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Abstract:- In this paper we have estimated the number of real zeros of

Q. (2= Zn: X,zl,zeZ which is a random Gaussian polynomial satisfying the normal
j=0

distribution with mean zero and variance one i.e. E(X )=0 and E(X J.)2 =1 for j>0. Much

research works has been done on the same polynomial with different co-efficients satisfying
the above condition and found that the expected number of zeros is approximated to

(%)Iog n as n »>win the interval (-0, o). Our present work is to estimate the number of

zeros in the interval [0, 1] and found that the expected number of real zeros of the above
polynomial under same conditions is ENn[O,1]~ (%E)Iog n asN — O QOur result gives

better approximation as compared to results given by Yoshihara [6]

Keywords: - Independent identically distributed random variables, random algebraic
polynomial, random algebraic equation, real roots.

INTRODUCTION
Let Xo, X;...... Xi be a stationary Gaussian process satisfying E(X ) =0 and E(X J.)2 =1 for
J > 0 as sufficient conditions. Then the expected number of real zeros of the above

polynomial Q,(z) = Z X J-z" is Zi( logn) asntends to infinity. The expected number of
j=0 4

zeros of a random trigonometric polynomial has been studied by Dunnage[1] and estimated
the number of zeros in the interval [0,1] which is approximated to (1/2z)logn where

n — oo but in the same problem we consider a polynomial which is piece wise continuous
and differentiable in the same interval and used normal distribution with mean zero and
variance one and applied Gaussian process. Ibragimov and Maslova [2] had worked with
same mean and variance under different conditions and had got the expected number of zeros
in the same interval is approximated to the result of Dunnage [1].

Let us consider the Gaussian polynomial

Qn(Z)=Z;,X,-Zj (1)
=
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Which is a piece-wise continuous and differentiable polynomial within a closed interval [0, 1]
and satisfying same conditions. Suppose that there is an interval [-b,b], 0<b< m, where

f(@) is uniformly approximated by the partial sums, Snf(e) of its Fourier series
development, and 0<m< f(@) < M< o , 8 e[-T1,1] where m and M are the lower and
upper bounds of f(t9) . Then the expected number of real zeros of the above polynomial is

ENn{[o, ]}~(%n)log nasn-—o.

Let the number of zeros of the above polynomial is denoted by EN,, .The main aim of our
work is to estimate ENn {[0,1]}.

Now we have partitioning the interval [0, 1] into three different sub intervals namely 1.}, 1,2
& 1,® the details of partitions are given bellow,

P
n{o,(l Iogn)}

1,2=| (- 1 Ml_loglogn)}

Jlogn n

o= log log n)’l}
| n

For n>3,
Let N, (a,b) be the number of sign changes of a piece-wise linear approximation to Qn(X).

First we estimate EN (I n2) . Then at last section we have approximated EN,(I,") and

ENy(1,%) and found that the expected number of zeros of both the intervals are equivalent to
o(logn) as n tends to infinity

ie. EN_(I"Y+EN, (1,°)= o(logn)

COVARIANCE ESTIMATES:
Let kn(X,¥)=E{Qn(X)Qn(Y)} and ry(x,y )=Cor {Qn(X) , Qn(Yy)}. We estimate kn(x,y) and rn(X,y)
for x,y satisfying certain conditions. For x e | i we derive upper and lower bounds for
Kn(X,X).
Let T n(6’) be a trigonometric polynomial of order n with real coefficients. Suppose we
define

T,@0=Yc,e", gel-rx]and c eR @)
G(Tn,x):ZE[icva —colzj 3)
v=0
Then
a G(T,,x)+G(T,,
K (T xy)= ( 1)_ Xy( y) xy € (0,1]
Taking 0<d<r'(x y)<o
2 V% 2 V4
r’(x,y):(l_x Je-y) xy € (0,1]
1-xy
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We estimate k(x,y) satisfying the conditions

O<d<ow And X,y € | ﬁ
We know from co-variance estimates
SUp |r.(x, y)—r'(x, y)‘ —>0 as N —> o

x,ye| "
r'(x,y)=d=0

For x,ye |.u|.we have

THEOREM -1 Suppose that T (€) can be uniformly approximated by the partial sums of its
Fourier series development f (0) < A<oo,8 e[ 7, 7]& £ (0)>0. If there is a constant a and
an integer No such that G(S,f,x) >« >0forn>N, ,x €[0,1] Applying co-variance estimates

m
to find mean and variance of the series z a; X ; we have
j=0

2
E{Zajxj] SZﬂAZajz for m>0ang k,(x,y) =
j=0 j=0

Letk(x y)=E{QXQY) }= LimKk.(x y)

n—

T

=[x ) (- ye)" t(B)do (4)

—-T

Let T, (0)= > ce"’ (5)

A . i 71 . 71 _
We have by Cauchy’s residue theorem that Iewa(l— Xe '9) (1— ye.a) 6 = 2z" (L-xy)™

-

And Te“” (1— xe‘“g)_l(l— ye‘e)_lde =27y (1-xy)™

-
b

h(x,y) - j(l— xe’i‘g)*l(l— ye”’)ﬁlg(ﬁ) dg

b
Where C is a constant depending on B and b.

Taking m=n in equation (5) we have m=n and T,(0)=Syf(8), where S,f(0) is the nth partial
sum of the Fourier series development of {(0). Now for X y e [0,1] we have

ka6 1)~ K (84 % )| < 3, ™
Where J, =J+J,+J,+J, and

<C (6)
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b
J= K4S, f.xy) - j(l— xe’"’)ﬁl(l— ye”’)ﬁlsnf (6)d6 8)
b
J,=|k(x,y) - i(l— xe ) (L—ye' )" £(0)do 9)
I = i(l— xe ) (1 ye' ) (S, (0) - f(6)do (10)
J =Ko, y) k(%) (11)

From the conditions of Zygmund [7] we found that there is a constant B not depending on n
such that

T
[ISnf (6)|d6 < B <, foralln=0. & g(6) =S,f () gives J<C<oo
-7
Where C depends on b and B & g(0)= f(0) gives
Let a(n)= s[up ]|Snf 0)- (9
Oel-b,b

By Cauchy’s inequality we have
2ma(n) a
J3 < (1_X2)1/2(1_y2)1/2 ‘kn(xi y) — k (Snf ’X’ y)‘

+x"
<C|1+ ( X , /zy (Xyz)
b7 -y’)
For x,y e [0,1] and where C is a constant depending upon b, A and B So
%)~k (S, ) s(W(“’ (12)

1 X2)1/2(1_ yz)l/2

Where w(n) >0 as n—o For X,Y € |%]u |ﬁ

n
Now G(S.f,x)=1+>rx" (13)
We show that there is a constant >0 and an integer Ny such that

G(S,f,x)2a>0 when xe |§ ,n=N, From Abel’s Theorem and Titchmarsh[4]

conditions we see that G(S,f x) is uniformly convergent for x €[0] and

limG(S.f.x) = 1+Zr = (14)

Xx—1"

PRROF OF THEOREM -2 Using the two conditions f(0) < A<, 8 e[~ 7, ] and f(0)>0
of Theorem-1 and applying the uniform convergence of the series within a certain interval
S f(@)0ecl[-z,x] and  #5,f(0)=G(S,f,0) by adopting similar procedure asin the

proof of Theorem -1 we see that J;=J,=0 holds for x € | iu | i For some P we construct an
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interval 6 e [ T, n]and f(6) > 1> 0. Such an interval exists as f (#) is continuous at 6=0 and

f (0)>0. We consider the case when X € (1 ( —(logn)™ -1z )

The following inequality holds for x,y e [0,1)

sup \1—xe‘9\13(1-coszb)'“2,;z/zzb>0 sup ‘1—xe“9‘l£1 for 72b>7/2 e
0<bg|0|<7 0<b<|6|<x

have

1) and x=1 separately.

n -ivo
Sup [Y.x'e | for xe[0,1)
O<b<|g|<z |v=0
. —ivef
replaced by Z x'e
v=0

Substitution in kq(x,x) with ‘1— xe |

We got

kn(x,x)-'T

b
Substitute f (9) =1/27in (15) we have

T i Xve—iv 2

“zly=0

Zn:xVe-W “f(0)dgl<C xel0,1) (15)

v=0

)dé

ZXV —ivé
v=0

dej

-b

dg/<C (16)

Where C depends only on b and A.

By simple calculation we have

T

I Xve—lva
| Z

b| n

I Xve—ivﬁ
P2

v=0
-1/2
ana X € fL-(logn) 2]
From our construction of [-b,b] we have

2
IZXV ~ive f(9)d9>ﬂjzxv ~ivé
-plv=0 -plv=0
So the desired result follows for x e [1 (logn)™21 )
When x=1 we have

K, 00=n+1+25 (0~ j +1%, =22(n+ )5, 1(0) (20)

d0 27:2 X%, (17)

2

d~27) x* ,n—> o (18)

v=0

(19)
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Where o, f(0) is the nth Cesaro sum associated with f(0). As f(0) is continuous at 6=0 we
have o, f(0) > f(0) as n—oo. Hence we

have E(iajij = T(i ave_ivgj[iaveivg)f 0)do

-z \v=0 v=0
given that f(6) < A<oo. Then by using Cauchy’s inequality we have

2
E(Zajxj] < AJ' > ae™
J _zlv=0

2

de (21)

By simple calculation we have

Va

J‘ Zm:ave—ive

v=0

2 m
do=27> a;’ (22)
j=0

=T

GENERAL APPROXIMATION FORMULA : -For X € [a, b] we approximate Qn(x) by

a process which linearly interpolates between Qn(a) and Qn(b). It is convenient to count the
sign changes of this process in [a,b] by

N (a.b) = @ - [%]sgn Q,@Q, M)} 23)
1 x>0

Where  sgn{x}=-<0 x=0
-1 x< 0

The results of this section depend on an upper bound for the number of zeros of Qn(X) in an
interval [a,b]. Define the event

U ,=Q, (x) has k more zeros in [a, b] (24)
For any interval [a,b] < [0,1] let
y=(b-a)t-b)*,  belol-(n+1)']  and
y=(+Db-a), bell-(n+1)41]

LEMMA -1 let y < 2730 and

Q) f (9) is continuous at =0

(i) f(0)>0

(i) f(O)<A<wn,0cl| 7 7]

Then there is an integer N; and an absolute constant C such that
PU)<Cy** n2=N, k=0

COROLLARY-1 Under the conditions of Lemma-1 we have
|ENn(a, b) —EN,([a, b])| <Cy*% n >N,

Where C is an absolute constant.

Now we have to estimate the number of zeros in the three sub intervals.

1

(A). ESTIMATION OF NUMBER OF ZEROS IN THE INTERVAL:- |
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LEMMA -2 Let Xg, X;...... Xn be aset of n points satisfying E(X ;) =0 and E(X J.)2 =1 for
j=0.

(i)Let us consider a function f(8 ) which is uniformly approximated by the partial sums,

S, f(© ) in the interval [-m,]

(i) Inthe interval 0<m < f(8) <M < o and 8 &[-T,T1] where m and M are the lower
and upper bounds of f(8 ). Then expected number of real zeros in the interval

l.'=|0,(1- !
Jlogn

Where C is a finite constant

PROOF: -  From the Kac-Rice [3] formula and using the postulates of Shankar [4] which

states that

)}is ENn(]}) <(C"2/27)loglogn n>2 (25)

EN,(a,b) = (i)fci’z B,""a- R ax (26)
B,=E(Q,(x)% C,=E(Q+' (0] (27)
R,=Cor(Q,(0.Q' () (28)

mmaelngmquoo
dx
Now we have to find an upper bound for C /B, with xe |
We represent B,=kn(x,x) by Noting that f(€)>m>0,0 e [— T, 7[] and applying

Lemma-1 gives B,>2zmY_ x> for x € [L0] From Lemma-2 we have
v=0

C,<2 szxz(v‘l)avewj summing > x* and using that > vZx*"' ™ <2(1-x?)"°

v=1 v=1 v=1

x €[0,1) (29)
C,/B,<(2A/m)(1-x?") (1-x2 | (30)

1
x#"D <1, xe | forn =2

. 2(n+1) YL
and  sup_ lez‘” Y 50,xe|.as N —>o We deduce that (1-X (ne )) is
bounded above by a constant. So
C,/B,<(-x)* n>2andxe], (31)
Substituting the value of C./B, and using the relation (l— Rﬁ) <1 gives the expected

number of zeros in the interval |i is ENn(| i) < (C“2 /27z)log logn for n>2 (32)
Hence the theorem is proved.
LEMMA-3 Let Xq, Xj...... X be a set of n stationary points satisfying E(X ) =0 and

E(X )? =1. for j > 0 Suppose that (i) there is an interval [~ 7, z] and there is a constant
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1 i . .
asuchthat =+ dYrx!>a>0 xe[0l] nx=N,, forsome integer No there is a
=1
constant C such that

1/2
ENn(|i)s(C2 ]Iog logn for n> N,
T

PROOF: - To find an upper bound for C./B,, x€ | }1 and applying Lemma-1 and Lemma-2
we have G(Snf,x)=%+Zn:rjx"Za>Oforn2N0 (33)
j=1

Let N be any integer

So the conditions of Theorem-2 are satisfied. From Theorem-2 and any C € (0,1) we
have an integer N4 such that
B,=k,(xX)>CK(S,f,x %), n>N, & xe[’ (34)
Where C being any constantand C < (0,1)
From LEMMA-2 we have
K2(S £, 0 =2 20X
1-x
But G(S,,f,X) > >0 for n>Nj. So

2
B,> R
1-x
In the same way as in Lemma- 2 we have

B,/C,<(1-x)? ,n>N.=max(N,,N,). Then the expected number of zeros in the

n>N.=max (N,,N,) (35)

interval |i is

1 Cl/Z
ENn(| n)s( > ]Iog logn forn>N, (36)
T

Hence the theorem is proved.
LEMMA-4 Let (Z I ] = O) be a stationary sequence of uniformly mixing random variables

with zero mean and
(i) Elz,[" <wofors >0

(). E[iZjJ —> o asn —> o

Then there exists a constant C such that
2 1+61/2
n n
Sz <ce3e]
j=0 j=0

THEOREM- 2 Let Xo, Xj...... Xn be a set of n stationary real-valued uniformly
mixing Gaussian process with E(X )=0 and E(X J.)2 =1 for j> 0 satisfying (i)

248

E <C

Ok°=1¢1/2(k) < oo and (ii) (B )>0 and also satisfied by the sequence {(-1)j X,z 0} .
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We have
EN n(| }])s C(logn)? log logn

Where C is a constant.

PROOF: Choose C such that
P(X 4| >c)=q<1land Choose the events By= QX 0l < C) and

Bk:(]XO\<c ...... XH\<C,\Xk\2c) and k=1,..n

B =(Xg|<C|Xp|<C)

Let O<r<R.
Using the argument of Ibragimov and Maslova[2]
We obtain.

EN, (-r,r])< Zn:kP(Bk)Jr nP(B) + (log R/ r)*i L H dP Where

k=1 k=0""K

H= Iog[ sup (k!C)_l‘Qn(k)(Rem)U 37)
]

Oe[—ﬂ',ﬂ
Here Q,® (x) is the k™ derivative of Qj, (x) with respect to x.
We estimate P(Bx) and P(B)
Define a sequence of random variables
(Zk, k=0,.n) by
1-q X, |>c
Z,=
-q X, |<c
Now for k=1.....n we have

B, = (Zz = —qu ~(Z,=1- q)Jand

Bo=(Z,=1-0)
We show that the conditions of Lemma-4 are satisfied by (Zx, k>0) with & = 4 Clearly (Z,
k>0) is a stationary sequence of uniformly random variables with mixing coefficient@( ).

o0
Using Ibragimov [2] and Z¢1/2(j) < o0 (38)
=1
n-1 2
i0

So condition (i) & (ii) is satisfied. Using, Markov’s inequality and Lemma-4 with

o0 = 4gives

P(B,) < F{Zn:zj

o0
2kq/2]<C/k3for C<w and k>1And > KP(By) <
k=1
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In the same way
P(B) < P(Zn:zj

And nP(B) >0, n >
We estimate the final term in using the method of Ibragimov and Maslova [2]
IB HdP <P(B,) logw,+P(B,) log T + C(1+i,) exp(—i,) (41)

2q(n+1)/2)<C/n3,C<oo (40)

Where C is a constant, i, =In(T) and T>0 Then

. ) ik
_E Zn: JG-D..(i-k+DRITY j| | Taking T to be the following function of k
= klc ]

1, k=0

- k1+'9’ k>1 for £>0 using Kac-rice formula and noting that

W, <C@l-R)**c® 0<R<1wehave

zj H dP <(Iog j[z(k +1)P(B, )J +(1+8)Z(|09 K)P(By)

DZl+ (1+1g) log k
k +&
k=1
On Substituting r = 1- (logn) ™2 and R=1-1/2 (logn)™? in the above equation we get the
expected number of real zeros in the interval 1" is (C“2 /27z)log lognfor n>2 whereC
and D are constants

—logc

(B) ESTIMATION OF NUMBER OF ZEROS IN THE INTERVAL.:- (| i)
To find out the expected number of zeros in the interval

1 log log n)

Jlogn)’ - n

Let the expected number of zeros of the above interval is denoted by EN 0 (| ﬁ)
LEMMA -5 Suppose that 0<b <7 If

(i) f (@) can be uniformly approximated in [-b,b] by the partial sums of its Fourier
series development, S f(6)

@i)  f(0)=>0

(iiiy f(@)<A<w,0¢l-7,7]
Then EN (| i)~ (@/27)lognasn — o

number I ,*=| (1 -
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(C) ESTIMATION OF NUMBER OF ZEROS IN THE INTERVAL (| i) -

LEMMA -6 If

(i) f(O) iscontinuousat #=0

(i) f(©)>0

(iii) f (0) < A< oo, 0 [ 7, 7]

Then there is a constant and an integer Ng such that
ENn(| i)< C(loglogn)™’®, n>N,

THEOREM -3 Let X, X;...... X, be a set of n points satisfying E(X ;) =0 and E(X )* =1.
For j > 0. Suppose that there is an interval [-b, b], 0<b< 7, where f(0 ) is continuous at 6=0,

8 e[- 11,7} Then expected number of real zeros in the interval |,°= [(1— log log n),1} is
n

ENn(| i)< C(loglogn)™®  n>N,
Where C is a finite constant
PROOF : - Now we have to find an upper bound for C,/B, with xe |i using Kac-Rice

formula C,/B, < (2A/m)A—x2"9) 1 1-x?)” So

C,/B,<(-x)* n>2andxe]|
Substituting for C./B;, in the above equation and n taking the help of the inequality
a- Rﬁ) <1 the expected number of zeros in the interval |i is

ENn(| i)<C(Iog logn)”’*  nx=N, .
Hence the theorem is proved.
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