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Abstract: - This paper presents an innovative model of a program‟s internal behavior over a set of test inputs, 

called the probabilistic program dependence graph (PPDG), which facilitates probabilistic analysis and 

reasoning about uncertain program behavior particularly that associated with faults. The PPDG construction 
augments the structural dependences represented by a program dependence graph with estimates of statistical 

dependences between node states, which are computed from the test set.  The PPDG is based on the established 

framework of probabilistic graphical models, which are used widely in a variety of applications? This project 

presents algorithms for constructing PPDGs and applying them to fault diagnosis. The project also presents 

preliminary evidence indicating that a PPDG-based fault localization technique compares favorably with 

existing techniques. The project also presents evidence indicating that PPDGs can be useful for fault 

comprehension. 

The larger, more complex a program, the higher the likelihood of it containing bugs. It is always challenging for 

programmers to effectively and efficiently remove bugs, while not inadvertently introducing new one sat the 

same time. Furthermore, to debug, programmers must first be able to identify exactly where the bugs are, which 

is known as fault localization. 

 

Keywords: Fault Localization, Probabilistic Program Dependence Graph (PPDG). 

 

I. INTRODUCTION 
The program dependence graph can be used to construct a novel and useful probabilistic graphical 

model of program behaviour. The model captures the conditional statistical dependence and independence 

relationships among program elements in a way that facilitates making probabilistic inferences about program 

behaviours. We call this model a Probabilistic Program Dependence Graph (PPDG). 

 A variety of graphical models have been used in software engineering applications to abstract relevant 

relationships between program elements or states and thereby facilitate program analysis and understanding. 

These models include control flow graphs, call graphs, finite-state automata, and program dependence graphs. 

Program dependence graphs (PDGs), which have proven useful in software engineering applications such as 

testing, debugging, and maintenance between program elements. It augments program dependence graphs with 
statistical dependence (and independence) information in the principled way provided by probabilistic graphical 

models, it is possible to substantially increase the utility of program dependence graphs in some software 

engineering applications. 

     Probabilistic graphical models have proven useful in several fields (e.g., medicine and robotics) due to 

their ability to model both the presence of certain dependences between variables of interest and the way in 

which the variables are probabilistically conditioned on other variables. A probabilistic graphical model derived 

from a program dependence graph provides a natural framework for modelling both the presence of 

dependences and their statistical strengths. 

     Our technique produces the PPDG for a program by augmenting its program dependence graph 

automatically. The technique associates a set of abstract states with each node in the PPDG. Each abstract state 

represents a (possibly large) set of concrete nodes states in a way that is chosen to be relevant to one or more 
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applications of PPDGs. Each node has a conditional probability distribution that relates the states of the node to 

the states of its parent nodes. The technique estimates the parameters of the probability distribution by analyzing 

executions of the program, which are induced by a set of test cases or captured program inputs. 

    Intuitively, PPDGs are well suited to these tasks for two reasons. First, they can indicate how a failing 

execution differs from successful ones, both structurally and statistically. Second, context information generated 

from PPDGs can be used for understanding why a particular program statement might be suspected of causing a 

given failure. More generally, a PPDG can be used as a knowledge base which can be analyzed with different 

algorithms to understand various program behaviours. 

    
The main contributions of the paper are the following: 

 The PPDG, a novel probabilistic graphical model of program behavior based on the program dependence 

graph, 

 Applications of the PPDG to fault localization and fault comprehension. 

 

Existing System 

     A variety of graphical models have been used in software engineering applications to abstract relevant 

relationships between program elements or states and thereby facilitate program analysis and understanding. 

These models include control flow graphs, call graphs, finite-state automata, and program dependence graphs. 

Graphical models produced by static analysis generally indicate that certain occurrences are possible at runtime 

(e.g., control transfers, calls, state occurrences, state transitions, and information flows), whereas models 
produced by dynamic analysis indicate what actually does occur during one or more executions. However, 

commonly used graphical models of internal program dynamics do not support making inferences about how 

likely particular program behaviours are. This severely limits their utility for reasoning about the causes and 

effects of inherently uncertain program behaviours, such as runtime failures. 

 

Proposed System 

     We show how the program dependence graph can be used to construct a novel and useful probabilistic 

graphical model of program behaviour. The model captures the conditional statistical dependence and 

independence relationships among program elements in a way that facilitates making probabilistic inferences 

about program behaviours. We call this model a Probabilistic Program Dependence Graph (PPDG). Our 

technique produces the PPDG for a program by augmenting its program dependence graph automatically. The 

technique associates a set of abstract states with each node in the PPDG. Each abstract state represents a 
(possibly large) set of concrete nodes states in a way that is chosen to be relevant to one or more applications of 

PPDGs. Each node has a conditional probability distribution that relates the states of the node to the states of its 

parent nodes. The technique estimates the parameters of the probability distribution by analyzing executions of 

the program, which are induced by a set of test cases or captured.  

 

Proposed System Features 

     Identify the fault comprehension and fault localization process environment process. The PPDG, a 

novel probabilistic graphical model of program behaviour based on the program dependence graph, applications 

of the PPDG to fault localization and fault comprehension, and. the results of empirical studies that show that 

the PPDG can be useful for these applications. 

 

II. ARCHITECTURE 

 
Fig 1- ARCHITECTURE 
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Our approach involves the  PPDG generation and fault localization. PPDG is an innovative model of a 

program‟s internal behaviour over a set of test inputs. It facilitates probabilistic analysis and reasoning about 

uncertain program behaviour, particularly those associated with faults. The PPDG is based on the established 

framework of probabilistic graphical models. It scans each and every state nodes for fault in a program. Since it 

is a graphical representation testers can easily find exactly where the fault is. PPDG is nothing but transformed 

PDG. This transformation is achieved by learning. For learning LearnParam algorithm is used. This will 

transform the predicate nodes and self loop nodes by adding additional node as its parent.  

     Learn Aram algorithm is used to generate the PPDG. Fault localization is done by RankCP algorithm. It is 

used to find the probabilistic distribution of each node. It ranks each node using probability and the node having 
less probability is considered to be most suspicious. In LearnParam algorithm the execution trace is taken as 

input and evaluates the probability for each node based on the dependences to the node.  

 

1 PDG transformation 

     During this step, our technique 

1) Structurally transforms the PDG by adding nodes and edges to it 

2) Specifies the states of the nodes.  

      

We call the graph that results after transforming the PDG the transformed PDG. The technique assigns 

to each node in a program‟s transformed PDG a finite set of discrete abstract states, each of which represents a 

set of related concrete states of the corresponding statement. Hereafter, we use the term “state” to refer to an 
abstract state. The states of a node must be mutually exclusive1 (i.e., a node cannot be in two different states at 

the same time). Our technique initially assigns a default state denoted by the symbol? To each node. The State is 

the state a node assumes when it has not been executed. When a node is executed, it assumes a state distinct 

from? 

      The state of a PPDG node abstracts a part of the program‟s state that pertains to the node when the 

program executes. There are different ways to model this “local” concrete state.  We model it in one or both of 

two ways depending on whether the node represents a branch predicate, a statement that uses one or more 

variables, or both. These characterizations are intended to reflect certain aspects of a node‟s concrete state that 

are relevant to applications, such as fault localization and fault comprehension. Our technique characterizes the 

state of a node representing a branch predicate by the outcome of the predicate. 

      The technique characterizes the state of a node representing a statement s that uses one or more 

variables by the set of variable definitions that reaches those uses during execution (i.e., by the definitions on 
which s is dynamically datadependent2).Our technique transforms all predicates into simple predicates. A 

simple predicate is a predicate of the form“v1 relop v2”, where v1 and v2 are program variables. Our technique 

assumes that all conditions with compound predicates (i.e., conjunctions or disjunctions of simple predicates) 

are transformed into conditions with simple predicates. If a condition (e.g., “ifðv1Þ”) consists of a single 

variable (i.e., v1), our technique treats the condition as“ifðv1 ¼¼ 0Þ”. Hence, the predicate for the condition 

is“v1 ¼¼ 0” (i.e., v2 is 0). Transforming all predicates into simple predicates simplifies the transformation of 

the PDG. 

 

1.1 Structural transformation 

Our technique adds nodes and edges to the PDG in two cases:  

1) If a node has two state components (i.e., a predicate component and a data dependence component) or 
2) If there are self-loops (i.e., nodes that are control or data dependent on themselves) in the PDG. Transforming 

nodes with two state components.  

      The state of a predicate node can be characterized by both a predicate outcome and a set of dynamic 

data dependences. Thus, the state of a predicate node may have two state components (i.e., a predicate 

component and a data dependence component). If so, our technique introduces a new node into the PDG and 

assigns the data dependence component to the new state (removing it from the predicate node). The technique 

makes the new node the immediate successor of the predicate node‟s immediate predecessors and makes the 

original predicate node an immediate successor of the new node. Note that the predicate no deretains its 

connection to its immediate successors. For example, the predicates “i < n” and “v > max” at nodes 4 and 6 , 

respectively, each have two state   components. Predicate “i < n” has two state components because of the 

predicate computation at the node and because of its dynamic data dependences on nodes 1, 2, and8. Predicate 

“v > max” has two state components because of the predicate computation at the node and because of its 
dynamic data dependences on nodes 3, 5, and shows the result of the structural transformation of the PDG of 

find max that introduces new nodes D4 and D6.Transforming self-loops. Loops in a program may cause the 

program‟s PDG to contain self-loops. However, self loops are not permitted in the dependency network 

formalism on which PPDGs are based. Therefore, our technique eliminates self-loops from a PDG by 
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introducing new nodes and edges. A self-loop in a PDG may involve either control dependence or data 

dependence. If a node n is data dependent on itself with respect to a program variable v, our technique removes 

the self-loop transformation. 

      If a node is control dependent on itself and the predicate at the node has two state components, our 

technique does not add a new node to the PDG. Because the predicate node had two state components in the 

previous step, it was already transformed and a node was added. Our technique moves the self-loop and 

connects a control dependence edge from the original predicate node to the node added in the previous step. 

      For example, shows that node 4 is control dependent on itself. However, a new node is not added 

because the predicate at the node has two state components, and therefore, has already been transformed. 
Instead, the technique adds a control dependence edge from node 4 to node D4. Shows the result of this 

transformation. Shows the result of structurally transforming the PDG of example program find max.  This 

graph structure forms the structure of the PPDG (dependency network). 

 
Fig 2: Structurally Transforming PDG 

 

1.2 State specification 
Our technique models states at each of the nodes after the PDG of the program has been structurally 

transformed. 

 
Fig 3. State Specification PDG 
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Shows the transformed PDG of find max. Predicate nodes. Our technique models the states at all 

predicate nodes in the transformed PDG using predicate outcomes. The predicate outcomes depend on how the 

program variables involved in the predicate computation relate to each other in terms of the relational operators 

(i.e.,< ,> , _ , _ , ¼¼ , and 6¼ ). The technique places the simple predicates into two categories based on the 

state assignments. 

1. For nodes whose predicates involve primitive variables(e.g., ðv1 relop v2Þ, where v1 and v2 are char, int, 

float, or double variables) and relop is a relational operator, the outcomes of the predicate computation are 

based on how v1 relates to v2. Represents a predicate “v > max” at node 6. If v ¼ 2and max ¼ 7 when node 

6 is executed, the predicate outcome is <. In general, our technique assigns <, >,¼¼, and ? as the set of 
states to each predicate node whose operands are primitive variables. 

2. If the variables involved in the predicate are pointers or references, our technique introduces states that 

model pointer or reference equality and inequality, and thus assigns the states ¼¼, 6¼ , and ? to the node. 

Non predicate nodes.  

      Our characterization of the states of no predicate nodes that are dynamically data dependent on other 

nodes is based on a data-flow modelling technique proposed by Laski and Korel as a guide to program testing. 

Laski and Korel define the data environment of a statement s as the set of variable definitions that reaches s, 

along any paths, and is used at s. To more precisely model potential dynamic data flows, they introduced the 

concepts of elementary data context and data context for statements. 

      An elementary data context of a statement s is the set of definitions that reaches and is used at a given 

occurrence of s along some path. The set of all elementary data contexts of a statement s is called the data 
context of the statement.. 

      The set of states for a non predicate node that is dynamically data dependent on other nodes 

corresponds to the data context of that node, augmented with the? state. (Recall that means that the node was not 

executed in a given execution.)If a non predicate node is not dynamically data dependent on any node, then, by 

default, our technique assigns f>g as its data context. Hence, the states of the node are >and? The state > means 

that during a given execution, the node was executed. For example, nodes 1, 2, 3, 5, and L8 are not dynamically 

data dependent on any node.Hence, the nodes have the states. Shows the nodes in the transformed PDG with 

their corresponding states. 

 

2. Learning 

      During this step, our technique estimates the parameters of the PPDG from the set of execution data (D 

¼ fDkgnk¼0) generated by executing the instrumented program P0 with its test suite TP. Each Dk 2 D 
corresponds to a test case in TP. Different kinds of execution data (e.g., coverage or trace information) might be 

used to estimate the parameters of the PPDG. In this paper, our technique uses node-state traces. A node-state 

trace is a sequence of executed nodes, along with their active states, in the transformed PDG.  

      Technique uses node-state traces to estimate the parameters of the PPDG so that the PPDG will capture 

some of the temporal behaviours of the program. Each Dk 2 D is a node statetrace. A node can appear multiple 

times in the trace, and the states that the node assumes can be different. In this paper, we present a batch-

learning algorithm. However, the algorithm can be modified easily to an online learning algorithm. 

 

2.1 Estimating Parameters Of The PPDG 
      Learning the parameters of the PPDG consists of estimating conditional probability distributions, 

which are represented as tables called conditional probability tables (CPTs), because the states of the nodes in 
the transformed PDG are discrete. Suppose X ¼ fX1; . . .; Xng denotes the set of nodes in the transformed PDG. 

We denote the it state associated with node Xj by xji the parents (immediate predecessors) of anode Xj by 

PaðXjÞ, and the it assignment of states to the parents of Xj by paji. For a node with no parents, our technique 

estimates the probabilities (pðXj ¼ xjiÞ) of the nodes aspðXj ¼ xjiÞ ¼. Where nðXj ¼ xjiÞ is the number of 

times node (Xj) is instates xji across all node-state traces and nðXjÞ is the number of times the node Xj occurs 

across all node-state traces. 

      For a node with parents, our technique estimates the probabilities (pðXj ¼ xjijPaðXjÞ ¼ pajiÞ) of the 

node as Where nðXj ¼ xji; PaðXjÞ ¼ pajiÞ is the number of times node Xj and its parents assume a specific 

state configuration across all node-state traces and nðPaðXjÞ ¼ pajiÞ is the number of times PaðXjÞ ¼ paji 

across all node-state traces. 

      A state configuration is a set of states assigned to a set of nodes in the PPDG. The CPTs of the nodes 

must satisfy (3), which means that the sum over the states of node Xj given that its parents are in a specific state 
configuration paji must equal 1.0:X 

      Learning algorithm (Learn Aram).  Shows algorithm LearnParam that estimates the parameters of 

aPPDG. The algorithm takes as input a set of execution dataD, generated by executing an instrumented program 

P0with its test suite TP , and the program‟s transformed PDG. The algorithm outputs the PPDG of the program. 
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Learn-Param traverses each Dk 2 D from beginning to end, updating the parent states of nodes and the necessary 

counts depending on whether a node in a trace has parents. After Learn Aram processes D, it computes the 

conditional probabilities of each node in the transformed PDG. Finally, it returns the PPDG .the conditional 

probabilities distribution representations of each node in the transformed PDG of the example program 

(findmax). For example, the conditional probability distribution for node 6 in is denoted byPð6jD6Þ because 

node 6 is dependent on node D6. Thus, our technique estimates the probabilities of the states of node 6given the 

states of its parent node D6. 

 

2.2 Learning Example 
      Suppose that the example program findmax receives the following inputs: ðn ¼ 1; v ¼ f1gÞ, ðn ¼ 2; v 

¼ f1;_1gÞ,ðn ¼ 2; v ¼ f_1; 1gÞ, and ðn ¼ 1; v ¼ f0gÞ. These inputs cause findmax to execute correctly. Table 

3 shows an example node-state trace. The first column shows the inputs tofindmax, where n is the number of 

inputs that findmaxreads at line 5 and v is the set of integers input into findmax.  

      Nodes in Transformed PDG with Corresponding Conditional Probability Distributions Nodes in 

Transformed PDG with Corresponding States estimate the probabilities in the conditional probability tables, 

LearnParam processes the traces from the beginning of the trace until the end, updating the states of nodes and 

their parent states. To illustrate, we show the estimation of the CPT for node 6. Note that node 6 is dependent on 

node D6 in the transformed PDG as shown in Fig. 4b. For the node-state trace , the first occurrence of node 6 

has the state “>” and the state of node 6‟s parent at that occurrence is (d5ðvÞ, d3ðmaxÞ). Therefore, the 

algorithm increases nð6 ¼ „„>; ‟‟ D6 ¼ ðd5ðvÞ; d3ðmaxÞÞÞ by 1. Learn-Param continues processing the trace 
until it reaches the end. After all the traces have been processed, Learn Paramnormalizes the counts to produce 

the probabilities. Shows the conditional probability table for node 6. The first column shows the states of node 

D6 and the second column shows the states of node 6. The table shows thatPð6 ¼ „„>‟‟ j D6 ¼ ðd5ðvÞ; 

d3ðmaxÞÞ ¼ 3=5, which means that the probability of node 6 assuming the state “>” given that node D6 has 

assumed the state ðd5ðvÞ; d3ðmaxÞ is 3/5.  the sum of the probabilities for each row in the CPT for node 6 

satisfies  

  

III. APPLICATIONS OF THE PPDG 
In this section, we apply the PPDG to two software engineering tasks. For the first task, fault localization, we 
show how the PPDG can be used to overcome some of the limitations of current fault localization techniques, 

and we introduce a simple ranking-based algorithm that analyzes a faulty execution using the PPDG to 

determine the most suspicious statements in the program. For the second task, fault comprehension, we also 

exploit the interpretive nature of the PPDG and present an algorithm that generates contextual information 

related to suspicious statements—information that indicates why a particular statement is considered suspicious. 

 

FAULT LOCALIZATION 

Debugging software is often a difficult and time-consuming task, which is mostly done manually. One 

of the most laborious aspects of debugging is fault localization—locating the faults in a program that caused one 

or more observed failures. To reduce the burden on the developer during fault localization, a number of fault 

localization techniques (e.g., [6], [14], [16], [18], [19], [26], [29], [31]) have been developed. 

Existing fault localization techniques fall into two main categories: those that require knowledge of the incorrect 
values of program variables and those that do not require  his knowledge. Techniques that require knowledge of 

incorrect variable values are mostly slicing techniques [29], [31]. The limitation of slicing techniques is that 

they do not provide an ordering or ranking4 of the statements in the slices presented to the developer. This lack 

of guidance as to how the statements in a slice should be examined may increase the difficulty of finding the 

faulty statement. 

The techniques that do not require knowledge of incorrect variable values can be divided into two main 

groups. The first group [14], [16], [18], [19] requires access to multiple executions that fail because of the fault, 

as well as access to multiple passing executions. The second group [6], [26] requires access to multiple passing 

executions and access to only one execution that fails because of the fault. The first group of techniques has 

been shown through published results to be more effective in localizing faults than the second group. However, 

in CPT of Node 64. Informally, a ranking is an ordering among a set of elements according to a given criterion. 
practice, it is not always possible to have access to multiple executions that fail because of a given fault. Our 

fault localization algorithm (RankCP) is of the second type. Fault localization algorithm (RankCP). Fig. 6 shows 

algorithm RankCP, which analyzes a single failing execution at a time, and ranks nodes in the PPDG. RankCP 

ranks nodes based on the conditional probabilities of nodes given the states of their parent nodes (i.e., pðXj ¼ 

xjijPaðXjÞ ¼ pajiÞ), which reflect how the parents influence their children. Our hypothesis is that RankCP will 

often detect the first place in a failing execution, where a node (Xj) assumes an unusual state, given the states of 

its parents, thus indicating a possible cause of the failure. RankCP ranks a node Xj that has a state whose 



American Journal of Engineering Research (AJER)   2014 
 

 
w w w . a j e r . o r g  
 

Page 70 

probability is low, given the states of Xj‟s parents, as highly suspicious. Our choice of this conditional 

probability as an inverse measure of suspiciousness is based on preliminary studies we conducted that showed 

that faults tend to be associated with low probability nodes. For a given program, RankCP inputs its PPDG and a 

node-state trace generated by a failing execution, and it returns a list of nodes ranked from most suspicious to 

least suspicious. Each node is also associated with a node-parent state configuration. RankCP processes a trace 

from beginning to end.  

 

IV. SYSTEM DESIGN 
Data Flow Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig 4. Data Flow Diagram 
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V. USE CASE DIAGRAMS 
Use case diagrams model the functionality of system using actors and use cases. 

User Login 
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 SEQUENCE DIAGRAM: 

 
                                                                  Fig 8.Sequence Diagram 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we present the PPDG, a probabilistic graphical model based on the PDG that captures the 

statistical dependences among program elements and enables the use of probabilistic reasoning to analyze 

program behaviours. We also presented algorithms for two applications of the PPDG: which uses the PPDG to 

rank statements to assist in fault localization, and Fault-Comp, which uses the PPDG to generate explanations to 
aid in fault comprehension. The results also show that the PPDG can be an effective approximate model for 

representing behaviours of a program for fault diagnosis, eliminating the need to store large amounts of 

execution information during debugging.  

The PPDG is based on the established framework of probabilistic graphical models, which are used 

widely in a variety of applications. This project presents algorithms for constructing PPDGs and applying them 

to fault diagnosis. The project also presents preliminary evidence indicating that a PPDG-based fault 

localization technique compares favourably with existing techniques. The project also presents evidence 

indicating that PPDGs can be useful for fault comprehension. 
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