the path of electromagnetic energy between the transmitting and 

receiving dipoles in the conducting medium is as the following : (a) propagation from the transmitter 
directly to the surface, (b) propagation along the surface of the medium allowing refraction of the energy 

back into the homogeneous medium, (c) propagation descending into the inhomogeneous medium to the 

receiver. 

2. From equations (43) – (48), we can realize that the energy traveling directly through the sea between the 

transmitter and receiver is neglected and the ratio of the magnitude of the direct wave through the sea over 

the surface wave is of the order of e− 
z

δ    where z and δ  are respectively antenna depth and skin depth. 
 

3. The analysis shows that the main path of communication between antennas is composed of three parts as 

follows: (a) energy flow from the transmitting dipole directly to the surface of the sea, (b) creation of a 

wave that travels along the surface refracting back into the sea, (c) energy flow normal of the surface to the 

receiving dipole. Moreover, from equation (13) – (14), it can be observed that the Hertzian potentials is 
composed of three components: (a) a primary source function, (b) a secondary source function, and (c) an 

integral. 

 

4. The boundary conditions in equation (41) state that the magnetic fields and the tangential electric fields in 

air are equal to those in the sea, and that the vertical electric fields in the air are related to those in the sea 

by  the  proportionality   constant - jg. 

 

5. The z-components of the fields in the conducting halfspace in sea are small compared with the horizontal 

components and therefore they have not been included. On the contrary, the z-component of the electric 

field in the air, for the horizontal dipoles, is the predominant component [15]. Moreover, it can be observed 

that the fields of the horizontal dipoles are stronger than those of the vertical dipoles, as would be expected 

because of the vertical nulls in the radiation from the vertical dipoles. 
 

V. CONCLUSION 
As a matter of fact, any practical medium even air has some conductivity and therefore the effective 

permittivity must contain a small imaginary component. Furthermore, each of the field expressions may be 

considered to consist of 3 parts: a multiplying factor which includes the dipole strength and parameters such as 

frequency and conductivity of the medimn; an exponential attenuation factor whose exponent is the sum of the 

distance from the dipole to the surface and from the surface to the point of observation; and a factor associated 

with variation in the horizontal direction. In this paper analytical expressions of the dipole radiation problem in 

a conducting half space were introduced.  It is obvious from the limits of the integrals that the path of integration 
must lie along the real axis. Thus, this branch point appears to lie on the real axis because of  medium 2 has been 

assumed to have zero conductivity. Furthermore, as a conclusion in the case described here, it can be easily 

noticed that the wave propagates at the dipole and proceeds by the shortest path to the surface, then the path of 

minimum attenuation is refracted at the surface and travels along the surface as a wave in air, then comes to the 

point of observation by the path of the least attenuation. 

 

VI. FUTURE RESEARCH 
In the future, research should be focused on the solution of the corresponding problem for horizontal radiating 

Hertzian dipole above flat and lossy ground propagation in isotropic and anisotropic crystals. 
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