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 Abstract: - In the present work  an H

 -control technique is presented and applied to the design of optimal 

multirate-output controllers. The technique is based on multirate-output controllers (MOCs) having a multirate 

sampling mechanism with different sampling period in each measured output of the system. The proposed  

technique relies on multirate-output controllers. Its main feature consists in reducing the original problem, to an 

associate discrete H
∞
-control problem for which a fictitious static state feedback controller is to be designed. 

The proposed H

-control technique is applied to the discrete linear open-loop system model which represents a 

117 MVA hydrogenerator unit supplying power through a step-up transformer and a transmission line to a 

infinite grid and give good assurance that the controllers designed by the H
∞
 -control technique may be 

implementable.  

 

Keywords:  - Digital multirate control, Disturbance attenuation, H

-control, hydrogenerator system 

 

I. INTRODUCTION 

The H

-control problem for discrete-time and sampled data singlerate and multirate systems has  

successfully been treated in the past [1-9,11,12]. Generally speaking, when the state vector is not available for 

feedback, the H

-control problem is usually solved in both the continuous and the discrete-time cases, by the 

use of dynamic measurement feedback.   

This technique is based on multirate-output controllers (MOCs). MOCs contain a multirate sampling 

mechanism with different sampling period to each system measured output. The technique proposed[10], relies 

mainly on the reduction, under appropriate conditions, of the original Η
∞  

-disturbance attenuation problem, to 

an associated discrete Η
∞
-control problem for which a fictitious static state feedback controllers is to be 

designed, even though state variables are not available for feedback. This fact has beneficial impact on the 

theoretical and the numerical complexity of the problem since using the technique reported in [10,11], only one 

algebraic Riccati equation is to be solved, as compared to two algebraic Riccati equations needed by other well 

known H
∞ 

-control techniques. 

  In the present paper the ultimately investigated discrete linear open-loop power system model was 

obtained through a systematic procedure using a linearized continuous, with impulse disturbances, 6
th

-order 

SIMO open-loop model representing a practical power system, which consists of a 117 MVA hydrogenerator 

with a single stage excitations system supplying power to an infinite gird via a step-up transformer and a 

double-circuit transmission line [14]. The digital controller, which will lead to the associated designed discrete 

closed-loop power system model displaying enhanced dynamic stability characteristics, is accomplished by 

applying properly the presented MOCs technique.  

 

II. OVERVIEW OF RELEVANT MATHEMATICAL CONSIDERATIONS 
The general description of the controllable and observable continuous, linear, time-invariant, multivariable 

mimo dynamical open-loop system expressed in state-space form is: 

http://www.teikav.edu.gr/
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where: t) n( Rx , ( )
m

t Ru , ( )
p

t Ry  are state, input and output vectors respectively; and A, B and C are 

real constant system matrices with proper dimensions.  

The associated general discrete description of the system of equation 1 is as follows  

(k 1) (k) (k)

(k) (k)

  



x Ax Bu

y Cx
   (2) 

where: ( ) R ( ) R , ( ) Rn m pk , k k  x u y  are state, input and output vectors respectively; and A, B and 

C are real constant system matrices with proper dimensions. 

 

III. OVERVIEW OF H
 

- CONTROL TECHNIQUE USING MOC [5,8] 
Consider the controllable and observable continuous linear state-space system model of the general form: 

)(x t =Ax(t)+Bu(t)+Dq(t) , 0)(x 0          (3a) 

)(uJ)(Cx)(y tttm 1 ,  c 2(t) (t) (t) y Ex J u         (3b) 

where: (t)
n

Rx , (t)
m

Ru , 
dt 2L)(q , 1(t)

p
Rm y , 2(t)

p
Rc y are the state, input, external disturbance, 

measured output and controlled output vectors, respectively. In equation 3, all matrices have real elements and 

appropriate dimensions. Now follows a useful definition.  

Definition. For an observable matrix pair  ,A C , with  T
p

TTT

121 cccC   and ci with i=1, …,p1, the ith 

row of the matrix C, a collection of 1p  integers  
1

  2 1 pnnn ,,,   is called an observability index vector of the 

pair  C,A , if the following relationships simultaneously hold 





1

1

p

i

i nn  ,     nrank T
p

nTT
p

TnTT p







 

1

1

1

1 1

1

1

1 cAccAc   

Next the multirate sampling mechanism [6,8,10], is applied to system 3.  

 

 Assuming that all samplers start simultaneously at t = 0, a sampler and a zero-order hold with period T0  is 

connected to each plant input u ti ( ) , i=1,2,…,m, such that 

u(t)=u  0kT ,  00 1)T+(k ,kTt      (4) 

while the ith disturbance )(tqi , i=1,…,d, and the ith controlled output )(, ty ic , i=1,…, 2p , are detected at time 

0kT , such that for  00 1)T+(k ,kTt  

q(t)=q  0kT ,  0kTcy Ex  0kT +J2  0kT   (5) 

The ith measured output )t(y i,m , i=1,…, 1p , is detected at every iT  period, such that for 1,...,0  iN  

     
iiiiim TkTTkTy 100 Jxc,   u  0kT   (6) 

where  
i2J  is the ith row of the matrix 2J . Here 

 ZiN  are the output multiplicities of the sampling and 

RiT  are the output sampling periods having rational ratio, i.e. ii NTT /0  with i=1,…, 1p .  

 The sampled values of the plant measured outputs obtained over  00 1 TkkT )(,   are stored in the *N -

dimensional column vector given by  

   ˆ ( ) ( 1)
0 ,1 0 ,1 0 1 1

kT y kT y kT N T
m m

   


       Tpp0pm,0pm, 1111
T1NkTykTy   (7) 

(where 



1

1

p

i

iNN *
), that is used in the MROC of the form 

      0001 kTkTTk  ˆLuLu u   (8) 

where 
*

u
mxNmxm  , RLRL   . 
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The 
H -disturbance attenuation problem treated in this paper, is as follows: Find a MOC of the form (2), 

which when applied to system (1), asymptotically stabilizes the closed-loop system and simultaneously achieves 

the following design requirement  

  


z
cqyT    (9) 

for a given 
R , where  


z

cqyT  is the H

-norm of the proper stable discrete transfer function  z

cqyT , 

from  sampled-data external disturbances q  0kT
d
2  to sampled-data controlled outputs  z

cqyT , defined by 

 
 

 

 
20

20

20
kT

kT
z

c

lkT
c q

y
supT

q
qy




 
     ze

cc
z

j
qymaxqymax

,

TsupTsup  

 120 

  

where,   z
cqymax T  is the maximum singular value of  z

cqyT , and where use was made of the standard 

definition of the 2 -norm of a discrete signal )(s 0kT  

     






0

00

2

20

k

T kTkTkT sss  

 Our attention will now be focused on the solution of the above 
H -control problem. To this end, the 

following assumptions on system (1) are made:  

  

Assumptions:  

a) The matrix triplets  C,B,A    and  E,D,A    are stabilizable and detectable. 

b) dmnrankd,nrank
xdpxmpxdp 111



























00C

DBA

0C

DA
  

c)    mmnm
T

 I0JEJ 22  

d) There is a sampling period 0T , such that the open-loop discrete-time system model in general form 

becomes  

        
     0200

0000

     

1

kTkTkT

kTkTkTTk

c uJExy

qD̂uB̂xx




 (10) 

where        d ,T

0T

0

0 )(expˆˆexp B,DAD,BAΦ   

is stabilizable and observable and does not have invariant zeros on the unit circle.  

 From the above it fellows that the procedure for 
H -disturbance attenuation using MOCs essentially consists 

in finding for the control law a fictitious state matrix F, which equivalently solves the problem and then, either 

determining the MOC pair  uL,L  or choosing a desired uL  and determining the L . As it has been shown 

in [3], matrix F takes the form  

  


PB̂B̂PB̂IF
TT 1

 (11) 

where P is an appropriate solution of the following Riccati equation 

  


PB̂B̂PB̂IB̂PPEEP
1TTTT   PD̂D̂PD̂ID̂P

TT
   , D̂D̂

1   (12) 

It is to be noted that 
 R , such that )(z

cqyT  where 


)(z
cqyT  is the H


-norm of the proper stable 

discrete transfer function )(z
cqyT , from sampled-data external disturbances d

oq 2kT )(  to sampled-data 

controlled output )( okTcy .  

Once matrix F is obtained the MROC matrices L  and uL  (in the case where uL  is free), can be computed 

according to the following mathematical expressions  

    
      uqu

q

H
~

HIH
~

0FL

H
~

HIH
~

0FL

**

**









NNdm

NNdm  
  (13) 
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where   IHH
~

q   and 
*mxN

RΛ  is an arbitrary specified matrix. In the case where spuu ,LL  , we have  

    ĤHIĤ0LFL qu,u ** 
 NNdmsp   

where   IHĤ qu   and 
*mxN

RΣ  is arbitrary.   

 

The resulting closed-loop system matrix  cl/dA  takes the following general form 

FBAA ol/dol/dcl/d   (14) 

where cl = closed-loop, ol = open-loop and d = discrete.  

 

IV. DESIGN AND SIMULATIONS OF OPEN- AND CLOSED-LOOP MODELS  

OF THE POWER SYSTEM  
In the present work, the aforementioned optimal control strategy is used to design a desirable excitation 

controller of a hydrogenerator system, for the purpose of enhancing its dynamic stability characteristics. The 

hydrogenerator system studied [14], is an 117 MVA hydrogenerator unit of the Greek Electric Utility Power 

System, which supplies power through a step-transformer and a transmission line to an infinite grid. 

The numerical values of the parameters, which define the total system as well as its operating point, come from 

[14] and are given in Appendix A. 

Based on the state variables Fig. 1 and the values of the parameters and the operating point (see 

Appendix A), the system of Fig. 1 may be described in state-space form, in the form of system 3, where 

 

 
Fig. 1.  Simplified representation of hydrogenerator system supplying power by an infinite grid. 

 

,

T
v P i Et t f fd

        
 

x  

ref.

6 6 1 6 1 2 6 1

u=ΔV q=u

, , .x x x  

m c, y = x, , y = x, y = x,

E I J 0 J 0  

 

The matrices A, B, C and D  are given in Appendix B. 
  

The eigenvalues of the original continuous open-loop power system models and the simulated responses of the 

output variables  , , , , ,t t f fdv P i E       , are shown in Table 1 and Fig. 2, rispectivly.   

 

Table 1. Eigenvalues of  original open-loop  power system models. 

Original open-loop power system model λ 
-25.6139   0.0931+7.7898i   0.0931-7.7898i 

-8.1191+6.2036i   -8.1191-6.2036i   -6.4021 
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As it can be easily checked the above linear state space model is unstable, since matrix A has two unstable 

complex eigenvalues at λ1,2=0.0931±j7.7898.  

 
Fig. 2. Responses of the output variables of the original continuous open-loop power system models to step 

input change: ΔVref.=0.05 p.u. 

 

The computed discrete linear open-loop power system model, based on the associated linearized continuous 

open-loop system model described in Appendix B, is given below in terms of its matrices with sampling period 

T0 = 1.0 sec. 

/

0.5757 0.1325 1.6853 0.2743 0.0556 0.0005

13.9929 0.0004 15.0928 3.2806 1.6663 0.0703

0.2546 0.0197 0.4331 0.0805 0.0284 0.0009

0.1185 0.2090 1.8064 0.2483 0.0065 0.0032

0.3721 0.1108 0.4875 0.0289 0.0553 0.00

ol d

   

    

 

 



A

39

7.4355 1.0654 16.5864 2.8682 0.7774 0.0176   

 
 
 
 
 
 
 
 

 

 / 0.4208 0.4652 0.7994 0.6004 2.6836 10.9119
T

ol d  B  

/

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ol d

 
 
 
 
 
 
 
 

C ,   Dol/d=Bol/d 

 

The H
 

-control using MOCs, the computed discrete linear open-loop model of the power system under study, 

and the two discrete closed-loop power system models were designed considering two distinct cases: 

 

a) with γ =10.5, the  Lu and Lγ feedback gain matrices were computed as 
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Δ
δ
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 Lu = 0.00000256 

 0.1583 0.0897 0.8912 0.1314 0.0100 0.0009   
γ

L   

 

and  

 

b) with γ=5.5,  the associated   Lu and Lγ feedback gain matrices were computed as 

 

 Lu = 0.00000029 

 0.1248 0.0928 0.8803 0.1269 0.0056 0.0011   
γ

L  

 

The numerical values of the matrices referring to the discrete closed-loop power system models of the above 

two cases are not included here due to space limitations.  

The magnitude of the eigenvalues of the discrete original open-loop and designed closed-loop power system 

models are shown in Table 2.  

 

Table 2. Magnitude of eigenvalues of discrete original open-loop and designed closed-loop power system 

models. 

Original open-loop power system model   1.0976   1.0976   0.0017   0.0   0.0003   0.0003 

Designed closed-loop 

power system model 

with γ=10.5 ̂  0.4426   0.4426   0.0053   0.0   0.0003   0.0003 

with γ=5.5 ̂  0.4933   0.2626   0.0081   0.0   0.0003    0.0003 

 

By comparing the eigenvalues of the designed closed-loop power system models to those of the original open-

loop power system model the resulting enhancement in dynamic system stability is judged as being remarkable.  

The responses of the output variables (Δδ,  Δω,  Δvt,  ΔPt,  Δif,  ΔEfd) of the original open-loop and designed 

closed-loop power system models for zero initial conditions and unit step input disturbance are shown in Figs. 3, 

respectively.  
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Fig. 3. Responses of Δδ, Δω, Δvt, ΔPt, Δif, ΔEfd, of: 

 

(A): discrete open-loop system model subject to step input changes ΔVref.=0.05 p.u. 

(B): designed discrete closed-loop model: 

       (a): with γ=10.5 and to step input changes, ΔVref.=10.5 p.u. & ΔVref.=0.10 p.u. respectively. 

       (b): with γ=5.5 and to step input changes, ΔVref.=0.05 p.u. & ΔVref.=0.10 p.u. respectively.  

 

From Figs. 3 it is clear that the dynamic stability characteristics of the designed discrete closed-loop 

system-models are far more superior than the corresponding ones of the original open-loop model, which attests 

in favour of the proposed H
 

-control technique.  

It is to be noted that the solution results of the discrete system models , i.e. eigenvalues, eigenvectors, responses 

of system variables etc., for zero initial conditions were obtained using a special software program, which is 

based on the theory of & ΙΙ and runs on MATLAB program environment. 

 

In Fig. 4 , the maximum singular value of ( )T zqyc
 is depicted, as a function of the frequency ω. 

Clearly, the design requirement ( ) 10.5
cqy z   , is satisfied. Moreover, as it can be easily checked the poles 

of the closed loop system, (see, Table 2), lie inside the unit circle. Therefore, the requirement for the stability of 

the closed-loop system is also satisfied.  

Not that, the H
∞
-norm of the open-loop system transfer function between disturbances and controlled outputs 

has the value 
1( ) 479j 


 C I A B . 

 

 

Fig. 4.  The maximum singular value of ( )
cqy z  over ω, for the unsaturated machine and for γ=10.5 
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In Fig. 5 , the maximum singular value of ( )T zqyc
 is depicted, as a function of the frequency ω. 

Clearly, the design requirement ( ) 5.5
cqy z   , is satisfied. Moreover, as it can be easily checked the poles 

of the closed loop system, (see, Table 2), lie inside the unit circle. Therefore, the requirement for the stability of 

the closed-loop system is also satisfied.  

Not that, the H
∞
-norm of the open-loop system transfer function between disturbances and controlled outputs 

has the value 
1( ) 479j 


 C I A B . 

 

 

Fig. 5. The maximum singular value of  ( )
cqyT z  over ω, for the unsaturated machine for γ=5.5 

 

V. CONCLUSIONS 

 The method, H
 

-control was applied successfully to a discrete open-loop power system model, which 

was computed from an original continuous linearized open-loop one, resulting in the design of an associated 

discrete closed-loop power system model. The results of the simulations performed on the discrete open- and 

closed-loop power system models demonstrated clearly the significant enhancement of the dynamic stability 

characteristics achieved by the designed closed-loop model. Thus this H
 

-control technique was proved to be a 

reliable tool for the design of implementable MOCs. Moreover, it has been shown that the control effort in 

attenuating disturbances is decreased if the sampling period related to the multirate mechanism is increased and 

vice versa.  
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Appendix A 

Numerical values of the system parameters and the operating point (p.u. values on generator ratings). 

Hydrogenerator: 

117MVA, kV=15.75, RPM=125, H=3.0, xd=0.935 p.u., xq=0.574 p.u., xD=0.992 p.u., xQ=0.551p.u., 

xf=0.221 p.u., iq=0.665 p.u., id=0.746 p.u., vq=0.924 p.u., vd=0.381 p.u. 

External  system:  
Re=0.015 p.u.,  Xe=0.40 p.u. (on a 117MVA base). 

Operating point:  

vto=1.0 p.u., Pt0=1.1 p.u., Qt0=0.5 p.u., 

δnom =0.9604 rad., ωnom=100π rad./sec, ifnom.=1.9634 p.u., Efdnom.=1.7720 p.u. 

 

Appendix B 

Numerical values of matrices A, B, C and D of the original continuous 6th-order system 

 

0 1 0 0 0 0

150.5484 0 196.0696 38.49705 0 0

2.5353 0.1258 7.9768 0.0193 2.1392 0.0401

11.4595 1.3822 0.2009 7.9565 4.6095 0.0865

26.2471 0.2898 55.2988 5.9203 12.1345 0.6411
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