Propane A Replacement Refrigerant For Cfcs and Hcfcs

*1C.O Ezeagwu; 2I.C Oshuoha; 3I.Ofili
1 Department of Electronics & Computer Engineering, Nnamdi Azikiwe University, Awka, Anambra State
2 Department of Mechanical Engineering, University of Agriculture, Markurdi, Benue State;
3 Projects Development Institute (PRODA), Enugu, Enugu State.

ABSTRACT: The importance to protect our world and control global warming, has necessitated this research work. The use of CFCs and HCFCs as refrigerants, attack, deplete the ozone layer and aids global warming. The use of hydrocarbon-propane as a refrigerant with zero; ozone depletion potential (ODP), global warming potential (GWP) less than three. This will ensure a cleaner and safer environment. It will provide a use for propane gas being flared.

Keywords: attacks, global warming, protect, ozone layer, safer environment.

I. INTRODUCTION
The concept of refrigeration is very important and can be described as one of the greatest achievements of scientists in the twentieth century. It has a variety of applications ranging from refrigerating of water, drinks to air conditioning. Mechanical refrigeration has been around since the mid-nineteenth century. The first practical machine was built by Jacob Perkins 1834 (Thevenot, 1979). It was based on using ether as a refrigerant in a vapour compression circuit. Carbon (iv) oxide (CO₂) was also used as a refrigerant in 1866 and ammonia (NH₃) in 1873. Other chemicals used as vapour compression refrigerants include chymgene (petrol, ether and naphtha), sulphur (iv) oxide (R-764) and methyl ether. Their applications were limited to industrial processes. Most food preservation was accomplished by using blocks of ice collected during and stored or manufactured through an industrial process (McQuay, 2002). By the beginning of the twentieth century, refrigeration systems were being used to provide air conditioning in major building projects. The Milam building in San Antonio, Texas was the first high-rise offices to be completely air conditioned (Pauken, 1999). In 1926, Thomas Midgely developed the first CFC (chlorofluorocarbons), R-12. CFCs were non-flammable, non toxic (when compare to sulphur iv oxide) and efficient. Commercial production began in 1931 and quickly found a home in refrigeration. Wills Carrier developed the first centrifugal chiller for commercial use and the era of refrigeration and air conditioning began. Unfortunately. The CFCs and HCFCs are so stable that when discharged to atmosphere the molecules diffuse to the stratosphere before being ultimately decomposed by ultraviolet radiation. It has now been found that the liberated chlorine atoms attack the ozone layer which protects the Earth from that radiation – and moreover by a chain reaction wherein every chlorine atom breaks up about 105 ozone molecules (Rogers and Mayhew, 1992). By the mid 1970s concerns began to surface about the thinning of the ozone layer and whether CFCs may be in part responsible. This led to the ratification of the Montreal protocol in 1987 that required the phase out of CFCs HCFCs. (McQuay 2002). In the 1990 global warming arose as the threat to all well being of the planet.

II. MATERIALS AND METHOD
Materials used for this research include mild steel plates guage-22, aluminum sheet, angle iron-2cm, fibre-cork board, copper tubing 0.9mm to 1.0mm, propane R-290, as refrigerant, ¼Hp rating compressor. These materials can be sourced and bought locally from the market. The cabinet unit being the main structure of the freeze carries the other units, therefore it must be constructed to be rigid. First, the angle iron is used to frame the structure length 70cm, height 60cm, and weight 50cm. Then the mild steel plates are used as the main outer plate and the base plate. A recess of dimension (50x25x25) cm, the seating for compressor. The fibre-cork board is then placed inside the main outer plate, before the aluminum plate which is used as the inner plate which is folded round with the copper/capillary tubings-space at 7.00cm from one another.
The inner plate of aluminum and folded copper tubing is attached to the insulator with the use of an appropriate adhesive. The door unit is the most stressed part of the structure being subjected to mechanical opening and closing stress cycle all the time. As a result, the unit is usually the first to show signs of mechanical fatigue/failure before the other structural members. The vulnerability to antique stresses is a function of the height of the unit amongst others. Therefore, the design of the door unit is directed at reducing the height of the unit as much as possible and its rigidity. The dimension length 70cm, weight 50cm, and thickness 2cm. Double walled with fibre-cork in between the outside mild-steel plate and aluminum plate thickness of insulator cork - 2cm. The copper tubing is connected to the compressor and other refrigeration cycle components – evaporator, condenser and expansion value. A simple vapour compression refrigeration system cycle with superheated vapour before compression.

III. REFRIGERANT

A refrigerant can be described as any substance having thermodynamic properties, capable of changing state from liquid to gaseous state and vice-versa with the resultant refrigerating effect and heat rejection at different stages of the process. Another important property which is critical for refrigerants, is its compatibility with the environment.

<table>
<thead>
<tr>
<th>Refrigerant Number</th>
<th>Chemical Namea</th>
<th>Chemical Formulaa</th>
<th>Molecular Massa</th>
<th>Safety Groupa</th>
<th>Atmospheric Lifetimeb (yrs)</th>
<th>OD Pc</th>
<th>GW P</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Trichlorofluoromethane</td>
<td>CCl₃F</td>
<td>137.4</td>
<td>A1</td>
<td>50</td>
<td>1</td>
<td>380</td>
</tr>
<tr>
<td>12</td>
<td>Dichlorofluoromethane</td>
<td>CCl₂F₂</td>
<td>120.9</td>
<td>A1</td>
<td>102</td>
<td>1</td>
<td>810</td>
</tr>
<tr>
<td>22</td>
<td>Chlorodifluoromethane</td>
<td>CHClF₂</td>
<td>86.5</td>
<td>A1</td>
<td>12.1</td>
<td>.05</td>
<td>150</td>
</tr>
<tr>
<td>32</td>
<td>Difluoromethane</td>
<td>CH₂F₂</td>
<td>52</td>
<td>A2</td>
<td>5.6</td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>123</td>
<td>2,2-dichloro-1,1,1- trifluoroethane</td>
<td>CHCl₂CF₃</td>
<td>153</td>
<td>B1</td>
<td>1.4</td>
<td>.02</td>
<td>90</td>
</tr>
<tr>
<td>125</td>
<td>Pentafluoroethane</td>
<td>CF₃CF₃</td>
<td>120</td>
<td>A1</td>
<td>32.6</td>
<td>0</td>
<td>280</td>
</tr>
<tr>
<td>134a</td>
<td>1,1,1,2-tetrafluoroethane</td>
<td>CF₃CH₂F</td>
<td>102</td>
<td>A1</td>
<td>14.6</td>
<td>0</td>
<td>130</td>
</tr>
<tr>
<td>245fa</td>
<td>1,1,2,2,3-pentafluoropropane</td>
<td>CF₃CH₂CF₃</td>
<td>134.05</td>
<td>B1</td>
<td>8.8</td>
<td>0</td>
<td>820</td>
</tr>
<tr>
<td>290</td>
<td>Propane</td>
<td>CH₃CH₂CH₃</td>
<td>44</td>
<td>A3</td>
<td><1⁹</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1 – Refrigerant properties

Source:

– 1995 IPCC Report HFCs Table 2.9: CFCs and HCFCs Table 2.2 (Houghton et al.,1996)

– Ozone Secretariat UNEP (1996)

IV. BASIC COMPONENTS OF VAPOUR COMPRESSION CYCLE

The basic components of the vapour-compression cycle include: evaporator, compressor condenser and expansion device. Evapourator this is a heat exchanger that removes the built-up heat from the chilled water/food substance, there-by lowering the water/food substance temperature in the process. The heat is used to vapourize the refrigerant, changing it from liquid to gas (vapour). Compressor, the compressor assembly is made up of a prime mover (typically an electric motor) and a compressor. The compressor raises the pressure and temperature of the refrigerant gas. Condenser similar to the evaporator, the condenser is a heat exchanger. In this case, it removes heat from the refrigerant causing it to condense from gaseous state to liquid. The heat raises the water temperature. The condenser water then carries the heat to the cooling tower where the heat is rejected to the atmosphere. Expansion Device after the refrigerant condenses to a liquid, it passes through a pressure-reducing device. This can be as simple as an orifice plate or as complicated as an electronic modulating thermal expansion valve.
Pressure-Enthalpy Diagram: The Pressure-Enthalpy (P-H) diagram is used to analyze the refrigeration cycle. It is a very important tool for refrigeration, as the various processes are clearly identified in Figure 1. It shows the Pressure-Enthalpy (P-H) diagram for the refrigeration circuit shown in Figure 1. The process for each of the components is indicated. The evaporator process is from point 1 to point 2. As the refrigerant changes from a liquid to gas, the pressure (and temperature) remains constant. The heat is being absorbed as a phase change (latent energy). The refrigeration effect is the change in enthalpy from 1 to 2, simply expressed as Btu/lb. of refrigerant circulated. The line from 2 to 3 represents the compression process. The work is the change in enthalpy from point 2 to 3; times the flow of refrigerant. Simply, Btu/lb. times the lb./min equals compressor power. Compressors end up with the work of compression as heat in the refrigerant. The vertical aspect of the curve shows the rise in refrigerant pressure (and temperature) from 2 to 3. The next process takes place in the condenser. The first section (outside the refrigerant dome) is the de-superheating process. Once the refrigerant is saturated, condensation occurs and the refrigerant changes from a gas to a liquid. Like the evaporator, the line is horizontal indicating constant pressure (or temperature). The final process is the expansion device. This appears as a vertical line from point 4 to 1, indicating the pressure (and temperature) drop that occurs as the refrigerant passes through the Thermal Expansion (TX) valve (McQuay, 2002).

Figure 1 Refrigeration Circuit, P-H Diagram

Required Parameters
Total cooling load,
Refrigerating effect,
Mass flow rate of refrigerant,
Compressor power,
Coefficient of performance of the freeze, and
Volume flow rate of air/heat rejection at the condenser.

Derivative and Calculations
Product Data
Product = meat and fish products
Relative humidity (R.H) = 85%
Average density = 1,060kg/m³
Storage temperature = -1.1 to 0.5°C
Cp above freezing point = 3.7681kJ/kgk
Cp below freezing point = 1.92593kJ/kgk
Latent heat (L) = 290.75kJ/kgk

Maximum product load (W_max) = Maximum volume occupied x density of the product

Maximum Volume = Volume of freeze – Volume of compressor compartment
= (70 X 60 X 50) – (25 X 25 X 50)
= 210,000 – 31,250
= 178,750 cm³
= (178,750)/(100)³
= 0.178750 m³

W_max = 0.17875 X 1.060 X 0.4
= 75.79kg
The 0.4 has been used to multiply, because the compartment that is to be cooled is 40% of the volume of the freeze.

Product Load

Product load is given as the sum of: heat given off by the product in cooling from entering temperature, heat given off by the product in freezing, that is latent heat of fusion, and heat given off by product in cooling from its freezing temperature to the final temperature.

\[
Q = q_1 + q_2 + q_3 = MC_p(T_2 - T_1) + ML + MC_p(T_2 - T_1) = (76 \times 3.76812(30 - -2.2)) + (76 \times 290.75) + (76 \times 1.92593 X (-2.2 - -20)) = 9221.34 + 22097 + 2605.40 = 33,923.74kj
\]

Using a freezing point of 13 hours for the whole content of the compartment to freeze.

\[
= Q/(13 \times 60 \times 60) = 33923.74/(13 \times 60 \times 60) = 0.7249kw
\]

Temperature (°C)	Liquid	Evaporating	Saturated vapour
-20 | 46.3 | 400.5 | 446.8
-10 | 70.4 | 388.0 | 458.4
40 | 203.1 | 306.5 | 509.6

<table>
<thead>
<tr>
<th>Temperature(°C)</th>
<th>Liquid</th>
<th>Evaporating</th>
<th>Saturated vapour</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>46.3</td>
<td>400.5</td>
<td>446.8</td>
</tr>
<tr>
<td>-10</td>
<td>70.4</td>
<td>388.0</td>
<td>458.4</td>
</tr>
<tr>
<td>40</td>
<td>203.1</td>
<td>306.5</td>
<td>509.6</td>
</tr>
</tbody>
</table>

Table 2: Extract of saturated propane enthalpies

Enthalpies of propane from saturated table of propane for the design:

\[h_1 = 46.3kj/kg, h_2 = 446.8kj/kg, h_3 = 509.6kj/kg, h_4 = 203.1kj/kg\]

Refrigerating Effect

Refrigerating effect

\[= h_2 - h_1 = 446.8 - 46.3 = 400.5kj/kg\]

Mass Flow Rate (m)

The mass flow rate of refrigerant is related by the equation

\[m(h_2 - h_1) = \text{total cooling load}\]

\[m = \text{Total cooling load}/(h_2 - h_1) = 0.7249/(446.8 - 46.3)\]

\[= 0.7249/400.5\]

\[= 0.0018099kg/s\]

Compressor Power (Pc)

\[Pc = m(h_3 - h_2) = 0.0018099 (509.6 - 446.8)\]

\[= 0.0018099 \times 62.8\]

\[= 0.11366172kw\]

1kw = 4/3Hp

\[? = 4/3 \times 0.1137\]

\[= 0.15155Hp\]

For safety, a compressor of ¼ Hp is selected.

Coefficient of Performance (COP)

\[COP = (h_2 - h_1)/(h_3 - h_2) = (446.8 - 46.3)/(509.6 - 446.8)\]

\[= 400.5/62.8\]

\[= 6.377\]

Heat Rejection at the Condenser (Qr)

The heat rejected at the condenser Qr = m(h_3 - h_4)

\[= 0.0018099 (509.6 - 203.1)\]

\[= 0.0018099 \times 306.5\]
= 0.554734kw

V. CONCLUSION AND RECOMMENDATION

From the analysis, it is evident that propane can be used as a refrigerant with good and reliable thermodynamic properties. The utilization of the propane gas, will help control gas flaring from refineries and the Niger-Delta region of Nigeria. Also, an environmentally friendly deep freeze is obtained for the tropics. Again, demand for refrigeration services are on the increase and essential for industrialization and attainment of becoming one of the top twenty economies by 2020. Practices, such as this will help check global warming and eliminate the possibility of endangering lives.

The following recommendations are made:
- More emphasis be laid on the development/learning to enhance refrigeration services in technical schools and tertiary institutions,
- Adequate funding through provision of facilities, equipment and manpower,
- Incentives such as better remuneration should be given to refrigeration workers,
- Giving of soft or interest free loans to entrepreneurs of refrigeration and tax holidays as incentives.

REFERENCES
[7] Intergovernmental Panel on Climate Change (1995) Report on HFCs Table 2.9: CFCs and HCFCs Table. www.ipcc.ch