
American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 22

American Journal of Engineering Research (AJER)

e-ISSN : 2320-0847 p-ISSN : 2320-0936

Volume-03, Issue-02, pp-22-26

www.ajer.org

Research Paper Open Access

LZW Data Compression

Dheemanth H N,
Dept of Computer Science, National Institute of Engineering, Karnataka, India

Abstract: - Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm created by

Abraham Lempel, Jacob Ziv, and Terry Welch. LZW compression is one of the Adaptive Dictionary techniques.

The dictionary is created while the data are being encoded. So encoding can be done on the fly. The dictionary

need not be transmitted. Dictionary can be built up at receiving end on the fly. If the dictionary overflows then

we have to reinitialize the dictionary and add a bit to each one of the code words. Choosing a large dictionary

size avoids overflow, but spoils compressions. A codebook or dictionary containing the source symbols is

constructed. For 8-bit monochrome images, the first 256 words of the dictionary are assigned to the gray levels

0-255. Remaining part of the dictionary is filled with sequences of the gray levels.LZW compression works best

when applied on monochrome images and text files that contain repetitive text/patterns.

Keywords: - Encoding,Decoding,Compression Ratio

I. ENCODING
A dictionary is initialized to contain the single-character strings corresponding to all the possible input

characters (and nothing else except the clear and stop codes if they're being used). The algorithm works by

scanning through the input string for successively longer substrings until it finds one that is not in the dictionary.

When such a string is found, the index for the string less the last character (i.e., the longest substring that is in

the dictionary) is retrieved from the dictionary and sent to output, and the new string (including the last

character) is added to the dictionary with the next available code. The last input character is then used as the

next starting point to scan for substrings.

In this way, successively longer strings are registered in the dictionary and made available for subsequent

encoding as single output values. The algorithm works best on data with repeated patterns, so the initial parts of

a message will see little compression. As the message grows, however, the compression ratio tends

asymptotically to the maximum.

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 23

II. EXAMPLE FOR AN ENCODING PROCESS
A sample string used to demonstrate the algorithm is shown in below chart. The input string is a short

list of English words separated by the '/' character. Stepping through the start of the algorithm for this string, you

can see that the first pass through the loop, a check is performed to see if the string "/W" is in the table. Since it

isn't, the code for '/' is output, and the string "/W" is added to the table. Since we have 256 characters already

defined for codes 0-255, the first string definition can be assigned to code 256. After the third letter, 'E', has

been read in, the second string code, "WE" is added to the table, and the code for letter 'W' is output. This

continues until in the second word, the characters '/' and 'W' are read in, matching string number 256. In this

case, the code 256 is output, and a three character string is added to the string table. The process continues until

the string is exhausted and all of the codes have been output.

Input String = /WED/WE/WEE/WEB/WET

Character Input Code Output New code value New String

/W / 256 /W

E W 257 WE

D E 258 ED

/ D 259 D/

WE 256 260 /WE

/ E 261 E/

WEE 260 262 /WEE

/W 261 263 E/W

EB 257 264 WEB

/ B 265 B/

WET 260 266 /WET

EOF T

The Compression Process:

The sample output for the string is shown in above chart along with the resulting string table. As can be seen,

the string table fills up rapidly, since a new string is added to the table each time a code is output.

III. DECODING
The decoding algorithm works by reading a value from the encoded input and outputting the

corresponding string from the initialized dictionary. At the same time it obtains the next value from the input,

and adds to the dictionary the concatenation of the string just output and the first character of the string obtained

by decoding the next input value.

The decoder then proceeds to the next input value (which was already read in as the "next value" in the

previous pass) and repeats the process until there is no more input, at which point the final input value is

decoded without any more additions to the dictionary.

In this way the decoder builds up a dictionary which is identical to that used by the encoder, and uses it

to decode subsequent input values. Thus the full dictionary does not need be sent with the encoded data; just the

initial dictionary containing the single-character strings is sufficient (and is typically defined beforehand within

the encoder and decoder rather than being explicitly sent with the encoded data.)

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 24

The Decompression Algorithm

IV. DECOMPRESSION FLOWCHART
AN EXAMPLE FOR DECODING PROCESS

Just like the compression algorithm, it adds a new string to the string table each time it reads in a new

code. All it needs to do in addition to that is translate each incoming code into a string and send it to the output.

Below chart shows the output of the algorithm given the input created by the compression earlier in the article.

The important thing to note is that the string table ends up looking exactly like the table built up during

compression. The output string is identical to the input string from the compression algorithm. Note that the first

256 codes are already defined to translate to single character strings, just like in the compression code.

Input Codes: / W E D 256 E 260 261 257 B 260 T

Input/

NEW_CODE
OLD_CODE

STRING/

Output
CHARACTER New table entry

/ / /

W / W W 256 = /W

E W E E 257 = WE

D E D D 258 = ED

256 D /W / 259 = D/

E 256 E E 260 = /WE

260 E /WE / 261 = E/

261 260 E/ E 262 = /WEE

257 261 WE W 263 = E/W

B 257 B B 264 = WEB

260 B /WE / 265 = B/

T 260 T T 266 = /WET

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 25

IMAGE QUALITY VS IMAGE FILE SIZE GRAPH :

(image quality in x-axis, file size in y-axis)

CHECKER BOARD IMAGE:

LZW compression works best when applied on monochrome images and text files that contain repetitive

text/patterns.

For instance, Using LZW compression, a checker board image consisting of repetitive black and white patterns

can be compressed upto 70% of its original file size.Thus a high compression ratio can be achieved.

Compression Ratio:

The compression ratio expresses the difference between the file size of an uncompressed image, and

the file size of the same image when compressed.The compression ratio is equal to the size of the original image

divided by the size of the compressed image. This ratio gives an indication of how much compression is

achieved for a particular image. Most algorithms have a typical range of compression ratios that they can

achieve over a variety of images. Because of this, it is usually more useful to look at an average compression

ratio for a particular method.

The compression ratio typically affects the picture quality. Generally, the higher the compression ratio,

the poorer the quality of the resulting image. The tradeoff between compression ratio and picture quality is an

important one to consider when compressing images.

 Size of the original image

Compression Ratio = --

 Size of the compressed image

Using LZW, 60-70 % of compression ratio can be achieved for monochrome images and text files with repeated

data.

Compression/Decompression Speed :

Compression and decompression time is defined as the amount of time required to encode and decode a picture,

respectively.

Compression/decompression speed depends on:

- The complexity of the compression algorithm

- The efficiency of the implementation of the algorithm

- The speed of the processor hardware

American Journal of Engineering Research (AJER) 2014

w w w . a j e r . o r g

Page 26

REFERENCES
[1] The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith

[2] The Data Compression Book by Mark Nelson

[3] Introduction to Data Compression, Third Edition (Morgan Kaufmann Series in Multimedia Information

and Systems) by Khalid Sayood

[4] Data Compression in Digital Systems (Digital Multimedia Standards Series) by Roy Hoffman

[5] Compression Algorithms for Real Programmers by Peter Wayner

[6] Data Compression: The Complete Reference by David Salomon

