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Abstract:  - The analysis of the queuing system shows that the number of their servers was not adequate for the 

customer’s service. It observed that they need 5 servers instead of the 3 at present. It suggests a need to increase 

the number of servers in order to serve the customer better. 
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I. INTRODUCTION 
Queuing theory is the mathematical study of waiting lines, or queues [1]. In queuing theory a model is 

constructed so that queue lengths and waiting times can be predicted [1]. Queuing theory is generally considered 

a branch of operations research because the results are often used when making business decisions about the 

resources needed to provide service. 

Queuing theory started with research by Agner Krarup Erlang when he created models to describe the 

Copenhagen telephone exchange [1]. The ideas have since seen applications including telecommunications,[2] 

traffic engineering, computing[3] and the design of factories, shops, offices and hospitals.[4][5] 

Etymology of Queuing System: The word queue comes, via French, from the Latin cauda, meaning tail. The 

spelling "queuing" over "queuing" is typically encountered in the academic research field. In fact, one of the 

flagship journals of the profession is named Queuing Systems. 

Application of Queuing Theory: The public switched telephone network (PSTN) is designed to accommodate 

the offered traffic intensity with only a small loss. The performance of loss systems is quantified by their grade 

of service, driven by the assumption that if sufficient capacity is not available, the call is refused and lost.[13] 

Alternatively, overflow systems make use of alternative routes to divert calls via different paths — even these 

systems have a finite traffic carrying capacity.[13] 

However, the use of queuing in PSTNs allows the systems to queue their customers' requests until free resources 

become available. This means that if traffic intensity levels exceed available capacity, customer's calls are not 

lost; customers instead wait until they can be served.[14] This method is used in queuing customers for the next 

available operator. 

A queuing discipline determines the manner in which the exchange handles calls from customers.[14] It defines 

the way they will be served, the order in which they are served, and the way in which resources are divided 

among the customers.[14][15] Here are details of four queuing disciplines: 

First in first out: This principle states that customers are served one at a time and that the customer that has 

been waiting the longest is served first.[15] 
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Last in first out: This principle also serves customers one at a time; however the customer with the shortest 

waiting time will be served first.[15] Also known as a stack. 

Processor sharing: Service capacity is shared equally between customers.[15] 

Priority: Customers with high priority are served first.[15] 

Queuing is handled by control processes within exchanges, which can be modeled using state equations.[14][15] 

Queuing systems use a particular form of state equations known as a Markov chain that models the system in 

each state.[14] Incoming traffic to these systems is modeled via a Poisson distribution and is subject to Erlang’s 

queuing theory assumptions viz.[13] 

 Pure-chance traffic – Call arrivals and departures are random and independent events.[13] 

 Statistical equilibrium – Probabilities within the system do not change.[13] 

 Full availability – All incoming traffic can be routed to any other customer within the network.[13] 

 Congestion is cleared as soon as servers are free.[13] 

Classic queuing theory involves complex calculations to determine waiting time, service time, server utilization 

and other metrics that are used to measure queuing performance.[14][15] 

Queuing networks: Networks of queues are systems a number of queues are connected by customer routing. 

When a customer is serviced at one node it can join another node and queue for service, or leave the network. 

For a network of m the state of the system can be described by an m–dimensional vector (x1,x2,...,xm) where xi 

represents the number of customers at each node. The first significant results in this area were Jackson networks, 

for which an efficient product-form stationary distribution exists and the mean value analysis which allows 

average metrics such as throughput and sojourn times to be computed.[16] 

If the total number of customers in the network remains constant the network is called a closed network and has 

also been shown to have a product–form stationary distribution in the Gordon–Newell theorem. This result was 

extended to the BCMP network where a network with very general service time, regimes and customer routing 

is shown to also exhibit a product-form stationary distribution. 

Networks of customers have also been investigated; Kelly networks where customers of different classes 

experience different priority levels at different service nodes.[17] 

Mean field limits:  Mean field models consider the limiting behavior of the empirical measure (proportion of 

queues in different states) as the number of queues (m above) goes to infinity. The impact of other queues on 

any given queue in the network is approximated by a differential equation. The deterministic model converges 

to the same stationary distribution as the original model.[18] 

Fluid limits: Fluid models are continuous deterministic analogs of queuing networks obtained by taking the 

limit when the process is scaled in time and space, allowing heterogeneous objects. This scaled trajectory 

converges to a deterministic equation which allows us stability of the system to be proven. It is known that a 

queuing network can be stable, but have an unstable fluid limit.[19] 

Heavy traffic: In a system with high occupancy rates (utilization) a heavy traffic approximation can be used to 

approximate the queuing length process by a reflected Brownian motion,[20] Ornstein–Uhlenbeck process or 

more general diffusion process.[6] The number of dimensions of the RBM is equal to the number of queuing 

nodes and the diffusion is restricted to the non-negative orthant. 

Queuing System Utilization: Utilization is the proportion of the system's resources which is used by the traffic 

which arrives at it. It should be strictly less than one for the system to function well. It is usually represented by 

the symbol . If then the queue will continue to grow as time goes on. In the simplest case of an 

M/M/1 queue (Poisson arrivals and a single Poisson server) then it is given by the mean arrival rate over the 

mean service rate, that is, 

 
where  is the mean arrival rate and is the mean service rate. More generally: 

 
where  is the mean arrival rate, is the mean service rate, and c is the number of servers, such as in an M/M/c 

queue. 

In general, a lower utilization corresponds to less queuing for customers but means that the system is more idle, 

which may be considered inefficient.[7] 

Role of Poisson process, exponential distributions 

A useful queuing model represents a real-life system with sufficient accuracy and is analytically tractable. A 

queuing model based on the Poisson process and its companion exponential probability distribution often meets 

these two requirements. A Poisson process models random events (such as a customer arrival, a request for 
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action from a web server, or the completion of the actions requested of a web server) as emanating from a 

memoryless process. That is, the length of the time interval from the current time to the occurrence of the next 

event does not depend upon the time of occurrence of the last event. In the Poisson probability distribution, the 

observer records the number of events that occur in a time interval of fixed length. In the (negative) exponential 

probability distribution, the observer records the length of the time interval between consecutive events. In both, 

the underlying physical process is memoryless. 

Models based on the Poisson process often respond to inputs from the environment in a manner that mimics the 

response of the system being modeled to those same inputs. Even a queuing model based on the Poisson process 

that does a relatively poor job of mimicking detailed system performance can be useful. The fact that such 

models often give "worst-case" scenario evaluations appeals to system designers who prefer to include a safety 

factor in their designs. Also, the form of the solution of models based on the Poisson process often provides 

insight into the form of the solution to a queuing problem whose detailed behavior is poorly mimicked. As a 

result, queuing models are frequently modeled as Poisson processes through the use of the exponential 

distribution. [8] 

Limitations of queuing theory: The assumptions of classical queuing theory may be too restrictive to be able 

to model real-world situations exactly. The complexity of production lines with product-specific characteristics 

cannot be handled with those models. Therefore specialized tools have been developed to simulate, analyze, 

visualize and optimize time dynamic queuing line behavior. [9] 

For example; the mathematical models often assume infinite numbers of customers, infinite queue capacity, or 

no bounds on inter-arrival or service times, when it is quite apparent that these bounds must exist in reality. 

Often, although the bounds do exist, they can be safely ignored because the differences between the real-world 

and theory is not statistically significant, as the probability that such boundary situations might occur is remote 

compared to the expected normal situation. Furthermore, several studies show the robustness of queuing models 

outside their assumptions. In other cases the theoretical solution may either prove intractable or insufficiently 

informative to be useful. [10] 

Alternative means of analysis have thus been devised in order to provide some insight into problems that do not 

fall under the scope of queuing theory, although they are often scenario-specific because they generally consist 

of computer simulations or analysis of experimental data. See network traffic simulation. [9] 

 

Research Method Used:  

The research method used in this work is a quantitative research approach. The data gathered were the daily 

record of queuing system over a week. The method used in this research work were the analysis of queuing 

systems and techniques and also the development of queuing model for the analysis of queuing method and 

establish a method that will solve the problem of customers arrival rate. The model will establish the actual time 

it takes to serve the customer as at when due and estimate the actual working serves necessary in the 

organization. This model developed was used to predict the actual number of servers and time it takes to solve 

the problem of  queuing or waiting before customers are been served as and at when due in the establishment 

for a week. The model developed was used to test the queuing system against the number of servers and 

customers arrival rate of the establishment.  

 

Table 1: Day (One) 1 Queuing System Analysis of the Servers 

Monday 

 Server 1 Server 2 Server 3 

Time  Arrival 

Rate 

Service Rate Arrival Rate Service Rate Arrival Rate Service 

Rate 

9:00-10:00am 16 5 17 10 25 13 

10:00-11:00am 19 10 24 21 29 31 

11:00-12:00 

noon 

20 19 28 17 37 28 

12:00-1:00pm 19 19 24 24 29 29 

1:00-2:00pm 14 11 19 17 26 24 

2:00-3:00pm 4 4 14 13 20 14 

 

 

 

 

Table 2: Day (Two) 2 Queuing System Analysis of the Servers 

Tuesday 

 Server 1 Server 2 Server 3 

Time  Arrival Rate Service Rate Arrival Rate Service Rate Arrival Rate Service Rate 
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9:00-10:00am 17 12 19 21 18 11 

10:00-11:00am 25 20 31 23 27 24 

11:00-12:00 31 27 31 25 37 29 

12:00-1:00pm 30 24 24 24 29 29 

1:00-2:00pm 36 35 31 23 26 24 

2:00-3:00pm 19 18 19 14 14 8 
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Figure 1: Server 1 Average Arrival Rate 

 

 
Figure 2: Server 1 Average Service Rate 
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Figure 3: Server 2 Average Arrival Rate 

 

 
Figure 4: Server 2 Average Service Rate 
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Figure 5: Server 3 Average Arrival Rate 

 

 
Figure 6: Server 3 Average Service Rate 

 

Table 7: Daily System Utilization for each Server 

Daily Record Server 1 Server 2 Server 3 

Day 1 1.352941 1.235294 1.194245 

Day 2 1.161765 1.192308 1.208 

Day 3 1.182796 1.116071 1.102941 

Day 4 1.171053 1.242991 1.136691 

Day 5 1.103448 1.25 1.073171 

 

Customers arrival rate for server 1(λ1) = 18.16667 

Customers arrival rate for server 2 (λ2) = 21.96667 

Customers arrival rate for server 3 (λ3) = 25.23333 
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Average Customers arrival rate for the servers (λ) = 21.7888889 

Service Rate for Server 1(μ1) = 15.33333 

Service Rate for Server 2(μ2) = 18.23333 

Service Rate for Server 3(μ3) = 22.06667 

Average Service Rate for the Servers (μ) = 18.54444 

The average number of customers being served(r) 

𝑅 =
𝜆

𝜇
            (1)     

The average number of customers being served in server 1(r1) 

𝑅1 =
𝜆1

𝜇1
=

18.16667

15.33333
= 1.184783        (2)   

𝑅2 =
𝜆2

𝜇2
=

21.96667

18.23333
= 1.204753        (3)   

𝑅3 =
𝜆3

𝜇3
=

25.23333

22.06667
= 1.184783        (4)   

𝑅 =
𝜆

𝜇
 =

21.7888889

18.54444
=1.174955        (5)     

System Utilization for each Channel 

𝜌 =  
𝜆

𝑀 𝜇 
           (6)  

𝜌1 =  
𝜆1

𝑀1 𝜇1 
 = 

18.16667

1 15.333337  
= 1.184783       (7)  

𝜌2 =   
𝜆2

𝑀2 𝜇2 
  = 

21.96667

1 18.23333  
= 1.204753       (8)  

𝜌3 =   
𝜆3

𝑀3 𝜇3 
 = 

25.23333

1 22.06667  
=1.143505       (9)  

 

Average number in line 

Lq= 
𝜆𝜇  

𝜆

𝜇
 
𝑀

 𝑀−1 ! 𝑀𝜇−𝜆 2   𝑃0          (10)  

Probability of zero units in the system(𝑃0) 

 𝑃0 =    
 
𝜆

𝜇
 
𝑛

𝑛!

𝑀−1
𝑛=0 + 

 
𝜆

𝜇
 
𝑀

𝑀! 1−
𝜆

𝑀𝜇
 
 

−1

        (11) 

Average waiting time for an arrival not immediately served  𝑊𝑎  

 𝑊𝑎 =  
1

𝑀𝜇− 𝜆
           (12) 

Probability that an arrival will have to wait for service (𝑃𝑤) 

 𝑃𝑤 =  
𝑊𝑞

𝑊𝑎
            (13) 

Using equations (10) and (11) above, we have the results in the table below 

 

Table 7: Results of the three Servers analyses 

 M 𝐿𝑄  𝑃𝑂  

1 0 -0.18048 

2 0.836633 0.351096 

3 0.13863 0.48456 

4 0.050566 0.540665 

5 0.025538 0.56806 

6 0.015438 0.581313 

7 0.015245 0.586285 

8 0.007667 0.585774 

9 0.00595 0.58128 
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Table 8: Formulas and Analysis of the Multiple Servers Queuing System 
 

 

M 𝐿𝑞  𝑃0  

 

M 𝐿𝑞  𝑃0 

1 2 0.5 0.5 2.1 3 0.968927 0.08071 

 3 0.083333 0.666667  4 0.305703 0.081065 

 4 0.027778 0.75  5 0.157543 0.061793 

 5 0.0125 0.8  6 0.098305 0.041509 

 6 0.006667 0.833333  7 0.067568 0.025735 

1.1 2 0.672222 0.409091 2.2 3 1.179965 0.064475 

 3 0.112625 0.555393  4 0.348496 0.065728 

 4 0.039775 0.623107  5 0.175457 0.04853 

 5 0.019246 0.66096  6 0.107838 0.031214 

 6 0.011106 0.684208  7 0.073286 0.018462 

1.2 2 0.9 0.333333 2.3 3 1.45087 0.050809 

 3 0.148148 0.462963  4 0.395693 0.053301 

 4 0.054518 0.515312  5 0.194224 0.038258 

 5 0.025871 0.569136  6 0.117566 0.023635 

 6 0.017071 0.548823  7 0.079051 0.013379 

 7 0.011719 0.550119 2.4 3 1.811321 0.039308 

1.3 2 1.207143 0.269231  4 0.448133 0.043223 

 3 0.190613 0.38575  5 0.213999 0.03028 

 4 0.072004 0.424122  6 0.127566 0.018023 

 5 0.038266 0.434123  7 0.084913 0.009794 

 6 0.024414 0.429741 2.5 3 2.314815 0.02963 

1.4 2 1.633333 0.214286 ANS 4 0.506894 0.035036 

 3 0.240871 0.321027  5 0.234962 0.02406 

 4 0.092162 0.347519  6 0.137914 0.01384 

 5 0.050189 0.345548  7 0.090917 0.007239 

 6 0.032809 0.329288 2.6 3 3.068436 0.021487 

1.5 2 2.25 0.166667  4 0.573376 0.028376 

 3 0.3 0.266667  5 0.257319 0.019192 

 4 0.114894 0.283688  6 1.528019 0.0107 

 5 0.063347 0.272506  7 0.075056 0.005401 

 6 0.04186 0.248062 2.7 3 4.322134 0.014639 

1.6 2 3.2 0.125  4 0.649416 0.022946 

 3 0.369408 0.22096  5 0.281304 0.015364 

 4 0.14012 0.230911  6 0.159958 0.008326 

 5 0.077461 0.213491  7 0.103502 0.004066 

 6 0.05123 0.18474 2.8 3 6.825871 0.008884 

1.7 2 4.816667 0.088235  4 0.737464 0.018511 

 3 0.450982 0.182507  5 0.307187 0.012341 

 4 0.167815 0.18757  6 0.171806 0.006519 

 5 0.092314 0.166595  7 0.110151 0.003086 

 6 0.06069 0.136736 2.9 3 14.32961 0.004052 

1.8 2 8.1 0.055556  4 0.840863 0.014881 

 3 0.547297 0.15015  5 0.335283 0.009943 

 4 0.198026 0.152169  6 0.184311 0.005134 

 5 0.107773 0.129788  7 0.117079 0.002361 

 6 0.070127 0.101029 3 4 0.964286 0.011905 

1.9 2 18.05 0.026316  5 0.365964 0.008032 

 3 0.661938 0.122919  6 0.197561 0.004065 

 4 0.230895 0.123369  7 0.124318 0.001819 

 5 0.123781 0.101139  8 0.051965 0.00076 

 6 0.079516 0.074769 3.1 4 0.111448 0.00946 

2 3 0.8 0.1  5 0.039967 0.006503 

 4 0.266667 0.1  6 0.021165 0.003235 

 5 0.140351 0.078947  7 0.01319 0.001411 

 6 0.088889 0.055556  8 0.009022 0.000573 

 7 0.061836 0.036232  9 0.006563 0.000223 

 

Expected inter arrival time per hour   
1

𝜆
 = 

1

21.7888889
× 60 =2.753697 minutes   (14) 
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Service Time per hour  = 𝜇 =
1

3.24÷60
 = 18.54444   (15) 

From the table above: M=5, 𝐿𝑞= 0.025871=0.026 and 𝑃0= 0.569136= 0.569 

The average number of customers waiting for service (𝐿𝑞 ) = 0.025871=0.026 

Average waiting time for an arrival not immediately served  𝑊𝑎  

 𝑊𝑎 =  
1

𝑀𝜇− 𝜆
           (16) 

 𝑊𝑎 =  
1

5(18.54)−21.79
= 0.014 Hour or 0.847 minutes 

The average time customers wait in line (𝑊𝑞 ) 

 𝑊𝑞 =  
𝐿𝑞

𝜆
=

0.026 

21.79
= 0.00119ℎ𝑜𝑢𝑟 𝑜𝑟 0.072 𝑚𝑖𝑛𝑢𝑡𝑒𝑠   

Probability that an arrival will have to wait for service (𝑃𝑤) 

 𝑃𝑤 =  
𝑊𝑞

𝑊𝑎
=  

0.00119

0.0.014
= 0.085          (17) 

The Average Number of Customers in the System (waiting and /or being served) 

𝐿𝑆 =  𝐿𝑞 + 𝑅          (18) 

Or  𝐿𝑆 = 𝑊𝑠  × 𝜆           (19) 

Using Equation (32) above; 

𝐿𝑆 =  0.026 + 1.2 = 1.226 

The average time spend in the system (waiting in line and service time) (𝑊𝑠) 

𝑊𝑠 =  𝑊𝑞 + 
1

𝜇
=  

𝐿𝑠

𝜆
           (20) 

 𝑊𝑠 =   
𝐿𝑠

𝜆
=  

1.226

21.79
= 0.056 

System Utilization 𝜌 =  
𝜆

𝑀 𝜇 
= 

21.79

5 18.54 
= 0.235      (21) 

The system capacity = Μ𝜇 = 5 × 18.54 = 92.7      (22)  

 

II. DISCUSSION OF RESULTS 
From the analysis, it was observed that number of servers necessary to serve the customers in the case study 

establishment was five (5) servers (or channels). This was proved in table 7 and 8 above. This is the appropriate 

number of servers that can serve the customers as and at when due without waiting for long before customers 

are been served at the actual time necessary for the service. This increase in servers reduces the waiting time, 

and the probability that an arrival will have to wait for service is 0.056.  However, the system utilization was 

observed to be 0.235 for an hour. Furthermore, the system capacity of the five servers was observed to be 92.7 

for an hour.   

 

III. CONCLUSION 
The evaluation of queuing system in an establishment is necessary for the betterment of the establishment. As it 

concerns the case study company, the evaluation or analysis of their queuing system shows that the case study 

company needs to increase the number of their channels or servers up to five(5) as show in the result analysis. 

The increase in the number of servers will reduce the time customers have to wait in line before been served. 

This will also increase the efficiency of the establishment due to the appreciation in their serve to the customers 

as and at when due.  
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