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Abstract: - This paper focuses on the analysis of hydrodynamic loads on fixed offshore structures (vertical 

cylinder) that are operating in shallow water and are often subjected to huge wave loading. For the purpose of 
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The loads for six different sea states were computed using spread sheet for the following values of time interval  

t = 0, T/4, T/2.    
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I. INTRODUCTION 
Hydrodynamic wave loading on fixed offshore structures has been an issue of concern to the offshore 

oil and gas industry. The analysis, design and construction of offshore structures are arguably one of the most 

demanding sets of tasks faced by the engineering profession. Over and above the usual conditions and situations 

met by land-based structures, offshore structures have the added complication of being placed in an ocean 

environment where hydrodynamic interaction effects and dynamic response become major considerations in 
their design. In general, wave and current can be found together in different forms in the ocean. The existence of 

waves and currents and their interaction play a significant role in most ocean dynamic processes and are 

important for ocean engineers. 

In addition, the range of possible design solutions, such as: Tension Leg Platform (TLP) deep water 

designs; the more traditional jacket and jack-up oil rigs; and the large number of sized gravity-style offshore 

platforms themselves, pose their own peculiar demands in terms of hydrodynamic loading effects, foundation 

support conditions and character of the dynamic response of not only the structure itself but also of the riser 

systems for oil extraction adopted by them. Invariably, non-linearity in the description of hydrodynamic loading 

characteristics of the structure-fluid interaction and in the associated structural response can assume importance 

and need be addressed. Access to specialist modelling software is often required to be able to do so [1]. 

 

1.1 Basics of Offshore Engineering 

A basic understanding of a number of key subject areas is essential to an engineer likely to be involved in the 

design of offshore structures, [2], [3], [4] and [5]. 

These subject areas, though not mutually exclusive, would include; 

 Hydrodynamics 

 Structural dynamics 

 Advanced structural analysis techniques 

 Statistics of extreme among others. 

 

1.2 Hydrodynamics 

Hydrodynamics is concerned with the study of water in motion. In the context of an offshore environment, the 
water of concern is the ocean. Its motion, (the kinematics of the water particles) stems from a number of sources 
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including slowly varying currents from the effects of the tides and from local thermal influences and oscillatory 

motion from wave activity that is normally wind-generated [1]. 

The characteristics of currents and waves, themselves would be very much site dependent, with 

extreme values of principal interest to the LFRD approach used for offshore structure design, associated with the 

statistics of the climatic condition of the site interest [6]. 

The topology of the ocean bottom also has influence on the water particle kinematics as the water depth 

changes from deeper to shallower conditions, [7]. This influence is referred to as the “shoaling effect”, which 

assumes significant importance to the field of coastal engineering. For so called deep water conditions (where 

the depth of water exceeds half the wavelength of the longest waves of interest), the influence of the water 
bottom topology on the water particle kinematics is considered negligible, removing an otherwise potential 

complication to the description of the hydrodynamics of offshore structures in such deep water environment. 

 

II. METHODOLOGY AND MATERIALS 
The jacket structure used for this study (Fig. 5) is a HD accommodation platform to be operated in 

shallow water and is similar to all fixed jacket offshore structures. The part of the structure under water was 

discretized in to (264) beam elements. The water depth for the HD field is approximately 25.3m. The loads were 

computed using spread sheet. See TABLE I for the most probable wave heights and time periods for different 

sea states.  
 

3.1 Wave Theories   

All wave theories obey some form of wave equation in which the dependent variable depends on physical 

phenomena and boundary conditions [8]. In general, the wave equation and the boundary conditions may be 

linear and non linear.  

 

3.1.1 Airy Wave Theory 

The surface elevation of an Airy wave amplitude ζa, at any instance of time t and horizontal position x in the 

direction of travel of the wave, is denoted by η(x,t) and is given by: 

 

η(x,t) = ζa cos (kx – ωt)                                                    “equation 1” 
 

where wave number k = 2π/L in which L represents the wavelength (see fig. 1) and circular frequency ω = 2π/T 

in which T represents the period of the wave. The celerity, or speed, of the wave C is given by L/T or ω/k, and 

the crest to trough wave height, H is given by 2ζa. The along wave u(x, t) and vertical  v(x, t) water particle 

velocities in an Airy wave at position z measured from the Mean Water Level (MWL) in depth water h are given 

by: 

 

u(x, t) = 
𝜔ζa  cosh ⁡[𝑘 𝑧+ℎ ]

sinh ⁡(𝑘ℎ)
 cos⁡(𝑘𝑥 −  𝜔𝑡)                                  “equation 2” 

v(x, t) = 
𝜔ζa  sinsh ⁡[𝑘 𝑧+ℎ ]

sinh ⁡(𝑘ℎ)
 sin⁡(𝑘𝑥 −  𝜔𝑡)                                 “equation 3” 

The dispersion relationship relates wave number k to circular frequency ω (as these are not independent), via: 

ω2 = gktanh (kh)                                                                 “equation 4” 

where g is the acceleration due to gravity (9.8 m/s
2
). The along wave acceleration 𝑢 (x, t) is given by the time 

derivative of (2) as: 

 

𝑢 (x, t) =  
𝜔2ζa  cosh ⁡[𝑘 𝑧+ℎ ]

sinh ⁡(𝑘ℎ)
sin 𝑘𝑥 −  𝜔𝑡                                        “equation5a”

               

     while the vertical velocity 𝑣 (x, t) is given by the time derivative of (3) as: 

𝑣 (x, t) = - 
𝜔2ζa  sinh ⁡[𝑘 𝑧+ℎ ] 

sinh ⁡(𝑘ℎ)
 cos⁡(𝑘𝑥 −  𝜔𝑡)                 “equation 5b” 

It should be noted here that wave amplitude, a = 𝜁𝑎 , is considered small (in fact negligible) in comparison to 

water depth h in the derivation of Airy wave theory. 
For deep water conditions, kh > π, (2) to (5) can be approximated to: 

 

u(x, t) = 𝜔ζ
a
𝑒𝑘𝑧 cos 𝑘𝑥 −  𝜔𝑡                                                   “equation 6” 

v(x, t) = 𝜔ζ
a
𝑒𝑘𝑧 sin 𝑘𝑥 −  𝜔𝑡                                                    “equation 7” 

𝜔2 = gk                                                                     “equation 8”     

𝑣 (x, t) = 𝜔2ζ
a
𝑒𝑘𝑧  sin⁡(𝑘𝑥 −  𝜔𝑡)                                             “equation 9” 
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This would imply that the elliptical orbits of the water particles associated with the general Airy wave 

description in (2) and (3), would reduce to circular orbits in deep water conditions as implied by (6) and (7). 

 

3.1.2 Stoke’s Second Order Wave Theory 

Stokes employed perturbation techniques to solve the wave boundary value problem and developed a theory for 

finite amplitude wave that he carried to the second order. In this theory, all the wave characteristics (velocity 

potential, celerity, surface profile, particle kinetics….e.tc) are formulated in terms of a power series in 

successively higher orders of the wave steepness (H/L). 

A condition of this theory is that (H/d) should be small so that the theory is applicable only in deep 
water and a portion of the immediate depth range. 

For engineering applications, the second-order and possibly the fifth-order theories are the most commonly used 

[9]. 

Stoke’s wave expansion method is formally valid under the conditions [10]: 

 

 H/d << (kd)2 for kd < 1 and H/L << 1. 

 

Stoke’s wave theory is considered most nearly valid in water where the relative depth (D/L) is greater 

than about (1/10) [11]. Stoke’s theory would be adequate for describing water waves at any depth of water. In 

shallow water, the connective terms become relatively large, the series convergence is slow and erratic and a 

large number of terms are required to achieve a uniform accuracy [12]. 
The fluid particle velocities are then given by; 

 

vx = 
𝜋𝐻

𝑇

cosh ⁡[𝑘 𝑧+ℎ ]

𝑠𝑖𝑛ℎ (𝑘ℎ)
 cos⁡(𝑘 𝑘𝑥 −  𝜔𝑡) +  

3(𝜋𝐻)2

4𝑇𝐿
 
cosh ⁡[2k z+h ]

𝑠𝑖𝑛ℎ4 (𝑘ℎ)
 𝑐𝑜𝑠 2(𝑘𝑥 −  𝜔𝑡)                            “equation 9a” 

vz = 
𝜋𝐻

𝑇

sinh ⁡[𝑘 𝑧+ℎ ]

𝑠𝑖𝑛ℎ  (𝑘ℎ)
 sin⁡(𝑘 𝑘𝑥 −  𝜔𝑡) + 

3(𝜋𝐻)2

4𝑇𝐿
 
sinh ⁡[2k z+h ]

𝑠𝑖𝑛ℎ4  (𝑘ℎ)
 𝑠𝑖𝑛 2(𝑘𝑥 −  𝜔𝑡)                             “equation 9b” 

The fluid particle accelerations are then given by; 

ax = 2 
𝜋2𝐻

𝑟2

cosh ⁡[𝑘 𝑧+ℎ ]

𝑠𝑖𝑛ℎ  (𝑘ℎ)
 sin 𝑘𝑥 −  𝜔𝑡 +  

3𝜋3𝐻2

𝑇2𝐿
 
cosh ⁡[2k z+h ]

𝑠𝑖𝑛ℎ4 (𝑘ℎ)
 𝑠𝑖𝑛 2(𝑘𝑥 −  𝜔𝑡)                           “equation 10a” 

az = 2 
𝜋2𝐻

𝑟2

sinh ⁡[𝑘 𝑧+ℎ ]

𝑠𝑖𝑛ℎ (𝑘ℎ)
 𝑐𝑜s 𝑘𝑥 −  𝜔𝑡 +  

3𝜋3𝐻2

𝑇2𝐿
 
sinh ⁡[2k z+h ]

𝑠𝑖𝑛ℎ4  (𝑘ℎ)
 𝑐𝑜𝑠 2(𝑘𝑥 −  𝜔𝑡)                          “equation 10b” 

These velocities and accelerations in (9) and (10) are used in Morison’s equation to calculate load 

vectors of hydrodynamic loading by using Stoke’s wave theory after being transformed from global coordinates 

for each member of the offshore structure. 

 

3.2 Morison’s Equation 

The along wave or in-line force per unit length acting on the submerged section of a rigid vertical surface-

piercing cylinder, F (z, t), from the interaction of the wave kinematics at position z from the MWL, (see Fig. 2), 
is given by Morison’s equation. This equation is originally developed to compute hydrodynamic forces acting 

on a cylinder at a right angle to the steady flow, and is given by:  

 

F (z, t) = ρ π 
𝐷2

4
 𝐶𝑚   a (z, t) + 

1

2 
 ρ D 𝐶𝑑   𝑉 𝑉  (z, t)                  “equation 11” 

 

in this (11), it is assumed that the wave force is acting on the vertical distance (z, t) of the cylinder due to the 

velocity (v) and acceleration (a) of the water particles, where (ρ) is the density of water, (D) is the cylinder 

diameter, (𝐶𝑚 ) and (𝐶𝑑) are inertia and drag coefficients, FD and FI are drag force and inertia force [13]. 

FD = 
1

2 
 ρ D 𝐶𝑑   𝑉 𝑉  (z, t)                    “equation 12” 

 

FI = ρ π 
𝐷2

4
 𝐶𝑚   a (z, t)                                                                                                                         “equation 13”           

 

These coefficients are found to be dependent upon Reynold’s number, Re, Keulegan Carpenter number, KC, and 

the β parameter, Viz; 

 

KC = 
𝑢𝑚

𝐷
𝑇; β =  

𝑅𝑒

𝐾𝐶
                                                                                                                             “equation 14” 

Where um = the maximum along wave water particle velocity. It is found that for KC < 10, inertia forces 

progressively dominate; for 10 < KC < 20 both inertia and drag force components are significant and for KC > 

20, drag force progressively dominates [1].  



American Journal of Engineering Research (AJER)   2014 
 

 
w w w . a j e r . o r g  
 

Page 68 

Various methods exist for the calculation of the hydrodynamic loads on an arbitrary oriented cylinder by using 

Morison’s equation. The method adopted here assumes that only the components of water particles and 

accelerations normal to the member produce [14]. 

To formulate the hydrodynamic load vector Fw, consider the single, bottom mounted cylindrical 

member (as shown in Fig. 2). The forces are found by the well known semi-empirical Morison’s formula (11). It 

also represents the load exerted on a vertical cylinder, assuming that the total force on an object in the wave is 

the sum of drag and inertia force components. This assumption (introduced by Morison) takes the drag term as a 

function of velocity and the inertia force as a function of acceleration [15], [16] and [17], so that: 

 

𝐹𝑛  = ρ π 
𝐷2

4
 𝐶𝑚  𝑣𝑛 

,
- (𝐶𝑚  – 1) ρ π 

𝐷2

4
  𝑢𝑛

,,
 + 

1

2 
 ρ D 𝐶𝑑  ( 𝑣𝑛  – 𝑢𝑛

, )  (𝑣𝑛− 𝑢𝑛
, )                                  “equation 15a” 

This can be simplified to: 

𝐹𝑛  = ρ π 
𝐷2

4
 𝐶𝑚  𝑣𝑛 

,
 + 

1

2 
 ρ D 𝐶𝑑  (𝑣𝑛  ) .  (𝑣𝑛)                                            “equation15b” 

Where: 

𝐹𝑛  = nodal hydrodynamic force normal to the cylinder, D = Outer diameter of cylinder, ρ = Sea water density. 

𝐶𝑑  = Drag coefficient (= 1.05). 𝑣𝑛
,
 = water particle acceleration. 𝐶𝑚   = Inertia coefficient (= 1.2). 𝑣𝑛  = water 

particle velocity. 𝑢𝑛
,
 = Structural velocity. 𝑢𝑛

,,
= Structural acceleration. 

(15b) neglects the non-linear terms of drag coefficient [2] and [18] water particle velocity and acceleration can 

be evaluated by potential velocity computed from wave theories; the absolute value of velocity is needed to 

preserve the sign variation of the force.   

           

3.2.1 Global and Local System 

The kinematics of cross-flow with resultant velocity (see Fig. 3) is; 

 

 𝑈𝐿 =   𝑡  𝑈𝑔                                 “equation 16” 

 

𝑊𝑛  =  𝑢′ + 𝑤 ′                               “equation 17” 

 
is determined using wave theory applied in the global system and then transferred to the local system using 

transformation matrix (see Fig. 4). 

Application of Morison’s equation leads to:    

         

FL = ρ π 
D2

4
 Cm  

du

dt
 + 

1

2 
 ρ D Cd (wn ) .  (wn)                                        “equation 18” 

 

The components of the forces in the local axis system then become; 
 

  
fy

′

fz
′
 = 

1

2 
 ρ D Cd (wn )  (wn)  u′

w ′
  + ρ π 

D2

4
 Cm   u"

w"
                  “equation 19” 

 

To get the local forces, we need to get the matrices as follows; 

          

    T =   
𝑥′

 𝑦 ′

𝑧′

        

𝑋
0
0
−1

𝑌
0
1

          0           

𝑍
1
0
0

         ;                            T-1 = 
𝑥′

 𝑦 ′

𝑧′

        

𝑋
0
0
1

𝑌
0
1

          0           

𝑍
−1
0
0

 

 

Therefore, the local forces are given as:- 

 

 

fx
′

fy
′

fz
′

 = 
1

2 
 ρ D Cd (wn )  (wn)  T  

u′

v′

w ′

  + ρ π 
D2

4
 Cm     

u
v"

′′

w"

                                                “equation 20” 

 

The local forces are then transferred in to global forces by the transpose matrix.  

Fw =  

Fx

Fy

Fz

 =   T −1   

0
fy

′

fz
′

                                                                                                                    “equation 21” 
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III. RESULTS 
The loads for six different sea states were computed using spread sheet for the following values of time 

intervals, t = 0, T/4, T/2. The magnitudes of these forces are presented graphically in Figures 6, 7, 8, 9, 10 and 

11when x= 0 and x = 16m. 

 

IV. CONCLUSION 
The results for this work are thus; 

1. The hydrodynamic force is directly proportional to the depth z and is minimum at z = 0.   

2. For all the sea state, all the hydrodynamic forces follow the same directions as the direction of the wave 

propagation (as forces pushing the member) at time t = T/2 and t = 0 when distance x = 0 and 16m 

respectively. (see Figures 8 and 9) 

3. Also, all the hydrodynamic forces at time t = 0, t = T/4 and t = T/2 when distance x = 0, = 0 and x = 16m 

respectively, are in direction (as forces pulling the member) similar to the direction of the wave 

propagation for all the sea states. (see Figures 6, 7 and 11)  

4. In Figure 10, the hydrodynamic forces follow the same directions of the wave propagation (as both 
pushing and pulling forces) due to changes in sea states. 

5. At constant time t, distance x and depth z, all the hydrodynamic forces are different for different sea state. 
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Figures and Table 

 
Figure 1: definition diagram for an airy wave [1] 

 

 
                            Figure 2: wave loading on a surface-piercing bottom mounted cylinder [1] 

 

 
Figure 3: global and local system 
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Figure 4: global and local coordinates 

 

 
                                                             Figure 5: HD accommodation platform 
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Figure 6: variation of hydrodynamic forces with depth (@ time t = 0 and distance x = 0) 

 

 
 

Figure 7: variation of hydrodynamic forces with depth (@ time t = T/4 and distance x = 0) 

 

 
Figure 8: variation of hydrodynamic forces with depth (@ time t = T/2 and distance x = 0) 
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Figure 9: variation of hydrodynamic forces with depth (@ time t = 0 and distance x = 16m) 

 

 
 

Figure 10: variation of hydrodynamic forces with depth (@ time t = T/4 and distance x = 16m) 

 

 
Figure 11: variation of hydrodynamic forces with depth (@ time t = T/2 and distance x = 16m) 
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Table I: Most Probable Wave Heights and Time Periods for Different Sea States (Area 59) 

Sea State Hs (m) Tp (sec) ζa (m) t (sec) k 

1 1 5.5 0.5 4.125 0.133 

2 2 5.5 1 4.125 0.133 

3 3 6.5 1.5 4.875 0.0961 

4 4 7 2 5.25 0.08371 

5 5 7.5 2.5 5.625 0.0739 

6 6 7.5 3 5.625 0.0739 

 

 

 


