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Abstract: - In this paper we introduce a numerical solution for the fuzzy heat equation with nonlocal boundary 
conditions. The main purpose is finding a difference scheme for the one dimensional heat equation with 

nonlocal boundary conditions. In these types of problems, an integral equation is appeared in the boundary 

conditions. We first express the necessary materials and definitions, and then consider our difference scheme 

and next the integrals in the boundary equations are approximated by the composite trapezoid rule. In the final 
part, we present an example for checking the numerical results. In this example we obtain the Hausdorff 

distance between exact solution and approximate solution. 
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I. INTRODUCTION 
This paper is concerned with the numerical solution of the heat equation  

 𝐷𝑡 − 𝑎2𝐷𝑥
2 𝑈 = 𝑂              𝑥 ∈  0,1 ,   𝑡 ∈  0,1                                        (1) 

Subject to the nonlocal boundary conditions  

 
 
 

 
 𝑈  0, 𝑡 =  𝑘0 𝑥 𝑈  𝑥, 𝑡 𝑑𝑥 + 𝑔0 (𝑡)

1

0

𝑈  1, 𝑡 =  𝑘1 𝑥 𝑈  𝑥, 𝑡 𝑑𝑥 + 𝑔1 (𝑡)
1

0

                                  2  

And the initial condition  

𝑈  𝑥, 0 = 𝑔  𝑥             𝑥 ∈  0,1                                                           3  
 

Where 𝑓 , 𝑘 0 , 𝑘 1 , 𝑔 0 , 𝑔 1  𝑎𝑛𝑑 𝑔  are known fuzzy functions. Over the last few years, many other physical 
phenomena were formulated into nonlocal mathematical models [1]. Hence, the numerical solution of parabolic 

partial differential equations with nonlocal boundary specifications is currently an active area of research. The 

topics of numerical methods for solving fuzzy differential equations have been rapidly growing in recent years. 

The concept of fuzzy derivative was first introduced by Chang and Zadeh in [10]. It was following up by Dubois 
and Prade in [1], who defined and used the extension principle. Other methods have been discussed by Puri and 

Relescu in [4] and Goestschel and Voxman in [9]. The initial value problem for first order fuzzy differential 

equations has been studied by several authors [5, 6, 7, 8, and 11]. On the metric space (𝐸𝑛 ,𝐷) of normal fuzzy 

convex sets with the distance D gave by the maximum of the Hausdorff distances between the corresponding 

levels sets.  
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II. MATERIALS AND DEFINITIONS 
We begin this section with defining the notation we will use in the paper. Let X be a location of objects 

denoted generically by x, and then a fuzzy set 𝐴  in X is a set of ordered pairs 𝐴 =  (𝑥, 𝜇𝐴 (𝑥)|𝑥 ∈ 𝑋 . 𝜇𝐴  is 

called the membership function or grade of membership of 𝑥 in 𝐴 . The range of the membership function is a 
subset of the nonnegative real numbers whose supremum is finite.  

Definition 2.1. The set of elements that belong to the fuzzy set 𝐴  at least to the degree α is called α-cut set:  

𝐴𝑎 = {𝑥 ∈ 𝑋|𝜇𝐴 (𝑥) ≥ 𝛼} 

𝐴𝑎
′ = {𝑥 ∈ 𝑋|𝜇𝐴 (𝑥) ≥ 𝛼} is called strong α-cut.  

Definition 2.2. The triangular fuzzy number 𝑁  is defined by three numbers 𝛼 < 𝑚 < 𝛽 as 𝐴 =  𝛼,𝑚, 𝛽 . This 
representation is interpreted as membership function:  

𝜇𝐴  𝑥 =

 
 
 

 
 
𝑥 − 𝛼

𝑚 − 𝛼
        𝛼 ≤ 𝑥 ≤ 𝑚

1                𝑥 = 𝑚 
𝑥 − 𝛽

𝑚 − 𝛽
         𝑚 < 𝑥 ≤ 𝛽

0                 𝑜.𝜔     

  

If 𝛼 > 0 𝛼 ≥ 0  then 𝐴 > 0 𝐴 ≥ 0 ,  

If 𝛽 < 0 𝛽 ≤ 0  then 𝐴 < 0 𝐴 ≤ 0 .   

Definition 2.3. An arbitrary number is showed by an ordered pair of functions  𝑎 𝑟 , 𝑎 𝑟  , 0 ≤ 𝑟 ≤ 1, which 

satisfies the following requirements:  

1. 𝑎 𝑟  is a bounded left semi continuous non-decreasing function over [0,1],  

2.  𝑎 𝑟  is a bounded left semi continuous non-decreasing function over [0,1],  

3. 𝑎 𝑟 ≤  𝑎 𝑟   , 0 ≤ 𝑟 ≤ 1.  

In particular, if 𝑎, 𝑎 are linear functions we have a triangular fuzzy number.  

A crisp number 𝑎 is simply represented by 𝑎 𝑟 =  𝑎 𝑟 = a  , 0 ≤ 𝑟 ≤ 1.  

Definition 2.4. For arbitrary fuzzy numbers (𝑢 𝑟 , 𝑢 𝑟 )  , 𝑣 = (𝑢 𝑟 , 𝑢 𝑟 )  we have algebraic operations 

bellow:  

1. 𝑘𝑢 =  
 𝑘𝑢, 𝑘 𝑢      𝑘 ≥ 0

 𝑘𝑢, 𝑘𝑢      𝑘 < 0
   

2. 𝑢 + 𝑣 = (𝑢 𝑟 + 𝑣(𝑟), 𝑢 𝑟 + 𝑣(𝑟)) 

3. 𝑢 − 𝑣 = (𝑢 𝑟 − 𝑣(𝑟), 𝑢 𝑟 − 𝑣(𝑟)) 

4. 𝑢. 𝑣 = (𝑚𝑖𝑛𝑠,𝑚𝑎𝑥𝑠), which 𝑠 =  𝑢𝑣, 𝑢𝑣, 𝑢𝑣, 𝑢𝑣 . 

Remark. Since the α-cut of fuzzy numbers is always a closed and bounded interval, so we can write 𝐴𝛼 =
[𝑎 𝛼 , 𝑎 𝛼 ], for all α.  

Definition 2.5. Assume 𝑢 =  𝑢 𝑟 , 𝑢 𝑟  ,   𝑣 = (𝑣 𝑟 , 𝑣 𝑟 ) are two fuzzy numbers. The Hausdorff metric 𝐷𝐻 

is defined by:  

𝐷𝐻 𝑢, 𝑣 =
sup
𝑟 ∈ [0,1]

max{ 𝑢 𝑟 − 𝑣 𝑟  ,  𝑢 𝑟 − 𝑣 𝑟  }                            (4) 

This metric is a bound for error. By it we obtain the difference between exact solution and approximate solution.  

 

III. FINITE DIFFERENCE METHOD 

In this section we solve the fuzzy heat equation by an implicit method. Assume 𝑈  is a fuzzy function of the 

independent crisp variable 𝑥 and 𝑡. We define:  

𝐼 = {(𝑥, 𝑡)|0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 𝑇} 

α-cut of 𝑈 (𝑥, 𝑡) and it’s the parametric form, will be:  

𝑈  𝑥, 𝑡  𝛼 =  𝑈 𝑥, 𝑡; 𝛼 , 𝑈 𝑥, 𝑡; 𝛼  . 

We let that the 𝑈 𝑥, 𝑡; 𝛼 , 𝑈 𝑥, 𝑡; 𝛼  have continuous partial differential, therefore  𝐷𝑡 − 𝑎2𝐷𝑥
2 𝑈 𝑥, 𝑡; 𝛼 , and 

 𝐷𝑡 − 𝑎2𝐷𝑥
2 𝑈 𝑥, 𝑡; 𝛼  are continuous for all  𝑥, 𝑡 ∈ 𝐼, all 𝛼 ∈  0,1 . we divide the domain  0,1 × [0, 𝑇] in to 

𝑀 × 𝑁 mesh with spatial step size 𝑕 =
1

𝑁
 in 𝑥 −direction and in 𝑥 −direction and 𝑘 =

𝑇

𝑀
 in 𝑡 −direction. The 

gride points are given by:  

𝑥𝑖 = 𝑖𝑕               𝑖 = 0,1,… , 𝑁 

𝑡𝑗 = 𝑗𝑘               𝑗 = 0,1,… ,𝑀 

Denote the value of 𝑈  at the representative mesh point 𝑝(𝑥𝑖 , 𝑡𝑗 ) by:  

𝑈 𝑝 = 𝑈  𝑥𝑖 , 𝑡𝑗  = 𝑈 𝑖,𝑗                                                                       
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And also parameter form of fuzzy number 𝑈 𝑖,𝑗  is:  

𝑈 𝑖 ,𝑗 = (𝑈𝑖,𝑗 , 𝑈𝑖,𝑗 ) 

We have:  

 
(𝐷𝑡)𝑈 𝑖,𝑗 = (𝐷𝑡𝑈𝑖,𝑗 , 𝐷𝑡𝑈𝑖,𝑗 )

(𝐷𝑥
2)𝑈 𝑖,𝑗 = (𝐷𝑥

2𝑈𝑖,𝑗 , 𝐷𝑥
2𝑈𝑖,𝑗 )

  

Then by Taylor’s expansion we obtain:  

 
 

 𝐷𝑥
2𝑈𝑖,𝑗 ≃

𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1

𝑕2

𝐷𝑥
2𝑈𝑖,𝑗 ≃

𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗 +1 + 𝑢𝑖+1,𝑗+1

𝑕2

  

And also for (𝐷𝑡)𝑈  at 𝑝, we have:  

 
𝐷𝑡𝑈𝑖,𝑗 ≃

𝑢𝑖,𝑗 +1−𝑢𝑖,𝑗

𝑘

𝐷𝑡𝑈𝑖,𝑗 ≃
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘

                                                                            (6) 

Parametric form of heat equation will be:  

 
𝐷𝑡𝑈𝑖,𝑗 − 𝑎2𝐷𝑥

2𝑈𝑖,𝑗 = 0 

𝐷𝑡𝑈𝑖,𝑗 − 𝑎2𝐷𝑥
2𝑈𝑖,𝑗 = 0 

                                                              (7) 

By (4) and (5) the difference scheme for heat equation is:  

 

𝑢𝑖,𝑗+1−𝑢𝑖 ,𝑗

𝑘
− 𝑎2 𝑢𝑖−1,𝑗+1−2𝑢𝑖,𝑗 +1+𝑢 𝑖+1,𝑗+1

𝑕2 = 0

𝑢𝑖,𝑗+1−𝑢𝑖 ,𝑗

𝑘
− 𝑎2 𝑢𝑖−1,𝑗+1−2𝑢𝑖,𝑗 +1+𝑢 𝑖+1,𝑗+1

𝑕2 = 0

                                     (8) 

By above equations we obtain:  

 
−𝑟𝑢𝑖−1,𝑗+1 +  1 + 2𝑟 𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗
−𝑟𝑢𝑖−1,𝑗+1 +  1 + 2𝑟 𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗

                                           (9) 

Where:  

𝑟 =
𝑘𝑎2

𝑕2
 

𝑈 = (𝑢, 𝑢)  is the exact solution of the approximating difference equations, and 𝑥𝑖 , (𝑖 = 1, … , 𝑁 − 1)  and 

𝑡𝑗 ,  𝑗 = 0,1, … ,𝑀 . 

We have 2(𝑁 − 1) equations with 2(𝑁 + 1) unknowns. Therefore we need other four equations. We obtain 

these equations by boundary conditions (2) are described by the trapezoid rule. So  

𝑎0𝑈 0,𝑗+1 +  𝑎𝑖𝑈 𝑖,𝑗+1 + 𝑎𝑁𝑈 𝑖,𝑗+1

𝑁−1

𝑖=1

≈ −𝑔 0,𝑖+1 

𝑏0𝑈 0,𝑗+1 +  𝑏𝑖𝑈 𝑖,𝑗+1 + 𝑏𝑁𝑈 𝑖,𝑗+1

𝑁−1

𝑖=1

≈ −𝑔 1,𝑖+1 

Where  

𝑎0 =
𝑕

2
𝑘0 𝑥0 − 1     𝑎𝑁 =

𝑕

2
𝑘0(𝑥𝑁) 

𝑏𝑁 =
𝑕

2
𝑘1 𝑥𝑁 − 1     𝑏0 =

𝑕

2
𝑘1(𝑥0) 

And  

𝑎𝑖 = 𝑕𝑘0 𝑥𝑖     ,     𝑏𝑖 = 𝑕𝑘1 𝑥𝑖           𝑖 = 1,… , 𝑁 − 1 

Also parametric form of fuzzy numbers 𝑔 0 and 𝑔 1 are:  

𝑔 0 =  𝑔0 , 𝑔
0
          𝑔 1 =  𝑔1 , 𝑔

1
  

By equations (9) we obtain:  

−𝑟𝑈 𝑖−1,𝑗+1 +  1 + 2𝑟 𝑈 𝑖 ,𝑗 +1 − 𝑟𝑈 𝑖+1,𝑗+1 = 𝑈 𝑖,𝑗          𝑖 = 1, … ,𝑁 − 1 

                                                                                             𝑗 = 0,1,… ,𝑀 

Therefore equations can be written in matrix form as:  
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 𝑎0         𝑎1           𝑎2      ⋯     𝑎𝑁
−𝑟     1 + 2𝑟    − 𝑟                      

       ⋱         ⋱         ⋱      
           −𝑟     1 + 2𝑟    − 𝑟

𝑏0       …      𝑏𝑁−2       𝑏𝑁−1       𝑏𝑁 

 
 
 
 

 

Then we will have:  

𝐴𝑈 𝑗+1 = 𝑈 𝑗  

The coefficients matrix of this system i.e. 𝐴 = (𝑎𝑖𝑗 )  is a crisp matrix  𝑁 + 1 ×  𝑁 + 1 ,  and 𝑈 𝑗 +1 =

(𝑢 1,𝑗+1 , … , 𝑢 𝑁,𝑗+1)𝑇 , 𝑈 𝑗 = (𝑢 1𝑗 , … , 𝑢 𝑁𝑗 )𝑇  are fuzzy vectors in the parametric form. Where 𝑢 1,𝑗+1 =

(𝑢𝑖,𝑗 +1 , 𝑢𝑖 ,𝑗+1)  and 𝑢 𝑖𝑗 = (𝑢𝑖𝑗 , 𝑢𝑖𝑗 ) . So we have to solve a system of order 2(𝑁 + 1) × 2(𝑁 + 1) . We re-

arrangement this linear system of equations as follows:  

  𝑆𝑋 = 𝑌                                                       (10) 

where  

𝑋 = (𝑢0,𝑗+1 , … , 𝑢𝑁,𝑗+1 , −𝑢0,𝑗+1 , … ,−𝑢𝑁,𝑗+1)𝑇 

𝑌 = (𝑢0,𝑗 , … , 𝑢𝑁,𝑗 , −𝑢0,𝑗 , … ,−𝑢𝑁,𝑗 )𝑇                   
And the matrix S is defined as follows:  

𝑎𝑖𝑗 ≥ 0  ⇒   𝑠𝑖𝑗 = 𝑠𝑖+𝑁+1,𝑗+𝑁+1 = 𝑎𝑖𝑗  

   𝑎𝑖𝑗 < 0  ⇒   𝑠𝑖,𝑗+𝑁+1 = 𝑠𝑖+𝑁+1,𝑗 = −𝑎𝑖𝑗  

the rest of matrix elementary 𝑠𝑖𝑗  which do not get these relations are zero. 

 

IV. NUMERICAL EXAMPLE 
In this section we present a numerical example to illustrate our method, whose exact solution is known to us. 

Consider the fuzzy heat equation  

𝜕𝑈 

𝜕𝑡
 𝑥, 𝑡 −

1

𝜋2

𝜕2𝑈 

𝜕𝑥2
 𝑥, 𝑡 = 0           0 < 𝑥 < 1  , 𝑡 > 0 

Subject to the nonlocal boundary conditions  

𝑈  0, 𝑡 =  𝑥𝑈  𝑥, 𝑡 𝑑𝑥
1

0

+  1 +
2

𝜋2
 exp⁡(−𝑡) 

𝑈  1, 𝑡 =  𝑥𝑈  𝑥, 𝑡 𝑑𝑥
1

0

−  1 −
2

𝜋2
 exp −𝑡  

and the initial condition  

𝑈  𝑥, 0 = 𝐾 cos 𝜋𝑥 

and 𝐾  𝛼 =  𝑘 𝛼 , 𝑘 𝛼  =  𝛼 − 1,1 − 𝛼 . which is easily seen to have exact solution for  

𝜕𝑈

𝜕𝑡
 𝑥, 𝑡; 𝛼 −

1

𝜋2

𝜕2𝑈

𝜕𝑥2
 𝑥, 𝑡; 𝛼 = 0 − 𝛼 

𝜕𝑈

𝜕𝑡
 𝑥, 𝑡; 𝛼 −

1

𝜋2

𝜕2𝑈

𝜕𝑥2
 𝑥, 𝑡; 𝛼 = 0 + 𝛼 

are  

𝑈 𝑥, 𝑡; 𝛼 =  
𝑘 𝛼 exp −𝑡 cos𝜋𝑥      0 < 𝑥 <

1

2

𝑘  𝛼 exp −𝑡 cos𝜋𝑥     
1

2
< 𝑥 < 1

  

and  

𝑈 𝑥, 𝑡; 𝛼 =  
𝑘 𝛼 exp −𝑡 cos𝜋𝑥      0 < 𝑥 <

1

2

𝑘  𝛼 exp −𝑡 cos𝜋𝑥     
1

2
< 𝑥 < 1

  

The exact and approximate solutions are shown in next figure at the point (0.2,0.001) with 𝑕 = 0.005, 𝑘 =
0.00001. The housdroff distance between solutions in this case is 7.58𝑒 − 004.  
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V. CONCLUSION 
Our purpose in this article is solving fuzzy partial differential equation (FPDE). We presented an 

implicit method for solving this equation, and we considered necessary conditions for stability of this method. In 

last section we given an example for consider numerical results. Also we compared the approximate solution 

and exact solution. Then we obtained the Hausdorf distance between them in two cases.  
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